51
|
A dual-mode colorimetric and SERS detection of hydrogen sulfide in live prostate cancer cells using a silver nanoplate-coated paper assay. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104724] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
52
|
Donertas Ayaz B, Zubcevic J. Gut microbiota and neuroinflammation in pathogenesis of hypertension: A potential role for hydrogen sulfide. Pharmacol Res 2020; 153:104677. [PMID: 32023431 PMCID: PMC7056572 DOI: 10.1016/j.phrs.2020.104677] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/27/2019] [Accepted: 01/27/2020] [Indexed: 02/06/2023]
Abstract
Inflammation and gut dysbiosis are hallmarks of hypertension (HTN). Hydrogen sulfide (H2S) is an important freely diffusing molecule that modulates the function of neural, cardiovascular and immune systems, and circulating levels of H2S are reduced in animals and humans with HTN. While most research to date has focused on H₂S produced endogenously by the host, H2S is also produced by the gut bacteria and may affect the host homeostasis. Here, we review an association between neuroinflammation and gut dysbiosis in HTN, with special emphasis on a potential role of H2S in this interplay.
Collapse
Affiliation(s)
- Basak Donertas Ayaz
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States; Department of Pharmacology, College of Medicine, University of Eskisehir Osmangazi, Eskisehir, Turkey
| | - Jasenka Zubcevic
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
53
|
Wang C, Xu J, Ma Q, Bai Y, Tian M, Sun J, Zhang Z. A highly selective fluorescent probe for hydrogen polysulfides in living cells based on a naphthalene derivative. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 227:117579. [PMID: 31670042 DOI: 10.1016/j.saa.2019.117579] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/15/2019] [Accepted: 09/28/2019] [Indexed: 06/10/2023]
Abstract
Hydrogen polysulfides (H2Sn, n > 1) are members of reactive sulfur species (RSS) and signaling molecules derived from hydrogen sulfide (H2S). Recently, the functions of H2Sn in physiological and pathological processes have been increasingly recognized. However, their biological effects and detailed mechanisms of action are still little known. Therefore, there is an urgent need to develop highly selective and sensitive techniques for monitoring hydrogen polysulfides (H2Sn) in living cells. In this study, we designed and synthesized a fluorescent probe based on a naphthalene derivative for the detection of hydrogen polysulfides. A naphthalene derivative was applied as the fluorescent main structure and the 2-fluoro-5-nitrobenzoate group was chosen as the recognition unit. In the absence of hydrogen polysulfides, the fluorescent probe displayed almost no fluorescence. In the presence of hydrogen polysulfides, the fluorescent probe exhibited strong fluorescence. The sensing mechanism was based on H2Sn-mediated aromatic substitution-cyclization reactions. The linear range of the response concentration of the probe to hydrogen polysulfide was acquired in a concentration range of H2Sn from 7.5 × 10-7 to 2.5 × 10-5 mol L-1. The detection limit was evaluated to be 5.0 × 10-7 mol L-1 for H2Sn. The fluorescent probe can applied in a wide pH range including physiological condition pH. The fluorescent probe showed high specificity for H2Sn over other reactive sulfur species (RSS). Moreover, the fluorescent probe has been successfully applied to confocal imaging of hydrogen polysulfides in HepG2 cells without cell cytotoxicity. All of such good qualities indicated that it could be used to detect H2Sn in living cells.
Collapse
Affiliation(s)
- Chunyan Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Junhong Xu
- Department of Dynamical Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450011, PR China
| | - Qiujuan Ma
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China.
| | - Yu Bai
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Meiju Tian
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Jingguo Sun
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Zhijuan Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China.
