51
|
Pandey S, Kumari A, Shree M, Kumar V, Singh P, Bharadwaj C, Loake GJ, Parida SK, Masakapalli SK, Gupta KJ. Nitric oxide accelerates germination via the regulation of respiration in chickpea. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4539-4555. [PMID: 31162578 PMCID: PMC6735774 DOI: 10.1093/jxb/erz185] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/11/2019] [Indexed: 05/11/2023]
Abstract
Seed germination is crucial for the plant life cycle. We investigated the role of nitric oxide (NO) in two chickpea varieties that differ in germination capacity: Kabuli, which has a low rate of germination and germinates slowly, and Desi, which shows improved germination properties. Desi produced more NO than Kabuli and had lower respiratory rates. As a result of the high respiration rates, Kabuli had higher levels of reactive oxygen species (ROS). Treatment with the NO donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP) reduced respiration in Kabuli and decreased ROS levels, resulting in accelerated germination rates. These findings suggest that NO plays a key role in the germination of Kabuli. SNAP increased the levels of transcripts encoding enzymes involved in carbohydrate metabolism and the cell cycle. Moreover, the levels of amino acids and organic acids were increased in Kabuli as a result of SNAP treatment. 1H-nuclear magnetic resonance analysis revealed that Kabuli has a higher capacity for glucose oxidation than Desi. An observed SNAP-induced increase in 13C incorporation into soluble alanine may result from enhanced oxidation of exogenous [13C]glucose via glycolysis and the pentose phosphate pathway. A homozygous hybrid that originated from a recombinant inbred line population of a cross between Desi and Kabuli germinated faster and had increased NO levels and a reduced accumulation of ROS compared with Kabuli. Taken together, these findings demonstrate the importance of NO in chickpea germination via the control of respiration and ROS accumulation.
Collapse
Affiliation(s)
- Sonika Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, 110067, New Delhi, India
| | - Aprajita Kumari
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, 110067, New Delhi, India
| | - Manu Shree
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand 175005, HP, India
| | - Vinod Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, 110067, New Delhi, India
| | - Pooja Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, 110067, New Delhi, India
| | | | - Gary J Loake
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, The King’s Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Swarup K Parida
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, 110067, New Delhi, India
| | | | | |
Collapse
|
52
|
Kumari A, Pathak PK, Bulle M, Igamberdiev AU, Gupta KJ. Alternative oxidase is an important player in the regulation of nitric oxide levels under normoxic and hypoxic conditions in plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4345-4354. [PMID: 30968134 DOI: 10.1093/jxb/erz160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/29/2019] [Indexed: 05/03/2023]
Abstract
Plant mitochondria possess two different pathways for electron transport from ubiquinol: the cytochrome pathway and the alternative oxidase (AOX) pathway. The AOX pathway plays an important role in stress tolerance and is induced by various metabolites and signals. Previously, several lines of evidence indicated that the AOX pathway prevents overproduction of superoxide and other reactive oxygen species. More recent evidence suggests that AOX also plays a role in regulation of nitric oxide (NO) production and signalling. The AOX pathway is induced under low phosphate, hypoxia, pathogen infections, and elicitor treatments. The induction of AOX under aerobic conditions in response to various stresses can reduce electron transfer through complexes III and IV and thus prevents the leakage of electrons to nitrite and the subsequent accumulation of NO. Excess NO under various stresses can inhibit complex IV; thus, the AOX pathway minimizes nitrite-dependent NO synthesis that would arise from enhanced electron leakage in the cytochrome pathway. By preventing NO generation, AOX can reduce peroxynitrite formation and tyrosine nitration. In contrast to its function under normoxia, AOX has a specific role under hypoxia, where AOX can facilitate nitrite-dependent NO production. This reaction drives the phytoglobin-NO cycle to increase energy efficiency under hypoxia.
Collapse
Affiliation(s)
- Aprajita Kumari
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi, India
| | - Pradeep Kumar Pathak
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi, India
| | - Mallesham Bulle
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi, India
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | | |
Collapse
|
53
|
Stasolla C, Huang S, Hill RD, Igamberdiev AU. Spatio-temporal expression of phytoglobin: a determining factor in the NO specification of cell fate. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4365-4377. [PMID: 30838401 DOI: 10.1093/jxb/erz084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/11/2019] [Indexed: 05/12/2023]
Abstract
Plant growth and development rely on the orchestration of cell proliferation, differentiation, and ultimately death. After varying rounds of divisions, cells respond to positional cues by acquiring a specific fate and embarking upon distinct developmental pathways which might differ significantly from those of adjacent cells exposed to diverse cues. Differential cell behavior is most apparent in response to stress, when some cells might be more vulnerable than others to the same stress condition. This appears to be the case for stem cells which show abnormal features of differentiation and ultimately signs of deterioration at the onset of specific types of stress such as hypoxia and water deficit. A determining factor influencing cell behavior during growth and development, and cell response during conditions of stress is nitric oxide (NO), the level of which can be regulated by phytoglobins (Pgbs), known scavengers of NO. The modulation of NO by Pgbs can be cell, tissue, and/or organ specific, as revealed by the expression patterns of Pgbs dictated by the presence of distinct cis-regulatory elements in their promoters. This review discusses how the temporal and spatial Pgb expression pattern influences NO-mediated responses and ultimately cell fate acquisition in plant developmental processes.
