51
|
Park J, Kim B, Chae U, Lee DG, Kam MK, Lee SR, Lee S, Lee HS, Park JW, Lee DS. Peroxiredoxin 5 Decreases Beta-Amyloid-Mediated Cyclin-Dependent Kinase 5 Activation Through Regulation of Ca 2+-Mediated Calpain Activation. Antioxid Redox Signal 2017; 27:715-726. [PMID: 28358580 DOI: 10.1089/ars.2016.6810] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
AIMS Aberrant Cdk5 (cyclin-dependent kinase 5) and oxidative stress are crucial components of diverse neurodegenerative disorders, including Alzheimer's disease (AD). We previously reported that a change in peroxiredoxin (Prx) expression is associated with protection from neuronal death. The aim of the current study was to analyze the role of Prx in regulating Cdk5 activation in AD. RESULTS We found that of the six Prx subtypes, Prx5 was increased the most in cellular (N2a-APPswe cells) model of AD. Prx5 in the brain of APP (amyloid precursor protein) transgenic mouse (Tg2576) was more increased than a nontransgenic mouse. We evaluated Prx5 function by using overexpression (Prx5-WT), a mutation in the catalytic residue (Prx5-C48S), and knockdown. Increased neuronal death and Cdk5 activation by amyloid beta oligomer (AβO) were rescued by Prx5-WT expression, but not by Prx5-C48S or Prx5 knockdown. Prx5 plays a role in Cdk5 regulation by inhibiting the conversion of p35 to p25, which is increased by AβO accumulation. Prx5 is also upregulated in both the cytosol and mitochondria and it protects cells from AβO-mediated oxidative stress by eliminating intracellular and mitochondrial reactive oxygen species. Moreover, Prx5 regulates Ca2+ and Ca2+-mediated calpain activation, which are key regulators of p35 cleavage to p25. Innovation and Conclusion: Our study represents the first demonstration that Prx5 induction is a key factor in the suppression of Cdk5-related neuronal death in AD and we show that it functions via regulation of Ca2+-mediated calpain activation. Antioxid. Redox Signal. 27, 715-726.
Collapse
Affiliation(s)
- Junghyung Park
- 1 School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University , Daegu, Republic of Korea.,2 College of Natural Sciences, Kyungpook National University , Daegu, Republic of Korea
| | - Bokyung Kim
- 1 School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University , Daegu, Republic of Korea.,2 College of Natural Sciences, Kyungpook National University , Daegu, Republic of Korea
| | - Unbin Chae
- 1 School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University , Daegu, Republic of Korea.,2 College of Natural Sciences, Kyungpook National University , Daegu, Republic of Korea
| | - Dong Gil Lee
- 1 School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University , Daegu, Republic of Korea.,2 College of Natural Sciences, Kyungpook National University , Daegu, Republic of Korea
| | - Min Kyoung Kam
- 1 School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University , Daegu, Republic of Korea.,2 College of Natural Sciences, Kyungpook National University , Daegu, Republic of Korea
| | - Sang-Rae Lee
- 3 National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Cheongju, Republic of Korea
| | - Seunghoon Lee
- 4 Animal Biotechnology Division, National Institute of Animal Science , Jeonju, Republic of Korea
| | - Hyun-Shik Lee
- 1 School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University , Daegu, Republic of Korea.,2 College of Natural Sciences, Kyungpook National University , Daegu, Republic of Korea
| | - Jeen-Woo Park
- 1 School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University , Daegu, Republic of Korea.,2 College of Natural Sciences, Kyungpook National University , Daegu, Republic of Korea
| | - Dong-Seok Lee
- 1 School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University , Daegu, Republic of Korea.,2 College of Natural Sciences, Kyungpook National University , Daegu, Republic of Korea
