51
|
Mohrin M. Mito-managing ROS & redox to reboot the immune system: Tapping mitochondria & redox management to extend the reach of hematopoietic stem cell transplantation. Free Radic Biol Med 2021; 165:38-53. [PMID: 33486089 DOI: 10.1016/j.freeradbiomed.2021.01.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/31/2022]
Abstract
Hematopoietic stem cells (HSCs) are responsible for life-long production of blood and immune cells. HSC transplantation (HSCT) is the original cell therapy which can cure hematological disorders but also has the potential to treat other diseases if technical and safety barriers are overcome. To maintain homeostatic hematopoiesis or to restore hematopoiesis during transplantation HSCs must perform both self-renewal, replication of themselves, and differentiation, generation of mature blood and immune cells. These are just two of the cell fate choices HSCs have; the transitional phases where HSCs undergo these cell fate decisions are regulated by reduction-oxidation (redox) signaling, mitochondrial activity, and cellular metabolism. Recent studies revealed that mitochondria, a key source of redox signaling components, are central to HSC cell fate decisions. Here we highlight how mitochondria serve as hubs in HSCs to manage redox signaling and metabolism and thus guide HSC fate choices. We focus on how mitochondrial activity is modulated by their clearance, biogenesis, dynamics, distribution, and quality control in HSCs. We also note how modulating mitochondria in HSCs can help overcome technical barriers limiting further use of HSCT.
Collapse
Affiliation(s)
- Mary Mohrin
- Immunology Discovery, Genentech, Inc. 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
52
|
Wong HS, Mezera V, Dighe P, Melov S, Gerencser AA, Sweis RF, Pliushchev M, Wang Z, Esbenshade T, McKibben B, Riedmaier S, Brand MD. Superoxide produced by mitochondrial site I Q inactivates cardiac succinate dehydrogenase and induces hepatic steatosis in Sod2 knockout mice. Free Radic Biol Med 2021; 164:223-232. [PMID: 33421588 DOI: 10.1016/j.freeradbiomed.2020.12.447] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022]
Abstract
Superoxide produced by mitochondria has been implicated in numerous physiologies and pathologies. Eleven different mitochondrial sites that can produce superoxide and/or hydrogen peroxide (O2.-/H2O2) have been identified in vitro, but little is known about their contributions in vivo. We introduce novel variants of S1QELs and S3QELs (small molecules that suppress O2.-/H2O2 production specifically from mitochondrial sites IQ and IIIQo, respectively, without compromising bioenergetics), that are suitable for use in vivo. When administered by intraperitoneal injection, they achieve total tissue concentrations exceeding those that are effective in vitro. We use them to study the engagement of sites IQ and IIIQo in mice lacking functional manganese-superoxide dismutase (SOD2). Lack of SOD2 is expected to elevate superoxide levels in the mitochondrial matrix, and leads to severe pathologies and death about 8 days after birth. Compared to littermate wild-type mice, 6-day-old Sod2-/- mice had significantly lower body weight, lower heart succinate dehydrogenase activity, and greater hepatic lipid accumulation. These pathologies were ameliorated by treatment with a SOD/catalase mimetic, EUK189, confirming previous observations. A 3-day treatment with S1QEL352 decreased the inactivation of cardiac succinate dehydrogenase and hepatic steatosis in Sod2-/- mice. S1QEL712, which has a distinct chemical structure, also decreased hepatic steatosis, confirming that O2.- derived specifically from mitochondrial site IQ is a significant driver of hepatic steatosis in Sod2-/- mice. These findings also demonstrate the ability of these new S1QELs to suppress O2.- production in the mitochondrial matrix in vivo. In contrast, suppressing site IIIQo using S3QEL941 did not protect, suggesting that site IIIQo does not contribute significantly to mitochondrial O2.- production in the hearts or livers of Sod2-/- mice. We conclude that the novel S1QELs are effective in vivo, and that site IQ runs in vivo and is a significant driver of pathology in Sod2-/- mice.
