51
|
Núñez MT, Hidalgo C. Noxious Iron-Calcium Connections in Neurodegeneration. Front Neurosci 2019; 13:48. [PMID: 30809110 PMCID: PMC6379295 DOI: 10.3389/fnins.2019.00048] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/18/2019] [Indexed: 12/26/2022] Open
Abstract
Iron and calcium share the common feature of being essential for normal neuronal function. Iron is required for mitochondrial function, synaptic plasticity, and the development of cognitive functions whereas cellular calcium signals mediate neurotransmitter exocytosis, axonal growth and synaptic plasticity, and control the expression of genes involved in learning and memory processes. Recent studies have revealed that cellular iron stimulates calcium signaling, leading to downstream activation of kinase cascades engaged in synaptic plasticity. The relationship between calcium and iron is Janus-faced, however. While under physiological conditions iron-mediated reactive oxygen species generation boosts normal calcium-dependent signaling pathways, excessive iron levels promote oxidative stress leading to the upsurge of unrestrained calcium signals that damage mitochondrial function, among other downstream targets. Similarly, increases in mitochondrial calcium to non-physiological levels result in mitochondrial dysfunction and a predicted loss of iron homeostasis. Hence, if uncontrolled, the iron/calcium self-feeding cycle becomes deleterious to neuronal function, leading eventually to neuronal death. Here, we review the multiple cell-damaging responses generated by the unregulated iron/calcium self-feeding cycle, such as excitotoxicity, free radical-mediated lipid peroxidation, and the oxidative modification of crucial components of iron and calcium homeostasis/signaling: the iron transporter DMT1, plasma membrane, and intracellular calcium channels and pumps. We discuss also how iron-induced dysregulation of mitochondrial calcium contributes to the generation of neurodegenerative conditions, including Alzheimer’s disease (AD) and Parkinson’s disease (PD).
Collapse
Affiliation(s)
- Marco Tulio Núñez
- Iron and Neuroregeneration Laboratory, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Cecilia Hidalgo
- Calcium Signaling Laboratory, Biomedical Research Institute, CEMC, Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
52
|
How reliable is cerebral blood flow to map changes in neuronal activity? Auton Neurosci 2019; 217:71-79. [PMID: 30744905 DOI: 10.1016/j.autneu.2019.01.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/17/2018] [Accepted: 01/27/2019] [Indexed: 02/06/2023]
Abstract
Neuroimaging techniques, such as functional MRI, map brain activity through hemodynamic-based signals, and are invaluable diagnostic tools in several neurological disorders such as stroke and dementia. Hemodynamic signals are normally precisely related to the underlying neuronal activity through neurovascular coupling mechanisms that ensure the supply of blood, glucose and oxygen to neurons at work. The knowledge of neurovascular coupling has greatly advanced over the last 30 years, it involves multifaceted interactions between excitatory and inhibitory neurons, astrocytes, and the microvessels. While the tight relationship between blood flow and neuronal activity forms a fundamental brain function, whether neurovascular coupling mechanisms are reliable across physiological and pathological conditions has been questioned. In this review, we interrogate the relationship between blood flow and neuronal activity during activation of different brain pathways: a sensory stimulation driven by glutamate, and stimulation of neuromodulatory pathways driven by acetylcholine or noradrenaline, and we compare the underlying neurovascular coupling mechanisms. We further question if neurovascular coupling mechanisms are affected by changing brain states, as seen in behavioral conditions of sleep, wakefulness, attention and in pathological conditions. Finally, we provide a short overview of how alterations of the brain vasculature could compromise the reliability of neurovascular coupling. Overall, while neurovascular coupling requires activation of common signalling pathways, alternate unique cascades exist depending on the activated pathways. Further studies are needed to fully elucidate the alterations in neurovascular coupling across brain states and pathological conditions.
