51
|
Therapeutic and preventive properties of honey and its bioactive compounds in cancer: an evidence-based review. Nutr Res Rev 2019; 33:50-76. [PMID: 31791437 DOI: 10.1017/s0954422419000192] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Despite the much improved therapeutic approaches for cancer treatment that have been developed over the past 50 years, cancer remains a major cause of mortality globally. Considerable epidemiological and experimental evidence has demonstrated an association between ingestion of food and nutrients with either an increased risk for cancer or its prevention. There is rising interest in exploring agents derived from natural products for chemoprevention or for therapeutic purposes. Honey is rich in nutritional and non-nutritional bioactive compounds, as well as in natural antioxidants, and its potential beneficial function in human health is becoming more evident. A large number of studies have addressed the anti-cancer effects of different types of honey and their phenolic compounds using in vitro and in vivo cancer models. The reported findings affirm that honey is an agent able to modulate oxidative stress and has anti-proliferative, pro-apoptotic, anti-inflammatory, immune-modulatory and anti-metastatic properties. However, despite its reported anti-cancer activities, very few clinical studies have been undertaken. In the present review, we summarise the findings from different experimental approaches, including in vitro cell cultures, preclinical animal models and clinical studies, and provide an overview of the bioactive profile and bioavailability of the most commonly studied honey types, with special emphasis on the chemopreventive and therapeutic properties of honey and its major phenolic compounds in cancer. The implications of these findings as well as the future prospects of utilising honey to fight cancer will be discussed.
Collapse
|
52
|
Zhao H, Cheng N, Zhou W, Chen S, Wang Q, Gao H, Xue X, Wu L, Cao W. Honey Polyphenols Ameliorate DSS‐Induced Ulcerative Colitis via Modulating Gut Microbiota in Rats. Mol Nutr Food Res 2019; 63:e1900638. [DOI: 10.1002/mnfr.201900638] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/08/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Haoan Zhao
- Collage of Food Science and TechnologyNorthwest University 229 North TaiBai Road Xi'an 710069 China
- School of Chemical EngineeringNorthwest University 229 North TaiBai Road Xi'an 710069 China
| | - Ni Cheng
- Collage of Food Science and TechnologyNorthwest University 229 North TaiBai Road Xi'an 710069 China
| | - Wenqi Zhou
- Collage of Food Science and TechnologyNorthwest University 229 North TaiBai Road Xi'an 710069 China
| | - Sinan Chen
- Collage of Food Science and TechnologyNorthwest University 229 North TaiBai Road Xi'an 710069 China
| | - Qian Wang
- School of Chemical EngineeringNorthwest University 229 North TaiBai Road Xi'an 710069 China
| | - Hui Gao
- Collage of Food Science and TechnologyNorthwest University 229 North TaiBai Road Xi'an 710069 China
| | - Xiaofeng Xue
- Institute of Apicultural ResearchChinese Academy of Agricultural Sciences Beijing 100093 China
| | - Liming Wu
- Institute of Apicultural ResearchChinese Academy of Agricultural Sciences Beijing 100093 China
| | - Wei Cao
- Collage of Food Science and TechnologyNorthwest University 229 North TaiBai Road Xi'an 710069 China
| |
Collapse
|
53
|
Sanad MF, Shalan AE, Bazid SM, Abu Serea ES, Hashem EM, Nabih S, Ahsan MA. A graphene gold nanocomposite-based 5-FU drug and the enhancement of the MCF-7 cell line treatment. RSC Adv 2019; 9:31021-31029. [PMID: 35529359 PMCID: PMC9072570 DOI: 10.1039/c9ra05669f] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 08/31/2019] [Indexed: 11/21/2022] Open
Abstract
There is no doubt that cancer is now one of the most formidable diseases in the world; despite all the efforts and research, common treatment routes, including chemotherapy, photodynamic therapy, and photothermal therapy, suffer from different limitations in terms of their efficiency and performance. For this reason, different strategies are being explored to improve the efficiency of the traditional drugs reported to date. In this study, we have redirected the function of one of these drugs (5-fluorouracil, 5-FU) by combining it with a graphene-gold nanocomposite in different molar ratios that has been exceedingly used for biological research development. The high activity of the graphene-gold material enables it to produce reactive oxygen and ions, which display good anticancer and antioxidant activity through the scavenging of the DPPH, SOD and GP x radicals; in addition, different characterizations have been used to confirm the structure and morphology of the obtained samples. Highly potent cytotoxicity against the MCF-7 cells was achieved with the drug combination containing the nanocomposite. All the results, including those obtained via cytometry, indicate that the combination of 5% graphene-gold nanocomposites with 5-FU exhibits a higher antitumor impact and more drug stability than pure 5-FU.