Collapse
Affiliation(s)
- Hoi-Shan Wong
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Vojtech Mezera
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Pratiksha Dighe
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Simon Melov
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Akos A Gerencser
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Ramzi F Sweis
- AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA
| | | | - Zhi Wang
- AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA
| | - Tim Esbenshade
- AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA
| | - Bryan McKibben
- AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA
| | | | - Martin D Brand
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA.
| |
Collapse
|
53
|
Immune cell - produced ROS and their impact on tumor growth and metastasis. Redox Biol 2021; 42:101891. [PMID: 33583736 PMCID: PMC8113043 DOI: 10.1016/j.redox.2021.101891] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 12/19/2022] Open
Abstract
Reactive oxygen species (ROS) are derivatives of molecular oxygen (O2) involved in various physiological and pathological processes. In immune cells, ROS are mediators of pivotal functions such as phagocytosis, antigen presentation and recognition, cytolysis as well as phenotypical differentiation. Furthermore, ROS exert immunosuppressive effects on T and natural killer (NK) cells which is of particular importance in the so-called “tumor microenvironment” (TME) of solid tumors. This term describes the heterogenous group of non-malignant cells including tumor-associated fibroblasts and immune cells, vascular cells, bacteria etc. by which cancer cells are surrounded and with whom they engage in functional crosstalk. Importantly, pharmacological targeting of the TME and, specifically, tumor-associated immune cells utilizing immune checkpoint inhibitors - monoclonal antibodies that mitigate immunosuppression - turned out to be a major breakthrough in the treatment of malignant tumors. In this review, we aim to give an overview of the role that ROS produced in tumor-associated immune cells play during initiation, progression and metastatic outgrowth of solid cancers. Finally, we summarize findings on how ROS in the TME could be targeted therapeutically to increase the efficacy of cancer immunotherapy and discuss factors determining therapeutic success of redox modulation in tumors.
Collapse
|
54
|
Dong A, Huo J, Yan J, Dong A. Oxidative stress in liver of turtle Mauremys reevesii caused by cadmium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:6405-6410. [PMID: 32989702 DOI: 10.1007/s11356-020-11017-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
The research was designed to examine oxidative stress of the liver of turtle Mauremys reevesii caused by cadmium (Cd). Turtles were injected intraperitoneally with cadmium at the concentration of 7.5, 15, and 30 mg/kg, and 5 turtles were taken from each group after exposure for 1 week (1 w), 2 weeks (2 w), and 3 weeks (3 w). The activities of SOD and CAT as well as the contents of GSH and MDA in liver tissues were detected by using a kit. The results showed that the difference between the control group and the Cd-treated group was statistically significant with the increase of Cd concentration and the prolongation of exposure time, which suggested that Cd caused oxidative stress on the liver of turtles.
Collapse
Affiliation(s)
- Aiguo Dong
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Junfeng Huo
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China.
| | - Juanjuan Yan
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Ailing Dong
- Bureau of agriculture and rural affairs of Qianan, Tangshan, Hebei Province, China
| |
Collapse
|
55
|
Hass DT, Barnstable CJ. Uncoupling proteins in the mitochondrial defense against oxidative stress. Prog Retin Eye Res 2021; 83:100941. [PMID: 33422637 DOI: 10.1016/j.preteyeres.2021.100941] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/28/2020] [Accepted: 01/03/2021] [Indexed: 02/06/2023]
Abstract
Oxidative stress is a major component of most major retinal diseases. Many extrinsic anti-oxidative strategies have been insufficient at counteracting one of the predominant intrinsic sources of reactive oxygen species (ROS), mitochondria. The proton gradient across the inner mitochondrial membrane is a key driving force for mitochondrial ROS production, and this gradient can be modulated by members of the mitochondrial uncoupling protein (UCP) family. Of the UCPs, UCP2 shows a widespread distribution and has been shown to uncouple oxidative phosphorylation, with concomitant decreases in ROS production. Genetic studies using transgenic and knockout mice have documented the ability of increased UCP2 activity to provide neuroprotection in models of a number of diseases, including retinal diseases, indicating that it is a strong candidate for a therapeutic target. Molecular studies have identified the structural mechanism of action of UCP2 and have detailed the ways in which its expression and activity can be controlled at the transcriptional, translational and posttranslational levels. These studies suggest a number of ways in control of UCP2 expression and activity can be used therapeutically for both acute and chronic conditions. The development of such therapeutic approaches will greatly increase the tools available to combat a broad range of serious retinal diseases.