| |
Collapse
|
54
|
Kimura H. Signalling by hydrogen sulfide and polysulfides via protein S-sulfuration. Br J Pharmacol 2020; 177:720-733. [PMID: 30657595 PMCID: PMC7024735 DOI: 10.1111/bph.14579] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/12/2018] [Accepted: 01/04/2019] [Indexed: 12/13/2022] Open
Abstract
Hydrogen sulfide (H2 S) is a signalling molecule that regulates neuronal transmission, vascular tone, cytoprotection, inflammatory responses, angiogenesis, and oxygen sensing. Some of these functions have recently been ascribed to its oxidized form polysulfides (H2 Sn ), which can be produced by 3-mercaptopyruvate sulfurtransferase (MPST), also known as a H2 S-producing enzyme. H2 Sn activate ion channels, tumour suppressors, transcription factors, and protein kinases. H2 Sn S-sulfurate (S-sulfhydrate) cysteine residues of these target proteins to modify their activity by inducing conformational changes through the formation of a disulfide bridge between the two cysteine residues involved. The chemical interaction between H2 S and NO also generates H2 Sn , which may be a chemical entity that exerts the synergistic effect of H2 S and NO. MPST also produces redox regulators cysteine persulfide (CysSSH), GSH persulfide (GSSH), and persulfurated proteins. In addition to MPST, haemoproteins such as haemoglobin, myoglobin, neuroglobin, and catalase as well as SOD can produce H2 Sn , and sulfide quinone oxidoreductase and cysteinyl tRNA synthetase can make GSSH and CysSSH. This review focuses on the recent progress in the study of the production and physiological roles of these persulfurated and polysulfurated molecules. LINKED ARTICLES: This article is part of a themed section on Hydrogen Sulfide in Biology & Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.4/issuetoc.
Collapse
Affiliation(s)
- Hideo Kimura
- National Institute of NeuroscienceNational Center of Neurology and PsychiatryTokyoJapan
| |
Collapse
|
55
|
Yu Y, Li G, Wu D, Zheng F, Zhang X, Liu J, Hu N, Wang H, Wu Y. Determination of Hydrogen Sulfide in Wines Based on Chemical-Derivatization-Triggered Aggregation-Induced Emission by High-Performance Liquid Chromatography with Fluorescence Detection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:876-883. [PMID: 31670510 DOI: 10.1021/acs.jafc.9b04454] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A chemical-derivatization-triggered aggregation-induced emission (AIE) method for the highly selective determination of hydrogen sulfide (H2S) in wine matrices by high-performance liquid chromatography with fluorescence detection (HPLC-FLD) was developed. The detection strategy was developed based on the chemical derivatization of H2S using a low-cost AIE-active fluorescence derivatization reagent, N-(3-iodine-2-oxopropyl)pyrene methamine (NIPM), to trigger specific AIE at 475 nm, which was red-shifted sharply to the maximum emission wavelength as compared with NIPM monomers of 375 nm, effectively quenching the interference from other thiol-containing compounds. With the aid of specific AIE and the effective separation of HPLC, the proposed method showed high selectivity and sensitivity toward H2S. The limits of detection (LODs) at the sub-nM level of 0.25 nmol/L in the wine-beer sample and 0.30 nmol/L in red wine sample were obtained. To certify its applicability, this proposed strategy was successfully applied for the determination of H2S in wine matrices.
Collapse
Affiliation(s)
- Yanxin Yu
- School of Food and Biological Engineering , Shaanxi University of Science and Technology , Xi'an 710021 , China
| | - Guoliang Li
- School of Food and Biological Engineering , Shaanxi University of Science and Technology , Xi'an 710021 , China
- Key Laboratory of Life-Organic Analysis of Shandong Province , Qufu Normal University , Qufu 273165 , China
| | - Di Wu
- Yangtze Delta Region Institute of Tsinghua University , Zhejiang 314006 , China
| | - Fuping Zheng
- Beijing Laboratory of Food Quality and Safety , Beijing Technology and Business University , Beijing 100048 , China
| | - Xianlong Zhang
- School of Food and Biological Engineering , Shaanxi University of Science and Technology , Xi'an 710021 , China
| | - Jianghua Liu
- School of Food and Biological Engineering , Shaanxi University of Science and Technology , Xi'an 710021 , China
| | - Na Hu
- Key Laboratory of Tibetan Medicine Research & Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology , Chinese Academy of Sciences , Xining 810001 , China
| | - Honglun Wang
- Key Laboratory of Tibetan Medicine Research & Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology , Chinese Academy of Sciences , Xining 810001 , China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment; Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science , China National Center for Food Safety Risk Assessment , Beijing 100050 , China
| |
Collapse
|
56
|