| |
Collapse
|
52
|
Fucoxanthin, a Marine Carotenoid, Attenuates β-Amyloid Oligomer-Induced Neurotoxicity Possibly via Regulating the PI3K/Akt and the ERK Pathways in SH-SY5Y Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6792543. [PMID: 28928905 PMCID: PMC5591933 DOI: 10.1155/2017/6792543] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/30/2017] [Accepted: 06/12/2017] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disorder, is characterized by neurofibrillary tangles, synaptic impairments, and loss of neurons. Oligomers of β-amyloid (Aβ) are widely accepted as the main neurotoxins to induce oxidative stress and neuronal loss in AD. In this study, we discovered that fucoxanthin, a marine carotenoid with antioxidative stress properties, concentration dependently prevented Aβ oligomer-induced increase of neuronal apoptosis and intracellular reactive oxygen species in SH-SY5Y cells. Aβ oligomers inhibited the prosurvival phosphoinositide 3-kinase (PI3K)/Akt cascade and activated the proapoptotic extracellular signal-regulated kinase (ERK) pathway. Moreover, inhibitors of glycogen synthase kinase 3β (GSK3β) and mitogen-activated protein kinase (MEK) synergistically prevented Aβ oligomer-induced neuronal death, suggesting that the PI3K/Akt and ERK pathways might be involved in Aβ oligomer-induced neurotoxicity. Pretreatment with fucoxanthin significantly prevented Aβ oligomer-induced alteration of the PI3K/Akt and ERK pathways. Furthermore, LY294002 and wortmannin, two PI3K inhibitors, abolished the neuroprotective effects of fucoxanthin against Aβ oligomer-induced neurotoxicity. These results suggested that fucoxanthin might prevent Aβ oligomer-induced neuronal loss and oxidative stress via the activation of the PI3K/Akt cascade as well as inhibition of the ERK pathway, indicating that further studies of fucoxanthin and related compounds might lead to a useful treatment of AD.
Collapse
|
53
|
Kim B, Kim YS, Ahn HM, Lee HJ, Jung MK, Jeong HY, Choi DK, Lee JH, Lee SR, Kim JM, Lee DS. Peroxiredoxin 5 overexpression enhances tumorigenicity and correlates with poor prognosis in gastric cancer. Int J Oncol 2017; 51:298-306. [PMID: 28535004 DOI: 10.3892/ijo.2017.4013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/07/2017] [Indexed: 11/05/2022] Open
Abstract
Gastric cancer is one of the leading causes of cancer-related deaths worldwide. Despite the advanced surgical resection techniques and anticancer drugs currently available to treat early stage gastric cancer, the prognosis of patients with gastric cancer remains poor. The epithelial to mesenchymal transition (EMT) is an important process for the initiation of tumorigenesis. Recent studies suggested that reactive oxygen species (ROS) can promote cell migration and invasion. Thus, an imbalance of redox homeostasis can result in cancer cells exhibiting EMT properties. PRXs are upregulated in various tumors in the breast, bladder, lung, cervical, ovarian, prostate, esophageal, and hepatocellular. However, PRX expression and its impact on disease prognosis, patient survival rate, and EMT are rarely studied in the context of human gastric cancer. The expression of PRX5 was significantly correlated with tumor size, depth of tumor, lymphatic invasion in patients of gastric cancer. In addition, overexpression of PRX5 enhanced carcinogenicity by increasing the proliferation and invasiveness of gastric cancer cells via upregulation of Snail. Taken together, we suggest that PRX5 may be a potential factor that may contribute to poor prognosis of gastric cancer through enhancing the mesenchymal phenotype. Finally, PRX5 is a putative therapeutic target and clinical strategy for various cancers overexpressing PRX5.