Collapse
Affiliation(s)
- Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shuanglong Huang
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Robert D Hill
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| |
Collapse
|
54
|
Wu G, Li S, Li X, Liu Y, Zhao S, Liu B, Zhou H, Lin H. A Functional Alternative Oxidase Modulates Plant Salt Tolerance in Physcomitrella patens. PLANT & CELL PHYSIOLOGY 2019; 60:1829-1841. [PMID: 31119292 DOI: 10.1093/pcp/pcz099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 05/14/2019] [Indexed: 05/13/2023]
Abstract
Alternative oxidase (AOX) has been reported to be involved in mitochondrial function and redox homeostasis, thus playing an essential role in plant growth as well as stress responses. However, its biological functions in nonseed plants have not been well characterized. Here, we report that AOX participates in plant salt tolerance regulation in moss Physcomitrella patens (P. patens). AOX is highly conserved and localizes to mitochondria in P. patens. We observed that PpAOX rescued the impaired cyanide (CN)-resistant alternative (Alt) respiratory pathway in Arabidopsis thaliana (Arabidopsis) aox1a mutant. PpAOX transcription and Alt respiration were induced upon salt stress in P. patens. Using homologous recombination, we generated PpAOX-overexpressing lines (PpAOX OX). PpAOX OX plants exhibited higher Alt respiration and lower total reactive oxygen species accumulation under salt stress condition. Strikingly, we observed that PpAOX OX plants displayed decreased salt tolerance. Overexpression of PpAOX disturbed redox homeostasis in chloroplasts. Meanwhile, chloroplast structure was adversely affected in PpAOX OX plants in contrast to wild-type (WT) P. patens. We found that photosynthetic activity in PpAOX OX plants was also lower compared with that in WT. Together, our work revealed that AOX participates in plant salt tolerance in P. patens and there is a functional link between mitochondria and chloroplast under challenging conditions.
Collapse
Affiliation(s)
- Guochun Wu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Sha Li
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiaochuan Li
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yunhong Liu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Shuangshuang Zhao
- Key Laboratory of Plant Stress, Life Science College, Shandong Normal University, Jinan, China
| | - Baohui Liu
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Huapeng Zhou
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Honghui Lin
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
55
|
Regulation of mitochondrial NAD pool via NAD + transporter 2 is essential for matrix NADH homeostasis and ROS production in Arabidopsis. SCIENCE CHINA-LIFE SCIENCES 2019; 62:991-1002. [PMID: 31168681 DOI: 10.1007/s11427-019-9563-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/10/2019] [Indexed: 01/19/2023]
Abstract
Reactive oxygen species (ROS) play a crucial role in numerous biological processes in plants, including development, responses to environmental stimuli, and programmed cell death (PCD). Deficiency in MOSAIC DEATH 1 (MOD1), a plastid-localized enoyl-ACP reductase essential for de novo fatty acid biosynthesis in Arabidopsis thaliana, leads to the increased malate export from chloroplasts to mitochondria, and the subsequent accumulation of mitochondria-generated ROS and PCD. In this study, we report the identification and characterization of a mod1 suppressor, som592. SOM592 encodes mitochondrion-localized NAD+ transporter 2 (NDT2). We show that the mitochondrial NAD pool is elevated in the mod1 mutant. The som592 mutation fully suppressed mitochondrial NADH hyper-accumulation, ROS production, and PCD in the mod1 mutant, indicating a causal relationship between mitochondrial NAD accumulation and ROS/PCD phenotypes. We also show that in wild-type plants, the mitochondrial NAD+ uptake is involved in the regulation of ROS production in response to continuous photoperiod. Elevation of the alternative respiration pathway can suppress ROS accumulation and PCD in mod1, but leads to growth restriction. These findings uncover a regulatory mechanism for mitochondrial ROS production via NADH homeostasis in Arabidopsis thaliana that is likely important for growth regulation in response to altered photoperiod.