Chen SM, Yi YL, Zeng D, Tang YY, Kang X, Zhang P, Zou W, Tang XQ. Hydrogen Sulfide Attenuates β2-Microglobulin-Induced Cognitive Dysfunction: Involving Recovery of Hippocampal Autophagic Flux. Front Behav Neurosci 2019; 13:244. [PMID: 31708756 PMCID: PMC6823620 DOI: 10.3389/fnbeh.2019.00244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/04/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND AIM Accumulation of β2-microglobulin (B2M), a systemic pro-aging factor, regulates negatively cognitive function. Hydrogen sulfide (H2S), a novel gas signaling molecule, exerts protection against cognitive dysfunction. Therefore, the present work was designed to explore whether H2S attenuates cognitive dysfunction induced by B2M and the underlying mechanism. MATERIALS AND METHODS The cognitive function of rats was assessed by Y-maze, Novel object recognition (NOR), and Morris water maze (MWM) tests. The levels of autophagosome and autolysosome in hippocampus were observed by transmission electron microscopy. The expression of p62 protein in hippocampus was detected by western blot analysis. RESULTS NaHS (a donor of H2S) significantly alleviated cognitive impairments in the B2M-exposed rats tested by Y-maze test, NOR test and MWM test. Furthermore, NaHS recovered autophagic flux in the hippocampus of B2M-exposed rats, as evidenced by decreases in the ratio of autophagosome to autolysosome and the expression of p62 protein in the hippocampus. CONCLUSION In summary, these data indicated that H2S attenuates B2M-induced cognitive dysfunction, involving in recovery of the blocked autophagic flux in the hippocampus, and suggested that H2S may be a novel approach to prevent B2M-induced cognitive dysfunction.
Collapse
Affiliation(s)
- Si-Min Chen
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Yi-Li Yi
- Department of Neurology, The Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Dan Zeng
- Department of Neurology, The Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Yi-Yun Tang
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China
| | - Xuan Kang
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, China
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China
| | - Ping Zhang
- Department of Neurology, The Affiliated Nanhua Hospital, University of South China, Hengyang, China
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China
| | - Wei Zou
- Department of Neurology, The Affiliated Nanhua Hospital, University of South China, Hengyang, China
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China
| | - Xiao-Qing Tang
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, China
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
57
|
Kimura H. [Signaling molecules hydrogen sulfide (H 2S), polysulfides (H 2S n), and sulfite (H 2SO 3)]. Nihon Yakurigaku Zasshi 2019; 154:115-120. [PMID: 31527360 DOI: 10.1254/fpj.154.115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
More than twenty years have passed since the demonstration of hydrogen sulfide (H2S) as a signaling molecule. Various roles of this molecule have been reported including neuromodulation, vascular relaxation, cytoprotection, anti-inflammation, and oxygen sensing. During the study of its effect on neuromodulation, we found TRP channels as a target of H2S, and later identified polysulfides (H2Sn) as chemical entity of the ligand. We found that H2S relaxes vasculatures in synergy with NO, and recently identified H2Sn as products produced by the chemical interaction between H2S and NO to exert the effect, suggesting that it may be a mechanism for the synergy between the two molecules. It has attracted attention that sulfite, a further metabolite of H2S and H2Sn, protects neurons from oxidative stress by a mechanism different from that by H2S and H2Sn.
Collapse
Affiliation(s)
- Hideo Kimura
- Department of Pharmacology, Faculty of Pharmaceutical Science, Sanyo Onoda City University
| |
Collapse
|
58
|
Ran M, Wang T, Shao M, Chen Z, Liu H, Xia Y, Xun L. Sensitive Method for Reliable Quantification of Sulfane Sulfur in Biological Samples. Anal Chem 2019; 91:11981-11986. [PMID: 31436086 DOI: 10.1021/acs.analchem.9b02875] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sulfane sulfur has been recognized as a common cellular component, participating in regulating enzyme activities and signaling pathways. However, the quantification of total sulfane sulfur in biological samples is still a challenge. Here, we developed a method to address the need. All tested sulfane sulfur reacted with sulfite and quantitatively converted to thiosulfate when heated at 95 °C in a solution of pH 9.5 for 10 min. The assay condition was also sufficient to convert total sulfane sulfur in biological samples to thiosulfate for further derivatization and quantification. We applied the method to detect sulfane sulfur contents at different growth phases of bacteria, yeast, mammalian cells, and zebrafish. Total sulfane sulfur contents in all of them increased in the early stage, kept at a steady state for a period, and declined sharply in the late stage of the growth. Sulfane sulfur contents varied in different species. For Escherichia coli, growth media also affected the sulfane sulfur contents. Total sulfane sulfur contents from different organs of mouse and shrimp were also detected, varying from 1 to 10 nmol/(mg of protein). Thus, the new method is suitable for the quantification of total sulfane sulfur in biological samples.