Collapse
|
53
|
Bourgognon JM, Steinert JR. The metabolome identity: basis for discovery of biomarkers in neurodegeneration. Neural Regen Res 2019; 14:387-390. [PMID: 30539802 PMCID: PMC6334598 DOI: 10.4103/1673-5374.245464] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neurodegenerative disorders are often associated with cellular dysfunction caused by underlying protein-misfolding signalling. Numerous neuropathologies are diagnosed at late stage symptomatic changes which occur in response to these molecular malfunctions and treatment is often too late or restricted only to the slowing of further cell death. Important new strategies to identify early biomarkers with predictive value to intervene with disease progression at stages where cell dysfunction has not progressed irreversibly is of paramount importance. Thus, the identification of these markers presents an essential opportunity to identify and target disease pathways. This review highlights some important metabolic alterations detected in neurodegeneration caused by misfolded prion protein and discusses common toxicity pathways identified across different neurodegenerative diseases. Thus, having established some commonalities between various degenerative conditions, detectable metabolic changes may be of extreme value as an early diagnostic biomarker in disease.
Collapse
Affiliation(s)
| | - Joern R Steinert
- MRC Toxicology Unit, University of Leicester, Lancaster Road, Leicester, UK
| |
Collapse
|
54
|
Möller MN, Denicola A. Diffusion of nitric oxide and oxygen in lipoproteins and membranes studied by pyrene fluorescence quenching. Free Radic Biol Med 2018; 128:137-143. [PMID: 29673655 DOI: 10.1016/j.freeradbiomed.2018.04.553] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/05/2018] [Accepted: 04/13/2018] [Indexed: 10/17/2022]
Abstract
Oxygen and nitric oxide are small hydrophobic molecules that usually need to diffuse a considerable distance to accomplish their biological functions and necessarily need to traverse several lipid membranes. Different methods have been used to study the diffusion of these molecules in membranes and herein we focus in the quenching of fluorescence of pyrenes inserted in the membrane. The pyrene derivatives have long fluorescence lifetimes (around 200 ns) that make them very sensitive to fluorescence quenching by nitric oxide, oxygen and other paramagnetic species. Results show that the apparent diffusion coefficients in membranes are similar to those in water, indicating that diffusion of these molecules in membranes is not considerably limited by the lipids. This high apparent diffusion in membranes is a consequence of both a favorable partition of these molecules in the hydrophobic interior of membranes and a high diffusion coefficient. Altering the composition of the membrane results in slight changes in diffusion, indicating that in most cases the lipid membranes will not hinder the passage of oxygen or nitric oxide. The diffusion of nitric oxide in the lipid core of low density lipoprotein is also very high, supporting its role as an antioxidant. In contrast to the high permeability of membranes to nitric oxide and oxygen, the permeability to other reactive species such as hydrogen peroxide and peroxynitrous acid is nearly five orders of magnitude lower.
Collapse
Affiliation(s)
- Matías N Möller
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias and Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay.