Collapse
Affiliation(s)
- Mohamed Fathi Sanad
- Basic Science Departments, Modern Academy for Engineering and Technology Maadi Egypt
- The University of Texas at El Paso 500 W University Ave El Paso TX 79968 USA
| | - Ahmed Esmail Shalan
- Central Metallurgical Research and Development Institute (CMRDI) P.O. Box 87 Helwan Cairo 11421 Egypt
| | - Shereen Magdy Bazid
- Departments of Biochemistry, Faculty of Science, Mansoura University Mansoura Egypt
| | - Esraa Samy Abu Serea
- Chemistry & Biochemistry Department, Faculty of Science, Cairo University Cairo Egypt
| | - Elhussein M Hashem
- Chemistry Department, Faculty of Science, Ain-Shams University Abbasia Cairo Egypt
| | - Shimaa Nabih
- Basic Science Departments, Modern Academy for Engineering and Technology Maadi Egypt
| | - Md Ariful Ahsan
- The University of Texas at El Paso 500 W University Ave El Paso TX 79968 USA
| |
Collapse
|
54
|
Adefegha SA, Oyeleye SI, Akintemi A, Okeke BM, Oboh G. Thyme (Thymus vulgaris) leaf extract modulates purinergic and cholinergic enzyme activities in the brain homogenate of 5-fluorouracil administered rats. Drug Chem Toxicol 2019; 43:43-50. [DOI: 10.1080/01480545.2019.1659310] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Stephen Adeniyi Adefegha
- Functional Food and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Sunday Idowu Oyeleye
- Functional Food and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
- Department of Biomedical Technology, Federal University of Technology, Akure, Nigeria
| | - Abimbola Akintemi
- Functional Food and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Bathlomew Maduka Okeke
- Functional Food and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Ganiyu Oboh
- Functional Food and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
55
|
Zhang T, Zheng P, Shen X, Shao R, Wang B, Shen H, Zhang J, Xia Y, Zou P. Curcuminoid WZ26, a TrxR1 inhibitor, effectively inhibits colon cancer cell growth and enhances cisplatin-induced cell death through the induction of ROS. Free Radic Biol Med 2019; 141:93-102. [PMID: 31176737 DOI: 10.1016/j.freeradbiomed.2019.06.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/02/2019] [Accepted: 06/05/2019] [Indexed: 12/24/2022]
Abstract
Colon cancer is one of the leading causes of cancer-related deaths. Chemotherapy has improved survival in patients with colon cancer, but has a narrow therapeutic window due to its toxicity. Therefore, novel therapies for colon cancer are urgently needed. We previously developed a curcumin analog WZ26 as an anti-cancer agent in pre-clinical evaluation. In the present study, we further explored the mechanism and target of WZ26 in colon cancer cells. Our results show that WZ26 targets thioredoxin reductase 1 (TrxR1) and increases cellular reactive oxygen species (ROS) levels, which results in the activation of JNK signaling pathway in human colon cancer cells. Furthermore, we found that WZ26 significantly enhances cisplatin-induced cell growth inhibition in colon cancer cells. WZ26 combined with cisplatin markedly increases the accumulation of ROS, and thereby induces DNA damage and activation of JNK signaling pathway. Pretreatment with antioxidant N-acetyl-l-cysteine (NAC) significantly abrogates the combined treatment-induced ROS generation, DNA damage and cell death. In addition, the activation of JNK signaling pathway prompted by WZ26 and cisplatin was also reversed by NAC pretreatment. In vivo, WZ26 combined with cisplatin significantly inhibits tumor growth in a colon cancer xenograft model. Remarkably, WZ26 attenuates the body weight loss evoked by cisplatin treatment. This study discloses a previously unrecognized mechanism underlying the biological activity of WZ26, and reveals that WZ26 and cisplatin combinational treatment might potentially become a more effective regimen in colon cancer therapy.