Collapse
Affiliation(s)
- Bokyung Kim
- School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Yeon Soo Kim
- Department of Internal Medicine, Daejeon St. Mary's Hospital, The Catholic University, Daejeon, Republic of Korea
| | - Hye-Mi Ahn
- School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Hyo Jin Lee
- Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Min Kyu Jung
- Department of Pathology and Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Hyun Yong Jeong
- Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Dong Kyu Choi
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, Republic of Korea
| | - Jun Hyeog Lee
- School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Sang-Rae Lee
- The National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Republic of Korea
| | - Jin Man Kim
- Department of Pathology and Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Dong-Seok Lee
- School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
54
|
Lv F, Yang X, Cui C, Su C. Exogenous expression of Drp1 plays neuroprotective roles in the Alzheimer's disease in the Aβ42 transgenic Drosophila model. PLoS One 2017; 12:e0176183. [PMID: 28531191 PMCID: PMC5439651 DOI: 10.1371/journal.pone.0176183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/06/2017] [Indexed: 12/23/2022] Open
Abstract
Background Alzheimer's disease (AD) is one of the most common neurodegenerative disorders. Recent studies have shown that mitochondrial dysfunction is a causative factor of AD. Drp1 (Dynamin-related protein 1), a regulator of mitochondrial fission, shows neuroprotective effects on Parkinson’s disease. In this study, we investigate the effect and mechanism of Drp1 on Aβ42 transgenic Drosophila. Methods Elav-gal4/UAS>Aβ42 transgenic Drosophila model was constructed using Elav-gal4 promoter. The effects of Drp1 on the lifespan, motor ability and neuronal degeneration of the transgenic Drosophila were explored by over-expressing Drp1 in the Aβ42 transgenic Drosophila. ATP levels in the brain tissues of Aβ42 transgenic Drosophila were detected using high performance liquid chromatography (HPLC). Results Exogenous expression of Drp1 promoted crawling ability, reduced the levels of ATP in Drosophila brain and suppressed the neuronal degeneration. Conclusion The protective effect of Drp1 on the Aβ42 transgenic Drosophila was achieved by protecting the mitochondrial function, suggesting that Drp1 may be a potential therapeutic strategies for AD.
Collapse
Affiliation(s)
- Fengshou Lv
- Department of Pathology, Henan Medical College, Zhengzhou, China
| | - Xiaopeng Yang
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- * E-mail:
| | - Chuanju Cui
- Department of Neurology, Zhengzhou First People's Hospital, Zhengzhou, China
| | - Chunhe Su
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
55
|
Xu J, Chen L, Li L. Pannexin hemichannels: A novel promising therapy target for oxidative stress related diseases. J Cell Physiol 2017; 233:2075-2090. [PMID: 28295275 DOI: 10.1002/jcp.25906] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 03/09/2017] [Indexed: 12/16/2022]
Abstract
Pannexins, which contain three subtypes: pannexin-1, -2, and -3, are vertebrate glycoproteins that form non-junctional plasma membrane intracellular hemichannels via oligomerization. Oxidative stress refers to an imbalance of the generation and elimination of reactive oxygen species (ROS). Studies have shown that elevated ROS levels are pivotal in the development of a variety of diseases. Recent studies indicate that the occurrence of these oxidative stress related diseases is associated with pannexin hemichannels. It is also reported that pannexins regulate the production of ROS which in turn may increase the opening of pannexin hemichannels. In this paper, we review recent researches about the important role of pannexin hemichannels in oxidative stress related diseases. Thus, pannexin hemichannels, novel therapeutic targets, hold promise in managing oxidative stress related diseases such as the tumor, inflammatory bowel diseases (IBD), pulmonary fibrosis, chronic obstructive pulmonary disease (COPD), cardiovascular disease, insulin resistance (IR), and neural degeneration diseases.