Collapse
Affiliation(s)
- Mingxue Ran
- State Key Laboratory of Microbial Technology , Shandong University , Qingdao 266237 , People's Republic of China.,Institute of Marine Science and Technology , Shandong University , Qingdao 266237 , People's Republic of China
| | - Tianqi Wang
- State Key Laboratory of Microbial Technology , Shandong University , Qingdao 266237 , People's Republic of China
| | - Ming Shao
- School of Life Science , Shandong University , Qingdao 266237 , People's Republic of China
| | - Zhigang Chen
- State Key Laboratory of Microbial Technology , Shandong University , Qingdao 266237 , People's Republic of China
| | - Huaiwei Liu
- State Key Laboratory of Microbial Technology , Shandong University , Qingdao 266237 , People's Republic of China
| | - Yongzhen Xia
- State Key Laboratory of Microbial Technology , Shandong University , Qingdao 266237 , People's Republic of China
| | - Luying Xun
- State Key Laboratory of Microbial Technology , Shandong University , Qingdao 266237 , People's Republic of China.,School of Molecular Biosciences , Washington State University , Pullman , Washington 99164-7520 , United States
| |
Collapse
|
59
|
Nelp MT, Zheng V, Davis KM, Stiefel KJE, Groves JT. Potent Activation of Indoleamine 2,3-Dioxygenase by Polysulfides. J Am Chem Soc 2019; 141:15288-15300. [PMID: 31436417 DOI: 10.1021/jacs.9b07338] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Indoleamine 2,3-dioxygenase (IDO1) is a heme enzyme that catalyzes the oxygenation of the indole ring of tryptophan to afford N-formylkynurenine. This activity significantly suppresses the immune response, mediating inflammation and autoimmune reactions. These consequential effects are regulated through redox changes in the heme cofactor of IDO1, which autoxidizes to the inactive ferric state during turnover. This change in redox status increases the lability of the heme cofactor leading to further suppression of activity. The cell can thus regulate IDO1 activity through the supply of heme and reducing agents. We show here that polysulfides bind to inactive ferric IDO1 and reduce it to the oxygen-binding ferrous state, thus activating IDO1 to maximal turnover even at low, physiologically significant concentrations. The on-rate for hydrogen disulfide binding to ferric IDO1 was found to be >106 M-1 s-1 at pH 7 using stopped-flow spectrometry. Fe K-edge XANES and EPR spectroscopy indicated initial formation of a low-spin ferric sulfur-bound species followed by reduction to the ferrous state. The μM affinity of polysulfides for IDO1 implicates these polysulfides as important signaling factors in immune regulation through the kynurenine pathway. Tryptophan significantly enhanced the relatively lower-affinity binding of hydrogen sulfide to IDO1, inspiring the use of the small molecule 3-mercaptoindole (3MI), which selectively binds to and activates ferric IDO1. 3MI sustains turnover by catalytically transferring reducing equivalents from glutathione to IDO1, representing a novel strategy of upregulating innate immunosuppression for treatment of autoimmune disorders. Reactive sulfur species are thus likely unrecognized immune-mediators with potential as therapeutic agents through these interactions with IDO1.