Collapse
|
56
|
Singh N, Bhatla SC. Hemoglobin as a probe for estimation of nitric oxide emission from plant tissues. PLANT METHODS 2019; 15:39. [PMID: 31043999 PMCID: PMC6480594 DOI: 10.1186/s13007-019-0425-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/15/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND Plant roots contribute significant amount of nitric oxide (NO) in the rhizosphere as a component of NO in the ecosystem. Various pharmacological investigations on NO research in plants seek to quench endogenous NO by using externally applied NO quenchers, mainly 2-phenyl-4,4,5,5,-tetramethylimidazoline-1-oxyl 3-oxide (PTIO) and its more soluble form-carboxy-PTIO (cPTIO). Owing to serious limitations in its application cPTIO is no more a desired compound for such applications. RESULT Present work highlights the significance of using hemoglobin in the bathing solution to not only release endogenous NO from plant tissue but also to quench it in a concentration-dependent manner. CONCLUSION The protocol further demonstrates the diffusibility of NO from intracellular locations in presence of externally provided hemoglobin. The proposed method can have widespread applications as a substitute to debatable and currently used cPTIO as a NO scavenger.
Collapse
Affiliation(s)
- Neha Singh
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, Delhi, 110007 India
| | - Satish C. Bhatla
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, Delhi, 110007 India
| |
Collapse
|
57
|
Tejada-Jimenez M, Llamas A, Galván A, Fernández E. Role of Nitrate Reductase in NO Production in Photosynthetic Eukaryotes. PLANTS 2019; 8:plants8030056. [PMID: 30845759 PMCID: PMC6473468 DOI: 10.3390/plants8030056] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 12/20/2022]
Abstract
Nitric oxide is a gaseous secondary messenger that is critical for proper cell signaling and plant survival when exposed to stress. Nitric oxide (NO) synthesis in plants, under standard phototrophic oxygenic conditions, has long been a very controversial issue. A few algal strains contain NO synthase (NOS), which appears to be absent in all other algae and land plants. The experimental data have led to the hypothesis that molybdoenzyme nitrate reductase (NR) is the main enzyme responsible for NO production in most plants. Recently, NR was found to be a necessary partner in a dual system that also includes another molybdoenzyme, which was renamed NO-forming nitrite reductase (NOFNiR). This enzyme produces NO independently of the molybdenum center of NR and depends on the NR electron transport chain from NAD(P)H to heme. Under the circumstances in which NR is not present or active, the existence of another NO-forming system that is similar to the NOS system would account for NO production and NO effects. PII protein, which senses and integrates the signals of the C–N balance in the cell, likely has an important role in organizing cell responses. Here, we critically analyze these topics.
Collapse
Affiliation(s)
- Manuel Tejada-Jimenez
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales y Campus Internacional de Excelencia Agroalimentario (CeiA3), Edif. Severo Ochoa, Universidad de Córdoba, 14071 Córdoba, Spain.
| | - Angel Llamas
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales y Campus Internacional de Excelencia Agroalimentario (CeiA3), Edif. Severo Ochoa, Universidad de Córdoba, 14071 Córdoba, Spain.
| | - Aurora Galván
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales y Campus Internacional de Excelencia Agroalimentario (CeiA3), Edif. Severo Ochoa, Universidad de Córdoba, 14071 Córdoba, Spain.
| | - Emilio Fernández
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales y Campus Internacional de Excelencia Agroalimentario (CeiA3), Edif. Severo Ochoa, Universidad de Córdoba, 14071 Córdoba, Spain.