Collapse
Affiliation(s)
- Jin Xu
- Learning Key Laboratory for Pharmacoproteomics, Institute of Pharmacy and Pharmacology, University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, P. R. China
| | - Linxi Chen
- Learning Key Laboratory for Pharmacoproteomics, Institute of Pharmacy and Pharmacology, University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, P. R. China
| | - Lanfang Li
- Learning Key Laboratory for Pharmacoproteomics, Institute of Pharmacy and Pharmacology, University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, P. R. China
| |
Collapse
|
56
|
Park J, Choi H, Kim B, Chae U, Lee DG, Lee SR, Lee S, Lee HS, Lee DS. Peroxiredoxin 5 (Prx5) decreases LPS-induced microglial activation through regulation of Ca 2+/calcineurin-Drp1-dependent mitochondrial fission. Free Radic Biol Med 2016; 99:392-404. [PMID: 27585948 DOI: 10.1016/j.freeradbiomed.2016.08.030] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/24/2016] [Accepted: 08/28/2016] [Indexed: 12/30/2022]
Abstract
Microglial activation is a hallmark of neurodegenerative diseases. ROS activates microglia by regulating transcription factors to express pro-inflammatory genes and is associated with disruption of Ca2+ homeostasis through thiol redox modulation. Recently, we reported that Prx5 can regulate activation of microglia cells by governing ROS. In addition, LPS leads to excessive mitochondrial fission, and regulation of mitochondrial dynamics involved in a pro-inflammatory response is important for the maintenance of microglial activation. However, the precise relationship among these signals and the role of Prx5 in mitochondrial dynamics and microglial activation is still unknown. In this study, we demonstrated that Ca2+/calcineurin-dependent de-phosphorylation of Drp1 induces mitochondrial fission and regulates mitochondrial ROS production, which influences the expression of pro-inflammatory mediators in LPS-induced microglia cells. Moreover, it is likely that cytosolic and Nox-derived ROS were upstream of mitochondrial fission and mitochondrial ROS generation in activated microglia cells. Prx5 regulates LPS-induced mitochondrial fission through modulation of Ca2+/calcineurin-dependent Drp1 de-phosphorylation by eliminating Nox-derived and cytosolic ROS. Therefore, we suggest that mitochondrial dynamics may be essential for understanding pro-inflammatory responses and that Prx5 may be used as a new therapeutic target to prevent neuroinflammation and neurodegenerative diseases.
Collapse
Affiliation(s)
- Junghyung Park
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea; College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Hoonsung Choi
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Jeollabuk-do, Republic of Korea
| | - Bokyung Kim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea; College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Unbin Chae
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea; College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Dong Gil Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea; College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Sang-Rae Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungcheongbuk-do, Republic of Korea
| | - Seunghoon Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Jeollabuk-do, Republic of Korea
| | - Hyun-Shik Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea; College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Dong-Seok Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea; College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
57
|
Zhao JH, Zhang HY, Zhang XF, Dong X, Liu QB, Liu YL, Huang YD, Zhang QP, Luo G, Ma ZJ, Yi XN. The protective effect and underlying mechanism of Hainan papaya water extract against neuronal apoptosis induced by Aβ40. ASIAN PAC J TROP MED 2016; 9:707-12. [PMID: 27393103 DOI: 10.1016/j.apjtm.2016.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/16/2016] [Accepted: 05/23/2016] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE To investigate whether Hainan papayas has protective effects in an Aβ40-induced primary neuron injury model and elucidate the underlying molecular mechanism. METHODS Cultured primary neurons from the dorsal root ganglia (DRG) of Sprague-Dawley (SD) rats were treated with 20 μM Aβ40 peptide, 100 μg/L Hainan papaya water extract, peptide plus extract, or culture medium for 24 h. Cell viability was measured by MTT assay, and neuronal apoptosis was evaluated by DAPI staining. ERK signaling pathway-associated molecule activation and changes in Bax expression were analyzed by Western blotting and immunofluorescence. RESULTS A cell viability rate of (44.11 ± 6.59)% in the Aβ40 group was rescued to (79.13 ± 6.64)% by adding different concentrations of the extract. DAPI showed pyknotic nuclei in 39.5% of Aβ40-treated cells; the fraction dropped to 17.4% in the 100 μg/L extract group. ERK phosphorylation was observed in the Aβ40 group but was ameliorated by pretreatment with 100 μg/L extract. Hainan papaya water extract also prevented Aβ40-induced phosphorylation of MEK, RSK1 and CREB associated with ERK signaling and downregulated Bax expression in the neurons. CONCLUSION The results suggest that Hainan papaya water extract has protective effects on neurons; the mechanism may be related to suppression of ERK signaling activation.