| | - Ana Denicola
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias and Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
55
|
Zuccolo E, Kheder DA, Lim D, Perna A, Nezza FD, Botta L, Scarpellino G, Negri S, Martinotti S, Soda T, Forcaia G, Riboni L, Ranzato E, Sancini G, Ambrosone L, D'Angelo E, Guerra G, Moccia F. Glutamate triggers intracellular Ca 2+ oscillations and nitric oxide release by inducing NAADP- and InsP 3 -dependent Ca 2+ release in mouse brain endothelial cells. J Cell Physiol 2018; 234:3538-3554. [PMID: 30451297 DOI: 10.1002/jcp.26953] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/13/2018] [Indexed: 12/13/2022]
Abstract
The neurotransmitter glutamate increases cerebral blood flow by activating postsynaptic neurons and presynaptic glial cells within the neurovascular unit. Glutamate does so by causing an increase in intracellular Ca2+ concentration ([Ca2+ ]i ) in the target cells, which activates the Ca2+ /Calmodulin-dependent nitric oxide (NO) synthase to release NO. It is unclear whether brain endothelial cells also sense glutamate through an elevation in [Ca2+ ]i and NO production. The current study assessed whether and how glutamate drives Ca2+ -dependent NO release in bEND5 cells, an established model of brain endothelial cells. We found that glutamate induced a dose-dependent oscillatory increase in [Ca2+ ]i , which was maximally activated at 200 μM and inhibited by α-methyl-4-carboxyphenylglycine, a selective blocker of Group 1 metabotropic glutamate receptors. Glutamate-induced intracellular Ca2+ oscillations were triggered by rhythmic endogenous Ca2+ mobilization and maintained over time by extracellular Ca2+ entry. Pharmacological manipulation revealed that glutamate-induced endogenous Ca2+ release was mediated by InsP3 -sensitive receptors and nicotinic acid adenine dinucleotide phosphate (NAADP) gated two-pore channel 1. Constitutive store-operated Ca2+ entry mediated Ca2+ entry during ongoing Ca2+ oscillations. Finally, glutamate evoked a robust, although delayed increase in NO levels, which was blocked by pharmacologically inhibition of the accompanying intracellular Ca2+ signals. Of note, glutamate induced Ca2+ -dependent NO release also in hCMEC/D3 cells, an established model of human brain microvascular endothelial cells. This investigation demonstrates for the first time that metabotropic glutamate-induced intracellular Ca2+ oscillations and NO release have the potential to impact on neurovascular coupling in the brain.
Collapse
Affiliation(s)
- Estella Zuccolo
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Dlzar A Kheder
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy.,Department of Biology, University of Zakho, Duhok, Kurdistan-Region of Iraq
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, University of Eastern Piedmont "Amedeo Avogadro,", Novara, Italy
| | - Angelica Perna
- Department of Medicine and Health Sciences "Vincenzo Tiberio,", University of Molise, Campobasso, Italy
| | - Francesca Di Nezza
- Department of Bioscience and Territory (DIBT), University of Molise, Contrada Lappone Pesche, Isernia, Italy
| | - Laura Botta
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Giorgia Scarpellino