Collapse
Affiliation(s)
- Tingting Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Peisen Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xin Shen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Rongrong Shao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Bin Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Huanpei Shen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jingjing Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yiqun Xia
- Department of Digestive Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Peng Zou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
56
|
Strawberry tree honey as a new potential functional food. Part 2: Strawberry tree honey increases ROS generation by suppressing Nrf2-ARE and NF-кB signaling pathways and decreases metabolic phenotypes and metastatic activity in colon cancer cells. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.04.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
57
|
Afrin S, Giampieri F, Cianciosi D, Pistollato F, Ansary J, Pacetti M, Amici A, Reboredo-Rodríguez P, Simal-Gandara J, Quiles JL, Forbes-Hernández TY, Battino M. Strawberry tree honey as a new potential functional food. Part 1: Strawberry tree honey reduces colon cancer cell proliferation and colony formation ability, inhibits cell cycle and promotes apoptosis by regulating EGFR and MAPKs signaling pathways. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.04.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
58
|
Kapinova A, Kubatka P, Liskova A, Baranenko D, Kruzliak P, Matta M, Büsselberg D, Malicherova B, Zulli A, Kwon TK, Jezkova E, Blahutova D, Zubor P, Danko J. Controlling metastatic cancer: the role of phytochemicals in cell signaling. J Cancer Res Clin Oncol 2019; 145:1087-1109. [PMID: 30903319 DOI: 10.1007/s00432-019-02892-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/12/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE Cancer is a serious health issue and a leading cause of death worldwide. Most of the cancer patients (approximately 90%) do not die from the consequences of the primary tumor development, but due to a heavily treatable metastatic invasion. During the lengthy multistep process of carcinogenesis, there are a lot of opportunities available to reverse or slow down the tissue invasion or the process of tumor metastasis formation. RESULTS Current research has brought many promising results from anti-metastatic experimental studies, and has shown that chemoprevention by natural or semisynthetic phytochemicals with plethora of biological activities could be one of the potentially effective options in the fight against this problem. However, there is a lack of clinical trials to confirm these findings. In this review, we focused on summarization and discussion of the general features of metastatic cancer, and recent preclinical and clinical studies dealing with anti-metastatic potential of various plant-derived compounds. CONCLUSIONS Based on our findings, we can conclude and confirm our hypothesis that phytochemicals with pleiotropic anticancer effects can be very useful in retarding and/or reversing the metastasis process, and can also be used to prevent tissue invasion and metastases. But, further studies in this area are certainly necessary and desirable.
Collapse
Affiliation(s)
- Andrea Kapinova
- Biomedical Center Martin, Division of Oncology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Peter Kubatka
- Biomedical Center Martin, Division of Oncology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia.
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01, Martin, Slovakia.
| | - Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine and Martin University Hospital, Comenius University in Bratislava, Martin, Slovakia
| | - Denis Baranenko
- International Research Centre "Biotechnologies of the Third Millennium", ITMO University, Saint-Petersburg, Russian Federation
| | - Peter Kruzliak
- Department of Internal Medicine, Brothers of Mercy Hospital, Polní 3, 639 00, Brno, Czech Republic.