Collapse
Affiliation(s)
- Micah T Nelp
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| | - Vincent Zheng
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| | - Katherine M Davis
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| | - Katherine J E Stiefel
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| | - John T Groves
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| |
Collapse
|
60
|
Signaling by hydrogen sulfide (H2S) and polysulfides (H2Sn) in the central nervous system. Neurochem Int 2019; 126:118-125. [DOI: 10.1016/j.neuint.2019.01.027] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 01/13/2023]
|
61
|
Abstract
Dr. Hideo Kimura is recognized as a redox pioneer because he has published an article in the field of antioxidant and redox biology that has been cited >1000 times, and 29 articles that have been cited >100 times. Since the first description of hydrogen sulfide (H2S) as a toxic gas 300 years ago, most studies have been devoted to its toxicity. In 1996, Dr. Kimura demonstrated a physiological role of H2S as a mediator of cognitive function and cystathionine β-synthase as an H2S-producing enzyme. In the following year, he showed H2S as a vascular smooth muscle relaxant in synergy with nitric oxide and its production by cystathionine γ-lyase in vasculature. Subsequently he reported the cytoprotective effect of H2S on neurons against oxidative stress. Since then, studies on H2S have unveiled numerous physiological roles such as the regulation of inflammation, cell growth, oxygen sensing, and senescence. He also discovered polysulfides (H2Sn), which have a higher number of sulfur atoms than H2S and are one of the active forms of H2S, as potent signaling molecules produced by 3-mercaptopyruvate sulfurtransferase. H2Sn regulate ion channels and transcription factors to upregulate antioxidant genes, tumor suppressors, and protein kinases to, in turn, regulate blood pressure. These findings led to the re-evaluation of other persulfurated molecules such as cysteine persulfide and glutathione persulfide. Dr. Kimura is a pioneer of studies on H2S and H2Sn as signaling molecules. It is fortunate to come across a secret of nature and pick it up. -Prof. Hideo Kimura.
Collapse
Affiliation(s)
- David Lefer
- CV Center of Excellence, Louisiana State University Health Sciences Center , New Orleans, Louisiana
| |
Collapse
|
62
|
Olson KR, Gao Y. Effects of inhibiting antioxidant pathways on cellular hydrogen sulfide and polysulfide metabolism. Free Radic Biol Med 2019; 135:1-14. [PMID: 30790656 DOI: 10.1016/j.freeradbiomed.2019.02.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/12/2019] [Accepted: 02/12/2019] [Indexed: 12/18/2022]
Abstract
Elaborate antioxidant pathways have evolved to minimize the threat of excessive reactive oxygen species (ROS) and to regulate ROS as signaling entities. ROS are chemically and functionally similar to reactive sulfur species (RSS) and both ROS and RSS have been shown to be metabolized by the antioxidant enzymes, superoxide dismutase and catalase. Here we use fluorophores to examine the effects of a variety of inhibitors of antioxidant pathways on metabolism of two important RSS, hydrogen sulfide (H2S with AzMC) and polysulfides (H2Sn, where n = 2-7, with SSP4) in HEK293 cells. Cells were exposed to inhibitors for up to 5 days in normoxia (21% O2) and hypoxia (5% O2), conditions also known to affect ROS production. Decreasing intracellular glutathione (GSH) with l-buthionine-sulfoximine (BSO) or diethyl maleate (DEM) decreased H2S production for 5 days but did not affect H2Sn. The glutathione reductase inhibitor, auranofin, initially decreased H2S and H2Sn but after two days H2Sn increased over controls. Inhibition of peroxiredoxins with conoidin A decreased H2S and increased H2Sn, whereas the glutathione peroxidase inhibitor, tiopronin, increased H2S. Aminoadipic acid, an inhibitor of cystine uptake did not affect either H2S or H2Sn. In buffer, the glutathione reductase and thioredoxin reductase inhibitor, 2-AAPA, the glutathione peroxidase mimetic, ebselen, and tiopronin variously reacted directly with AzMC and SSP4, reacted with H2S and H2S2, or optically interfered with AzMC or SSP4 fluorescence. Collectively these results show that antioxidant inhibitors, generally known for their ability to increase cellular ROS, have various effects on cellular RSS. These findings suggest that the inhibitors may affect cellular sulfur metabolism pathways that are not related to ROS production and in some instances they may directly affect RSS or the methods used to measure them. They also illustrate the importance of carefully evaluating RSS metabolism when biologically or pharmacologically attempting to manipulate ROS.