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Sharon Negri
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Simona Martinotti
- Dipartimento di Scienze e Innovazione Tecnologica (DiSIT), University of Piemonte Orientale, Alessandria, Italy
| | - Teresa Soda
- Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Greta Forcaia
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Laura Riboni
- Department of Medical Biotechnology and Translational Medicine, LITA-Segrate, University of Milan, Segrate, Milan, Italy
| | - Elia Ranzato
- Dipartimento di Scienze e Innovazione Tecnologica (DiSIT), University of Piemonte Orientale, Alessandria, Italy
| | - Giulio Sancini
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Luigi Ambrosone
- Department of Medicine and Health Sciences "Vincenzo Tiberio,", Centre of Nanomedicine, University of Molise, Campobasso, Italy
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Brain Connectivity Center, C. Mondino National Neurological Institute, Pavia, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio,", University of Molise, Campobasso, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| |
Collapse
|
56
|
Zuccolo E, Laforenza U, Negri S, Botta L, Berra-Romani R, Faris P, Scarpellino G, Forcaia G, Pellavio G, Sancini G, Moccia F. Muscarinic M5 receptors trigger acetylcholine-induced Ca 2+ signals and nitric oxide release in human brain microvascular endothelial cells. J Cell Physiol 2018; 234:4540-4562. [PMID: 30191989 DOI: 10.1002/jcp.27234] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022]
Abstract
Basal forebrain neurons control cerebral blood flow (CBF) by releasing acetylcholine (Ach), which binds to endothelial muscarinic receptors to induce nitric (NO) release and vasodilation in intraparenchymal arterioles. Nevertheless, the mechanism whereby Ach stimulates human brain microvascular endothelial cells to produce NO is still unknown. Herein, we sought to assess whether Ach stimulates NO production in a Ca2+ -dependent manner in hCMEC/D3 cells, a widespread model of human brain microvascular endothelial cells. Ach induced a dose-dependent increase in intracellular Ca2+ concentration ([Ca2+ ]i ) that was prevented by the genetic blockade of M5 muscarinic receptors (M5-mAchRs), which was the only mAchR isoform coupled to phospholipase Cβ (PLCβ) present in hCMEC/D3 cells. A comprehensive real-time polymerase chain reaction analysis revealed the expression of the transcripts encoding for type 3 inositol-1,4,5-trisphosphate receptors (InsP3 R3), two-pore channels 1 and 2 (TPC1-2), Stim2, Orai1-3. Pharmacological manipulation showed that the Ca2+ response to Ach was mediated by InsP3 R3, TPC1-2, and store-operated Ca2+ entry (SOCE). Ach-induced NO release, in turn, was inhibited in cells deficient of M5-mAchRs. Likewise, Ach failed to increase NO levels in the presence of l-NAME, a selective NOS inhibitor, or BAPTA, a membrane-permeant intracellular Ca2+ buffer. Moreover, the pharmacological blockade of the Ca2+ response to Ach also inhibited the accompanying NO production. These data demonstrate for the first time that synaptically released Ach may trigger NO release in human brain microvascular endothelial cells by stimulating a Ca2+ signal via M5-mAchRs.