- 2nd Department of Surgery, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
- St. Anne's University Hospital, Brno, Czech Republic.
| | - Milan Matta
- Department of Gynaecology and Obstetrics, Faculty of Medicine, Pavol Jozef Safarik University and University Hospital, Kosice, Slovakia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell College of Medicine, Education City, Qatar Foundation, Doha, Qatar
| | - Bibiana Malicherova
- Biomedical Center Martin, Division of Oncology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Anthony Zulli
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Australia
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu, South Korea
| | - Eva Jezkova
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Dana Blahutova
- Department of Biology and Ecology, Faculty of Education, Catholic University in Ruzomberok, Ruzomberok, Slovakia
| | - Pavol Zubor
- Biomedical Center Martin, Division of Oncology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine and Martin University Hospital, Comenius University in Bratislava, Martin, Slovakia
| | - Jan Danko
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine and Martin University Hospital, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
59
|
Wang Y, Lin J, Tian J, Si X, Jiao X, Zhang W, Gong E, Li B. Blueberry Malvidin-3-galactoside Suppresses Hepatocellular Carcinoma by Regulating Apoptosis, Proliferation, and Metastasis Pathways In Vivo and In Vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:625-636. [PMID: 30586992 DOI: 10.1021/acs.jafc.8b06209] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Anthocyanin, a natural antioxidant, is reported to have cytotoxicity against cancer cells; however, the mechanism remains unclear. The aim of the present study was to investigate the mechanism by which malvidin-3-galactoside (M3G), the prominent anthocyanin in blueberry, suppresses the development of hepatocellular carcinoma. In vitro, M3G suppressed the proliferation, polarization, migration, and invasion activities of HepG2 cells by regulating the protein expression of cyclin D1, cyclin B, cyclin E, caspase-3, cleaved caspase-3, Bax, p-JNK, and p-p38, activating phosphatase and tensin homologue deleted on chromosome 10 (PTEN), accompanied by a decrease in the p-AKT level, and lowering the protein expression levels of MMP-2 and MMP-9. In vivo, M3G promoted the apoptosis of liver tumor cells, as determined by immunohistochemistry (cleaved caspase-3, Ki-67, PTEN, and p-AKT), a terminal deoxynucleotidyl transferase dUTP nick end labeling assay, and hematoxylin-eosin staining. Overall, these results suggest that M3G, as an adjuvant ingredient or nutritional supplement, may be beneficial for liver cancer prevention and the modulatory mechanism seems to be associated with inhibition of proliferation, apoptosis, migration, and invasion-related pathways.
Collapse
Affiliation(s)
- Yuehua Wang
- College of Food Science , Shenyang Agricultural University , 120 Dongling Road , Shenhe District, Shenyang , Liaoning 100866 , People's Republic of China
| | - Jie Lin
- College of Food Science , Shenyang Agricultural University , 120 Dongling Road , Shenhe District, Shenyang , Liaoning 100866 , People's Republic of China
| | - Jinlong Tian
- College of Food Science , Shenyang Agricultural University , 120 Dongling Road , Shenhe District, Shenyang , Liaoning 100866 , People's Republic of China
| | - Xu Si
- College of Food Science , Shenyang Agricultural University , 120 Dongling Road , Shenhe District, Shenyang , Liaoning 100866 , People's Republic of China
| | - Xinyao Jiao
- College of Food Science , Shenyang Agricultural University , 120 Dongling Road , Shenhe District, Shenyang , Liaoning 100866 , People's Republic of China
| | - Weijia Zhang
- College of Food Science , Shenyang Agricultural University , 120 Dongling Road , Shenhe District, Shenyang , Liaoning 100866 , People's Republic of China
| | - Ersheng Gong
- College of Food Science , Shenyang Agricultural University , 120 Dongling Road , Shenhe District, Shenyang , Liaoning 100866 , People's Republic of China
| | - Bin Li
- College of Food Science , Shenyang Agricultural University , 120 Dongling Road , Shenhe District, Shenyang , Liaoning 100866 , People's Republic of China
| |
Collapse
|
60
|
|