Collapse
Affiliation(s)
- Kenneth R Olson
- Indiana University School of Medicine - South Bend, South Bend, IN, 46617, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
| | - Yan Gao
- Indiana University School of Medicine - South Bend, South Bend, IN, 46617, USA
| |
Collapse
|
63
|
A FRET-based fluorescent probe for hydrogen peroxide based on the use of carbon quantum dots conjugated to gold nanoclusters. Mikrochim Acta 2019; 186:294. [DOI: 10.1007/s00604-019-3398-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/01/2019] [Indexed: 02/04/2023]
|
64
|
Liu H, Radford MN, Yang C, Chen W, Xian M. Inorganic hydrogen polysulfides: chemistry, chemical biology and detection. Br J Pharmacol 2019; 176:616-627. [PMID: 29669174 PMCID: PMC6346069 DOI: 10.1111/bph.14330] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 12/13/2022] Open
Abstract
Recent studies suggest that inorganic hydrogen polysulfides (H2 Sn , n ≥ 2) play important regulatory roles in redox biology. Modulation of their cellular levels could have potential therapeutic value. This review article focuses on our current understanding of the biosynthesis, biofunctions, fundamental physical/chemical properties, detection methods and delivery techniques of H2 Sn . LINKED ARTICLES: This article is part of a themed section on Chemical Biology of Reactive Sulfur Species. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.4/issuetoc.
Collapse
Affiliation(s)
- Heng Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical EngineeringHubei UniversityWuhanHubeiChina
- Department of ChemistryWashington State UniversityPullmanWAUSA
| | - Miles N Radford
- Department of ChemistryWashington State UniversityPullmanWAUSA
| | - Chun‐tao Yang
- Key Laboratory of Molecular Clinical Pharmacology, School of Pharmaceutics ScienceGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Wei Chen
- Department of ChemistryWashington State UniversityPullmanWAUSA
| | - Ming Xian
- Department of ChemistryWashington State UniversityPullmanWAUSA
- Key Laboratory of Molecular Clinical Pharmacology, School of Pharmaceutics ScienceGuangzhou Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
65
|
The Drug Developments of Hydrogen Sulfide on Cardiovascular Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4010395. [PMID: 30151069 PMCID: PMC6087600 DOI: 10.1155/2018/4010395] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/27/2018] [Indexed: 02/07/2023]
Abstract
The recognition of hydrogen sulfide (H2S) has been evolved from a toxic gas to a physiological mediator, exhibiting properties similar to NO and CO. On the one hand, H2S is produced from L-cysteine by enzymes of cystathionine γ-lyase (CSE) and cystathionine β-synthase (CBS), 3-mercaptopyruvate sulfurtransferase (3MST) in combination with aspartate aminotransferase (AAT) (also called as cysteine aminotransferase, CAT); on the other hand, H2S is produced from D-cysteine by enzymes of D-amino acid oxidase (DAO). Besides sulfide salt, several sulfide-releasing compounds have been synthesized, including organosulfur compounds, Lawesson's reagent and analogs, and plant-derived natural products. Based on garlic extractions, we synthesized S-propargyl-L-cysteine (SPRC) and its analogs to contribute our endeavors on drug development of sulfide-containing compounds. A multitude of evidences has presented H2S is widely involved in the roles of physiological and pathological process, including hypertension, atherosclerosis, angiogenesis, and myocardial infarcts. This review summarizes current sulfide compounds, available H2S measurements, and potential molecular mechanisms involved in cardioprotections to help researchers develop further applications and therapeutically drugs.
Collapse
|
66
|
Kimura Y, Shibuya N, Kimura H. Sulfite protects neurons from oxidative stress. Br J Pharmacol 2018; 176:571-582. [PMID: 29808913 DOI: 10.1111/bph.14373] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/25/2018] [Accepted: 05/15/2018] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND AND PURPOSE Hydrogen sulfide (H2 S) and polysulfides (H2 Sn ) are signalling molecules that mediate various physiological responses including cytoprotection. Their oxidized metabolite sulfite (SO3 2- ) is found in blood and tissues. However, its physiological role remains unclear. In this study, we investigated the cytoprotective effect of sulfite on neurons exposed to oxidative stress caused by high concentrations of the neurotransmitter glutamate, known as oxytosis. EXPERIMENTAL APPROACH Concentrations of sulfite as well as those of cysteine and GSH in rats were measured by HPLC. Cytoprotective effects of sulfite on primary cultures of rat neurons against oxytosis was examined by WST-8 cytoprotective and LDH cytotoxicity assays and compared with that of H2 S, H2 Sn and thiosulfate. KEY RESULTS Free sulfite, present at approximately 2 μM in the rat brain, converts cystine to cysteine more efficiently than H2 S and H2 Sn and facilitates transport of cysteine into cells. Physiological concentrations of sulfite protected neurons from oxytosis and were accompanied by increased intracellular concentrations of cysteine and GSH probably due to converting extracellular cystine to cysteine, more efficiently than H2 S and H2 Sn . In contrast, thiosulfate only slightly protected neurons from oxytosis. CONCLUSIONS AND IMPLICATIONS Our present data have shown sulfite to be a novel cytoprotective molecule against oxytosis, through maintaining cysteine levels in the extracellular milieu, leading to increased intracellular cysteine and GSH. Although there may be adverse clinical effects in sensitive individuals, our results provide a new insight into the therapeutic application of sulfite to neuronal diseases caused by oxidative stress. LINKED ARTICLES This article is part of a themed section on Chemical Biology of Reactive Sulfur Species. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.4/issuetoc.