Collapse
Affiliation(s)
- Estella Zuccolo
- Department of Biology and Biotechnology, "Lazzaro Spallanzani," Laboratory of General Physiology, University of Pavia, Pavia, Italy
| | - Umberto Laforenza
- Department of Molecular Medicine, Human Physiology Unit, University of Pavia, Pavia, Italy
| | - Sharon Negri
- Department of Biology and Biotechnology, "Lazzaro Spallanzani," Laboratory of General Physiology, University of Pavia, Pavia, Italy
| | - Laura Botta
- Department of Biology and Biotechnology, "Lazzaro Spallanzani," Laboratory of General Physiology, University of Pavia, Pavia, Italy
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Pawan Faris
- Department of Biology and Biotechnology, "Lazzaro Spallanzani," Laboratory of General Physiology, University of Pavia, Pavia, Italy.,Department of Biology, College of Science, Salahaddin University, Erbil, Iraq
| | - Giorgia Scarpellino
- Department of Biology and Biotechnology, "Lazzaro Spallanzani," Laboratory of General Physiology, University of Pavia, Pavia, Italy
| | - Greta Forcaia
- Department of Experimental Medicine, University of Milano-Bicocca, Monza, Italy
| | - Giorgia Pellavio
- Department of Molecular Medicine, Human Physiology Unit, University of Pavia, Pavia, Italy
| | - Giulio Sancini
- Department of Experimental Medicine, University of Milano-Bicocca, Monza, Italy
| | - Francesco Moccia
- Department of Biology and Biotechnology, "Lazzaro Spallanzani," Laboratory of General Physiology, University of Pavia, Pavia, Italy
| |
Collapse
|
57
|
Laranjinha J, Lourenço C, Ledo A, Dias C, Ferreira N, Barbosa RM. NITRIC OXIDE MEDIATED NEUROVASCULAR COUPLING IN AGING AND ALZHEIMER'S DISEASE. PATHOPHYSIOLOGY 2018. [DOI: 10.1016/j.pathophys.2018.07.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
58
|
Zhao X, Liu J, Yang S, Song D, Wang C, Chen C, Li X, Wang Q, Ge S, Yang R, Liu X, Lin Y, Cai D. Ling-Yang-Gou-Teng-decoction prevents vascular dementia through inhibiting oxidative stress induced neurovascular coupling dysfunction. JOURNAL OF ETHNOPHARMACOLOGY 2018; 222:229-238. [PMID: 29545211 DOI: 10.1016/j.jep.2018.03.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/23/2018] [Accepted: 03/10/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Vascular dementia (VaD) is the common cognitive disorder derived mainly from lacunar stroke (LS). The oxidative stress induced neurovascular coupling (NVC) dysfunction involves in the pathogenesis of VaD. Currently, there is no specific drug for VaD. Ling-Yang-Gou-Teng -Decoction (LG), a well-known traditional Chinese formula, has been used for preventing VaD in clinic. AIM OF THE STUDY In this study, we aimed to investigate the underlying mechanism of LG on VaD in rats. MATERIALS AND METHOD VaD was replicated with autologous micro-thrombi against the background of hypercholesterolemia induced with high fatty diet. PTX (68.90 mg/kg/day), LG with three dosages (2.58, 8.14, 25.80 g/kg/day) was orally administrated to VaD rats, respectively. The NVC sensitivity was defined as the ratio of the microcirculative cerebral blood velocity (CBV) to the electroencephalograph (EEG) before and after penicillin stimulation. Behavioral performance, pathological changes of brain and oxidation related molecules were detected to assess the effects of LG on VaD. RESULTS LG exhibited beneficial effects on the VaD, which was demonstrated as improved exploratory, learning and memory abilities, relieved vascular or neural pathological changes in cerebral cortex or hippocampus. LG maintained NVC sensitivity, which was confirmed as significantly increased ΔCBV and the elevated ratio of ΔCBV/ΔqEEG. The underlying mechanisms of LG was associated with antioxidant effects, which was confirmed as significantly decreased nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) expression, and increased superoxide dismutase 3 (SOD3) expression. LG also reduced iNOS, increased nNOS and eNOS expression to restore NO bioavailability. CONCLUSIONS The results suggested that LG prevented VaD may associate with inhibiting oxidative stress, protecting NO bioavailability, and then maintaining NVC sensitivity.
Collapse
Affiliation(s)
- Xin Zhao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Jinyu Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Shijun Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Dandan Song
- Department of Pathophysiology, Chinese PLA General Hospital, Beijing 100853, China
| | - Chen Wang
- Department of Pathophysiology, Chinese PLA General Hospital, Beijing 100853, China
| | - Chen Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Xiaoya Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Qiuting Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Shasha Ge
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Runmei Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Xiuhua Liu
- Department of Pathophysiology, Chinese PLA General Hospital, Beijing 100853, China
| | - Yulin Lin
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China.
| | - Dayong Cai
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
59
|
Modulation of Cellular Respiration by Endogenously Produced Nitric Oxide in Rat Hippocampal Slices. Methods Mol Biol 2018. [PMID: 29850995 DOI: 10.1007/978-1-4939-7831-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Nitric oxide (•NO) is an ubiquitous signaling molecule that participates in molecular processes associated with several neural phenomena ranging from memory formation to excitotoxicity. In the hippocampus, neuronal •NO production is coupled to the activation of NMDA type glutamate receptors. Cytochrome c oxidase has emerged as a novel target for •NO, which competes with O2 for binding to this mitochondrial complex. This reaction establishes •NO as a regulator of cellular metabolism and, possibly, mitochondrial production of reactive oxygen species which participate in cellular signaling. A major gap in the understanding of •NO bioactivity, namely, in the hippocampus, has been the lack of knowledge of its concentration dynamics. Here, we present a detailed description of the simultaneous recording of •NO and O2 concentration dynamics in rat hippocampal slices. Carbon fiber microelectrodes are fabricated and applied for real-time measurements of both gases in a system close to in vivo models. This approach allows for a better understanding of the current paradigm by which an intricate interplay between •NO and O2 regulates cellular respiration.