| |
Collapse
|
58
|
Gayen D, Gayali S, Barua P, Lande NV, Varshney S, Sengupta S, Chakraborty S, Chakraborty N. Dehydration-induced proteomic landscape of mitochondria in chickpea reveals large-scale coordination of key biological processes. J Proteomics 2019; 192:267-279. [PMID: 30243939 DOI: 10.1016/j.jprot.2018.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/09/2018] [Accepted: 09/11/2018] [Indexed: 12/28/2022]
Abstract
Mitochondria play crucial roles in regulating multiple biological processes particularly electron transfer and energy metabolism in eukaryotic cells. Exposure to water-deficit or dehydration may affect mitochondrial function, and dehydration response may dictate cell fate decisions. iTRAQ-based quantitative proteome of a winter legume, chickpea, demonstrated the central metabolic alterations in mitochondria, presumably involved in dehydration adaptation. Three-week-old chickpea seedlings were subjected to progressive dehydration and the magnitude of dehydration-induced compensatory physiological responses was monitored in terms of physicochemical characteristics and mitochondrial architecture. The proteomics analysis led to the identification of 40 dehydration-responsive proteins whose expressions were significantly modulated by dehydration. The differentially expressed proteins were implicated in different metabolic processes, with obvious functional tendencies toward purine-thiamine metabolic network, pathways of carbon fixation and oxidative phosphorylation. The linearity of dehydration-induced proteome alteration was examined with transcript abundance of randomly selected candidates under multivariate stress conditions. The differentially regulated proteins were validated through sequence analysis. An extensive sequence based localization prediction revealed >62.5% proteins to be mitochondrial resident by, at least, one prediction algorithm. The results altogether provide intriguing insights into the dehydration-responsive metabolic pathways and useful clues to identify crucial proteins linked to stress tolerance. BIOLOGICAL SIGNIFICANCE: Investigation on plant mitochondrial proteome is of significance because it would allow a better understanding of mitochondrial function in plant adaptation to stress. Mitochondria are the unique organelles, which play a crucial role in energy metabolism and cellular homeostasis, particularly when exposed to stress conditions. Chickpea is one of the cultivated winter legumes, which enriches soil nitrogen and has very low water footprint and thus contributes to fortification of sustainable agriculture. We therefore examined the dehydration-responsive mitochondrial proteome landscape of chickpea and queried whether molecular interplay of mitochondrial proteins modulate dehydration tolerance. A total of 40 dehydration-induced mitochondrial proteins were identified, predicted to be involved in key metabolic processes. Our future efforts would focus on understanding both posttranslational modification and processing for comprehensive characterization of mitochondrial protein function. This approach will facilitate mining of more biomarkers linked to the tolerance trait and contribute to crop adaptation to climate change.
Collapse
Affiliation(s)
- Dipak Gayen
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna, Asaf Ali Marg, New Delhi, India
| | - Saurabh Gayali
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna, Asaf Ali Marg, New Delhi, India
| | - Pragya Barua
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna, Asaf Ali Marg, New Delhi, India
| | - Nilesh Vikram Lande
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna, Asaf Ali Marg, New Delhi, India
| | - Swati Varshney
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India
| | - Shantanu Sengupta
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna, Asaf Ali Marg, New Delhi, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna, Asaf Ali Marg, New Delhi, India.
| |
Collapse
|
59
|
Murik O, Tirichine L, Prihoda J, Thomas Y, Araújo WL, Allen AE, Fernie AR, Bowler C. Downregulation of mitochondrial alternative oxidase affects chloroplast function, redox status and stress response in a marine diatom. THE NEW PHYTOLOGIST 2019; 221:1303-1316. [PMID: 30216452 DOI: 10.1111/nph.15479] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/03/2018] [Indexed: 05/20/2023]
Abstract
Diatom dominance in contemporary aquatic environments indicates that they have developed unique and effective mechanisms to cope with the rapid and considerable fluctuations that characterize these environments. In view of their evolutionary history from a secondary endosymbiosis, inter-organellar regulation of biochemical activities may be of particular relevance. Diatom mitochondrial alternative oxidase (AOX) is believed to play a significant role in supplying chloroplasts with ATP produced in the mitochondria. Using the model diatom Phaeodactylum tricornutum we generated AOX knockdown lines, and followed sensitivity to stressors, photosynthesis and transcriptome and metabolome profiles of wild-type and knockdown lines. We show here that expression of the AOX gene is upregulated by various stresses including H2 O2 , heat, high light illumination, and iron or nitrogen limitation. AOX knockdown results in hypersensitivity to stress. Knockdown lines also show significantly reduced photosynthetic rates and their chloroplasts are more oxidized. Comparisons of transcriptome and metabolome profiles suggest a strong impact of AOX activity on gene expression, which is carried through to the level of the metabolome. Our data provide evidence for the involvement of mitochondrial AOX in processes central to the cell biology of diatoms, revealing that cross-talk between mitochondria and chloroplasts is crucial for maintaining sensitivity to changing environments.
Collapse
Affiliation(s)
- Omer Murik
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Leila Tirichine
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Judit Prihoda
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Yann Thomas
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Wagner L Araújo
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Andrew E Allen
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, 92037, USA
- Integrative Oceanography Division, Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, 92037, USA
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Chris Bowler
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| |
Collapse
|
60
|
Affiliation(s)
- Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University and Center for Plant Systems Biology, VIB, Technologiepark 927, Gent 9052, Belgium.
| | - Christine H Foyer
- School of Biology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK.
| | - Giovanni E Mann
- King's British Heart Foundation of Research Excellence, School of Cardiovascular Medicine & Sciences, King's College London, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|