Collapse
Affiliation(s)
- Yuka Kimura
- National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Norihiro Shibuya
- National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Hideo Kimura
- National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| |
Collapse
|
67
|
Shefa U, Kim D, Kim MS, Jeong NY, Jung J. Roles of Gasotransmitters in Synaptic Plasticity and Neuropsychiatric Conditions. Neural Plast 2018; 2018:1824713. [PMID: 29853837 PMCID: PMC5960547 DOI: 10.1155/2018/1824713] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/25/2018] [Accepted: 03/11/2018] [Indexed: 12/22/2022] Open
Abstract
Synaptic plasticity is important for maintaining normal neuronal activity and proper neuronal functioning in the nervous system. It is crucial for regulating synaptic transmission or electrical signal transduction to neuronal networks, for sharing essential information among neurons, and for maintaining homeostasis in the body. Moreover, changes in synaptic or neural plasticity are associated with many neuropsychiatric conditions, such as schizophrenia (SCZ), bipolar disorder (BP), major depressive disorder (MDD), and Alzheimer's disease (AD). The improper maintenance of neural plasticity causes incorrect neurotransmitter transmission, which can also cause neuropsychiatric conditions. Gas neurotransmitters (gasotransmitters), such as hydrogen sulfide (H2S), nitric oxide (NO), and carbon monoxide (CO), play roles in maintaining synaptic plasticity and in helping to restore such plasticity in the neuronal architecture in the central nervous system (CNS). Indeed, the upregulation or downregulation of these gasotransmitters may cause neuropsychiatric conditions, and their amelioration may restore synaptic plasticity and proper neuronal functioning and thereby improve such conditions. Understanding the specific molecular mechanisms underpinning these effects can help identify ways to treat these neuropsychiatric conditions.
Collapse
Affiliation(s)
- Ulfuara Shefa
- Department of Biomedical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Dokyoung Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Min-Sik Kim
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Na Young Jeong
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, 32 Daesingongwon-ro, Seo-gu, Busan 49201, Republic of Korea
| | - Junyang Jung
- Department of Biomedical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- East-West Medical Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, 13 Seoul 02447, Republic of Korea
| |
Collapse
|
68
|
Cao X, Nie X, Xiong S, Cao L, Wu Z, Moore PK, Bian JS. Renal protective effect of polysulfide in cisplatin-induced nephrotoxicity. Redox Biol 2018; 15:513-521. [PMID: 29413963 PMCID: PMC5881418 DOI: 10.1016/j.redox.2018.01.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/19/2018] [Accepted: 01/24/2018] [Indexed: 01/03/2023] Open
Abstract
Cisplatin is a major chemotherapeutic drug for solid tumors whereas it may lead to severe nephrotoxicity. Despite decades of efforts, effective therapies remain largely lacking for this disease. In the current research, we investigated the therapeutic effect of hydrogen polysulfide, a novel hydrogen sulfide (H2S) derived signaling molecule, in cisplatin nephrotoxicity and the mechanisms involved. Our results showed that polysulfide donor Na2S4 ameliorated cisplatin-caused renal toxicity in vitro and in vivo through suppressing intracellular reactive oxygen species (ROS) generation and downstream mitogen-activated protein kinases (MAPKs) activation. Additionally, polysulfide may inhibit ROS production by simultaneously lessening the activation of NADPH oxidase and inducing nucleus translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) in RPT cells. Interestingly, polysulfide possesses anti-cancer activity and is able to add on more anti-cancer effect to cisplatin in non-small cell lung cancer (NSCLC) cell lines. Moreover, we observed that the number of sulfur atoms in polysulfide well reflected the efficacy of these molecules not only in cell protection but also cancer inhibition which may serve as a guide for further development of polysulfide donors for pharmaceutical usage. Taken together, our study suggests that polysulfide may be a novel and promising therapeutic agent to prevent cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Xu Cao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Xiaowei Nie