Collapse
|
60
|
Zhao X, Liu J, Yang S, Song D, Wang C, Chen C, Wang C, Pu F, Yang R, Li X, Wang Q, Ge S, Lin Y, Liu X, Cai D. A novel pharmacodynamic model in rats for preventing vascular dementia from maintaining neurovascular coupling sensitivity. Eur J Pharmacol 2018. [PMID: 29526715 DOI: 10.1016/j.ejphar.2018.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Vascular dementia (VaD) is the common cognitive disorder derived mainly from lacunar stroke. The neurovascular coupling (NVC) dysfunction involves in its pathogenesis. VaD lacks suitable animal models for developing preventive therapies. This study aimed to confirm a model for preventing VaD via maintaining NVC sensitivity in rats. The model was replicated with autologous microthrombi against the background of hypercholesterolemia. A phosphodiesterase inhibitor (pentoxyfylline) was preventively administrated to confirm the role of NVC sensitivity. Cognitive function was evaluated as exploratory, learning and memorizing abilities. NVC sensitivity was defined as the ratio of microcirculative cerebral blood flow (∆CBF) to the quantitative electroencephalograph (∆qEEG) before and after penicillin stimulation. The pathogenesis of NVC dysfunction was explored as expressions of neuronal (nNOS), inducible (iNOS) and endothelial nitric oxide synthase (eNOS) in cerebral cortex. The model rats showed cognitive impairment, microvascular edema (2.54 ± 0.30%, P < 0.01), neuronal edema (1.24 ± 0.48%, P < 0.01) and nissl body loss (0.03 ± 0.003%, P < 0.01) in cerebral cortex, and neuronal necrosis in hippocampal CA1 region (neuronal cell number 41.76 ± 10.04 cells, P < 0.01) compared with sham group. The NVC dullness in model rats was confirmed as significantly decreased ratio of ∆CBF/∆qEEG (0.05 ± 0.02%, P < 0.01) compared with sham group (0.20 ± 0.06%). The underlying mechanism of NVC dysfunction was found as imbalanced NOS expressions (decreased nNOS and eNOS, while increased iNOS levels in cerebral cortex). The NVC dullness was significantly relieved in pentoxyfylline administrated rats (0.12 ± 0.06%, P < 0.01). It indicated that this model was suitable to evaluate candidates for preventing VaD via maintaining NVC sensitivity.
Collapse
Affiliation(s)
- Xin Zhao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Jinyu Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Shijun Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Dandan Song
- Department of Pathophysiology, Chinese PLA General Hospital, Beijing 10853, China
| | - Chen Wang
- Department of Pathophysiology, Chinese PLA General Hospital, Beijing 10853, China
| | - Chen Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Chengcheng Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Feifei Pu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Runmei Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Xiaoya Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Qiuting Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Shasha Ge
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Yulin Lin
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Xiuhua Liu
- Department of Pathophysiology, Chinese PLA General Hospital, Beijing 10853, China.
| | - Dayong Cai
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
61
|
Horsburgh K, Wardlaw JM, van Agtmael T, Allan SM, Ashford MLJ, Bath PM, Brown R, Berwick J, Cader MZ, Carare RO, Davis JB, Duncombe J, Farr TD, Fowler JH, Goense J, Granata A, Hall CN, Hainsworth AH, Harvey A, Hawkes CA, Joutel A, Kalaria RN, Kehoe PG, Lawrence CB, Lockhart A, Love S, Macleod MR, Macrae IM, Markus HS, McCabe C, McColl BW, Meakin PJ, Miller A, Nedergaard M, O'Sullivan M, Quinn TJ, Rajani R, Saksida LM, Smith C, Smith KJ, Touyz RM, Trueman RC, Wang T, Williams A, Williams SCR, Work LM. Small vessels, dementia and chronic diseases - molecular mechanisms and pathophysiology. Clin Sci (Lond) 2018; 132:851-868. [PMID: 29712883 PMCID: PMC6700732 DOI: 10.1042/cs20171620] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/08/2018] [Accepted: 02/21/2018] [Indexed: 12/14/2022]
Abstract
Cerebral small vessel disease (SVD) is a major contributor to stroke, cognitive impairment and dementia with limited therapeutic interventions. There is a critical need to provide mechanistic insight and improve translation between pre-clinical research and the clinic. A 2-day workshop was held which brought together experts from several disciplines in cerebrovascular disease, dementia and cardiovascular biology, to highlight current advances in these fields, explore synergies and scope for development. These proceedings provide a summary of key talks at the workshop with a particular focus on animal models of cerebral vascular disease and dementia, mechanisms and approaches to improve translation. The outcomes of discussion groups on related themes to identify the gaps in knowledge and requirements to advance knowledge are summarized.