Collapse
Affiliation(s)
- Jiu-Hong Zhao
- Department of Anatomy, Hainan Medical College, Haikou 571199, China
| | - Hai-Ying Zhang
- Department of Anatomy, Hainan Medical College, Haikou 571199, China
| | - Xian-Fang Zhang
- Department of Anatomy, Hainan Medical College, Haikou 571199, China
| | - Xu Dong
- Neuroscience Research Institute, Hainan Medical College, Haikou 571199, China
| | - Qi-Bing Liu
- School of Pharmacy, Hainan Medical College, Haikou 571101, China
| | - Yue-Li Liu
- School of Pharmacy, Hainan Medical College, Haikou 571101, China
| | - Yi-Di Huang
- Department of Anatomy, Hainan Medical College, Haikou 571199, China
| | - Quan-Peng Zhang
- Department of Anatomy, Hainan Medical College, Haikou 571199, China
| | - Gang Luo
- Department of Anatomy, Hainan Medical College, Haikou 571199, China
| | - Zhi-Jian Ma
- Department of Anatomy, Hainan Medical College, Haikou 571199, China; Neuroscience Research Institute, Hainan Medical College, Haikou 571199, China
| | - Xi-Nan Yi
- Department of Anatomy, Hainan Medical College, Haikou 571199, China; Neuroscience Research Institute, Hainan Medical College, Haikou 571199, China.
| |
Collapse
|
58
|
Jha SK, Jha NK, Kumar D, Ambasta RK, Kumar P. Linking mitochondrial dysfunction, metabolic syndrome and stress signaling in Neurodegeneration. Biochim Biophys Acta Mol Basis Dis 2016; 1863:1132-1146. [PMID: 27345267 DOI: 10.1016/j.bbadis.2016.06.015] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 12/13/2022]
Abstract
Mounting evidence suggests a link between metabolic syndrome (MetS) such as diabetes, obesity, non-alcoholic fatty liver disease in the progression of Alzheimer's disease (AD), Parkinson's disease (PD) and other neurodegenerative diseases (NDDs). For instance, accumulated Aβ oligomer is enhancing neuronal Ca2+ release and neural NO where increased NO level in the brain through post translational modification is modulating the level of insulin production. It has been further confirmed that irrespective of origin; brain insulin resistance triggers a cascade of the neurodegeneration phenomenon which can be aggravated by free reactive oxygen species burden, ER stress, metabolic dysfunction, neuorinflammation, reduced cell survival and altered lipid metabolism. Moreover, several studies confirmed that MetS and diabetic sharing common mechanisms in the progression of AD and NDDs where mitochondrial dynamics playing a critical role. Any mutation in mitochondrial DNA, exposure of environmental toxin, high-calorie intake, homeostasis imbalance, glucolipotoxicity is causative factors for mitochondrial dysfunction. These cumulative pleiotropic burdens in mitochondria leads to insulin resistance, increased ROS production; enhanced stress-related enzymes that is directly linked MetS and diabetes in neurodegeneration. Since, the linkup mechanism between mitochondrial dysfunction and disease phenomenon of both MetS and NDDs is quite intriguing, therefore, it is pertinent for the researchers to identify and implement the therapeutic interventions for targeting MetS and NDDs. Herein, we elucidated the pertinent role of MetS induced mitochondrial dysfunction in neurons and their consequences in NDDs. Further, therapeutic potential of well-known biomolecules and chaperones to target altered mitochondria has been comprehensively documented. This article is part of a Special Issue entitled: Oxidative Stress and Mitochondrial Quality in Diabetes/Obesity and Critical Illness Spectrum of Diseases - edited by P. Hemachandra Reddy.
Collapse
Affiliation(s)
- Saurabh Kumar Jha
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Niraj Kumar Jha
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Dhiraj Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India.
| |
Collapse
|