- Center of Clinical Research, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Siping Xiong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Lei Cao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Zhiyuan Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Life Science Institute, National University of Singapore, Singapore
| | - Philip K Moore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Life Science Institute, National University of Singapore, Singapore
| | - Jin-Song Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| |
Collapse
|
69
|
Gold-nanofève surface-enhanced Raman spectroscopy visualizes hypotaurine as a robust anti-oxidant consumed in cancer survival. Nat Commun 2018; 9:1561. [PMID: 29674746 PMCID: PMC5908798 DOI: 10.1038/s41467-018-03899-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 03/20/2018] [Indexed: 01/24/2023] Open
Abstract
Gold deposition with diagonal angle towards boehmite-based nanostructure creates random arrays of horse-bean-shaped nanostructures named gold-nanofève (GNF). GNF generates many electromagnetic hotspots as surface-enhanced Raman spectroscopy (SERS) excitation sources, and enables large-area visualization of molecular vibration fingerprints of metabolites in human cancer xenografts in livers of immunodeficient mice with sufficient sensitivity and uniformity. Differential screening of GNF-SERS signals in tumours and those in parenchyma demarcated tumour boundaries in liver tissues. Furthermore, GNF-SERS combined with quantum chemical calculation identified cysteine-derived glutathione and hypotaurine (HT) as tumour-dominant and parenchyma-dominant metabolites, respectively. CD44 knockdown in cancer diminished glutathione, but not HT in tumours. Mechanisms whereby tumours sustained HT under CD44-knockdown conditions include upregulation of PHGDH, PSAT1 and PSPH that drove glycolysis-dependent activation of serine/glycine-cleavage systems to provide one-methyl group for HT synthesis. HT was rapidly converted into taurine in cancer cells, suggesting that HT is a robust anti-oxidant for their survival under glutathione-suppressed conditions. Surface-enhanced Raman spectroscopy (SERS) visualizes fingerprints of intermolecular vibrations of many metabolites. Here the authors report a SERS imaging technique that enables the visualization of metabolites distribution and automated extraction of tumour boundaries in frozen tissues.
Collapse
|
70
|
Shibuya N. [Production of H 2S, H 2S n, and persulfide species (CysSSH and GSSH) by 3-mercaptopyruvate sulfurtransferase]. Nihon Yakurigaku Zasshi 2018; 152:216-222. [PMID: 30393252 DOI: 10.1254/fpj.152.216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Accumulating evidence shows that hydrogen sulfide (H2S) has physiological roles in various tissues and organs, including the regulation of neuronal activity, vascular tension, a release of insulin, and protection of the heart, kidney, and brain from ischemic insult. H2S is produced from l-cysteine by pyridoxal 5'-phosphate (PLP)-dependent enzymes, cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE). 3-Mercaptopyruvate sulfurtransferase (3MST) is the third H2S-producing enzyme, and its substrate 3-mercaptopyruvate (3MP) is provided from l-cysteine and α-ketoglutarate (α-KG) by a PLP-dependent cysteine aminotransferase (CAT). An additional pathway for the production of H2S from d-cysteine metabolized by d-amino acid oxidase (DAO) together with 3MST has been identified. Recent studies have shown that hydrogen polysulfides (H2Sn) have been found to stimulate transient receptor potential ankyrin1 (TRPA1) channel, much more potently than does H2S. 3MST produces cysteine-persulfide (CysSSH) and its glutathione counterpart (GSSH), potential redox regulators, together with the potential signaling molecules H2Sn. In addition, the interaction between H2S and nitric oxide (NO) also generates H2Sn. These observations provide new insights into the production and physiological roles of these molecules.
Collapse
Affiliation(s)
- Norihiro Shibuya
- National Institute of Neuroscience, National Center of Neurology and Psychiatry
| |
Collapse
|