Collapse
Affiliation(s)
- Karen Horsburgh
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, U.K.
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, UK Dementia Research Institute, University of Edinburgh, Edinburgh, U.K
| | - Tom van Agtmael
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Stuart M Allan
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, U.K
| | | | - Philip M Bath
- Stroke Trials Unit, Division of Clinical Neuroscience, University of Nottingham, Nottingham, U.K
| | - Rosalind Brown
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, U.K
| | - Jason Berwick
- Department of Psychology, University of Sheffield, Sheffield, U.K
| | - M Zameel Cader
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Roxana O Carare
- Faculty of Medicine, University of Southampton, Southampton, U.K
| | - John B Davis
- Alzheimer's Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford, U.K
| | - Jessica Duncombe
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, U.K
| | - Tracy D Farr
- School of Life Sciences, Nottingham University, Nottingham, U.K
| | - Jill H Fowler
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, U.K
| | - Jozien Goense
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, U.K
| | - Alessandra Granata
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, U.K
| | | | - Atticus H Hainsworth
- Molecular and Clinical Sciences Research Institute, St Georges University of London, London, U.K
| | - Adam Harvey
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Cheryl A Hawkes
- Faculty of Science, Technology, Engineering & Mathematics, Open University, Milton Keynes, U.K
| | - Anne Joutel
- Genetics and Pathogenesis of Cerebrovascular Diseases, INSERM, Université Paris Diderot-Paris 7, Paris, France
| | - Rajesh N Kalaria
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, U.K
| | | | - Catherine B Lawrence
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, U.K
| | | | - Seth Love
- Clinical Neurosciences, University of Bristol, Bristol, U.K
| | - Malcolm R Macleod
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, U.K
| | - I Mhairi Macrae
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, U.K
| | - Hugh S Markus
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, U.K
| | - Chris McCabe
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, U.K
| | - Barry W McColl
- The Roslin Institute & R(D)SVS, UK Dementia Research Institute, University of Edinburgh, Edinburgh, U.K
| | - Paul J Meakin
- Division of Molecular & Clinical Medicine, School of Medicine, University of Dundee, Dundee, U.K
| | - Alyson Miller
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Maiken Nedergaard
- University of Rochester Medical Center, Rochester, NY, USA and University of Copenhagen's Center of Basic and Translational Neuroscience, Copenhagen, Denmark
| | - Michael O'Sullivan
- Mater Centre for Neuroscience and Queensland Brain Institute, Brisbane, Australia
| | - Terry J Quinn
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Rikesh Rajani
- Genetics and Pathogenesis of Cerebrovascular Diseases, INSERM, Université Paris Diderot-Paris 7, Paris, France
| | - Lisa M Saksida
- Robarts Research Institute, Western University, London, Ontario, Canada
| | - Colin Smith
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, U.K
| | - Kenneth J Smith
- Department of Neuroinflammation, UCL Institute of Neurology, London, U.K
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | | | - Tao Wang
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, U.K
| | - Anna Williams
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, U.K
| | | | - Lorraine M Work
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| |
Collapse
|
62
|
Getsov P, Zhelev Z, Aoki I, Bakalova R. New Hypothesis and Alternative Approach for Imaging Neuronal Function and Metabolic Activity Based on Redox-Status. Balkan Med J 2018; 35:289-291. [PMID: 29588266 PMCID: PMC5981132 DOI: 10.4274/balkanmedj.2018.0286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Plamen Getsov
- Department of Radiology, Sofia University “St. Kliment Ohridski” School of Medicine, Sofia, Bulgaria,Department of Radiology, “Tsaritsa Yoanna-ISUL” University Hospital, Sofia, Bulgaria
| | - Zhivko Zhelev
- Trakia University School of Medicine, Stara Zagora, Bulgaria,Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Ichio Aoki
- Department of Molecular Imaging and Theranostics National Institute of Radiological Sciences, QST, Chiba, Japan,Group of Quantum-state Controlled MRI, National Institute of Radiological Sciences, Chiba, Japan
| | - Rumiana Bakalova
- Department of Radiology, Sofia University “St. Kliment Ohridski” School of Medicine, Sofia, Bulgaria,Department of Molecular Imaging and Theranostics National Institute of Radiological Sciences, QST, Chiba, Japan,Group of Quantum-state Controlled MRI, National Institute of Radiological Sciences, Chiba, Japan
| |
Collapse
|
63
|
Guerra G, Lucariello A, Perna A, Botta L, De Luca A, Moccia F. The Role of Endothelial Ca 2+ Signaling in Neurovascular Coupling: A View from the Lumen. Int J Mol Sci 2018; 19:E938. [PMID: 29561829 PMCID: PMC5979341 DOI: 10.3390/ijms19040938] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Neurovascular coupling (NVC) is the mechanism whereby an increase in neuronal activity (NA) leads to local elevation in cerebral blood flow (CBF) to match the metabolic requirements of firing neurons. Following synaptic activity, an increase in neuronal and/or astrocyte Ca2+ concentration leads to the synthesis of multiple vasoactive messengers. Curiously, the role of endothelial Ca2+ signaling in NVC has been rather neglected, although endothelial cells are known to control the vascular tone in a Ca2+-dependent manner throughout peripheral vasculature. METHODS We analyzed the literature in search of the most recent updates on the potential role of endothelial Ca2+ signaling in NVC. RESULTS We found that several neurotransmitters (i.e., glutamate and acetylcholine) and neuromodulators (e.g., ATP) can induce dilation of cerebral vessels by inducing an increase in endothelial Ca2+ concentration. This, in turn, results in nitric oxide or prostaglandin E2 release or activate intermediate and small-conductance Ca2+-activated K⁺ channels, which are responsible for endothelial-dependent hyperpolarization (EDH). In addition, brain endothelial cells express multiple transient receptor potential (TRP) channels (i.e., TRPC3, TRPV3, TRPV4, TRPA1), which induce vasodilation by activating EDH. CONCLUSIONS It is possible to conclude that endothelial Ca2+ signaling is an emerging pathway in the control of NVC.
Collapse
Affiliation(s)
- Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, via F. De Santis, 86100 Campobasso, Italy.
| | - Angela Lucariello
- Department of Mental Health and Preventive Medicine, Section of Human Anatomy, University of Campania "L. Vanvitelli", 81100 Naples, Italy.
| | - Angelica Perna
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, via F. De Santis, 86100 Campobasso, Italy.
| | - Laura Botta
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, via Forlanini 6, 27100 Pavia, Italy.
| | - Antonio De Luca
- Department of Mental Health and Preventive Medicine, Section of Human Anatomy, University of Campania "L. Vanvitelli", 81100 Naples, Italy.
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, via Forlanini 6, 27100 Pavia, Italy.
| |
Collapse
|
64
|
Ledo A, Lourenço CF, Laranjinha J, Gerhardt GA, Barbosa RM. Combined in Vivo Amperometric Oximetry and Electrophysiology in a Single Sensor: A Tool for Epilepsy Research. Anal Chem 2017; 89:12383-12390. [DOI: 10.1021/acs.analchem.7b03452] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ana Ledo
- Center
for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- BrainSense, Limitada, Biocant Park, 3060-197 Cantanhede, Portugal
| | - Cátia F. Lourenço
- Center
for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - João Laranjinha
- Center
for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Faculty
of Pharmacy, University of Coimbra, Azinhaga de Santa Coimbra, 3000-548 Coimbra, Portugal
| | - Greg A. Gerhardt
- Center for Microelectrode
Technology, Department of Neuroscience, University of Kentucky Medical Center, Lexington, Kentucky 40536, United States
| | - Rui M. Barbosa
- Center
for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Faculty
of Pharmacy, University of Coimbra, Azinhaga de Santa Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|