Collapse
Affiliation(s)
- Daniel T Hass
- Department of Biochemistry, The University of Washington, Seattle, WA, 98109, USA
| | - Colin J Barnstable
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA.
| |
Collapse
|
56
|
de Castro JM, Assumpção JAF, Stein DJ, Toledo RS, da Silva LS, Caumo W, Carraro CC, da Rosa Araujo AS, Torres ILS. Nicotinamide riboside reduces cardiometabolic risk factors and modulates cardiac oxidative stress in obese Wistar rats under caloric restriction. Life Sci 2020; 263:118596. [PMID: 33080243 DOI: 10.1016/j.lfs.2020.118596] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/30/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022]
Abstract
AIMS NAD-based therapeutic strategies are encouraged against obesity and heart disease. Our study, therefore, aimed to investigate the effects of nicotinamide riboside (NR), isolated or combined with caloric restriction (CR), both approaches well-known for stimulating NAD levels, on adiposity parameters, cardiometabolic factors and cardiac oxidative stress in rats submitted to cafeteria diet (CAF). MAIN METHODS After 42 days of CAF-induced obesity (hypercaloric and ultra-processed foods common to humans), we examined the effects of oral administration of NR (400 mg/kg for 28 days), combined or not with CR (-62% kcal, for 28 days), on anthropometric, metabolic, tissue, and cardiac oxidative stress parameters in obese male Wistar rats. KEY FINDINGS In obese rats, treatment with NR alone mitigated final body weight gain, reduced adiposity (visceral and subcutaneous), improved insulin resistance, and decreased TG/HDL ratio and heart size. In cardiac OS, treatment with NR increased the antioxidant capacity via glutathione peroxidase and catalase enzymes (in rats under CR) as well as reduced the pro-oxidant complex NADPH oxidase (in obese and lean rats). Hyperglycemia, hypertriglyceridemia and elevated levels of TBARS in the heart were state-dependent adverse effects, induced by treatment with NR. SIGNIFICANCE This is the first study to report effects of nicotinamide riboside on cardiac oxidative stress in an obesity model. Nicotinamide riboside, a natural dietary compound, presented antiobesity effects and cardiometabolic benefits, in addition to positively modulating oxidative stress in the heart, in a state-dependent manner.
Collapse
Affiliation(s)
- Josimar Macedo de Castro
- Programa de Pós-Graduação em Ciências Biológicas (PPG): Farmacologia e Terapêutica - Instituto de Ciências Básicas da Saúde (ICBS) - Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-clínicas - Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| | - José Antônio Fagundes Assumpção
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-clínicas - Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina: Ciências Médicas - Faculdade de Medicina - UFRGS, Porto Alegre, RS, Brazil
| | - Dirson João Stein
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-clínicas - Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina: Ciências Médicas - Faculdade de Medicina - UFRGS, Porto Alegre, RS, Brazil
| | - Roberta Ströher Toledo
- Programa de Pós-Graduação em Ciências Biológicas (PPG): Farmacologia e Terapêutica - Instituto de Ciências Básicas da Saúde (ICBS) - Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-clínicas - Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| | - Lisiane Santos da Silva
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-clínicas - Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina: Ciências Médicas - Faculdade de Medicina - UFRGS, Porto Alegre, RS, Brazil
| | - Wolnei Caumo
- Programa de Pós-Graduação em Medicina: Ciências Médicas - Faculdade de Medicina - UFRGS, Porto Alegre, RS, Brazil
| | - Cristina Campos Carraro
- Laboratório de Fisiologia Cardiovascular e Espécies Reativas de Oxigênio, Departamento de Fisiologia - ICBS - UFRGS, Porto Alegre, RS, Brazil
| | - Alex Sander da Rosa Araujo
- Laboratório de Fisiologia Cardiovascular e Espécies Reativas de Oxigênio, Departamento de Fisiologia - ICBS - UFRGS, Porto Alegre, RS, Brazil
| | - Iraci L S Torres
- Programa de Pós-Graduação em Ciências Biológicas (PPG): Farmacologia e Terapêutica - Instituto de Ciências Básicas da Saúde (ICBS) - Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-clínicas - Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina: Ciências Médicas - Faculdade de Medicina - UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
57
|
Goncalves RLS, Schlame M, Bartelt A, Brand MD, Hotamışlıgil GS. Cardiolipin deficiency in Barth syndrome is not associated with increased superoxide/H 2 O 2 production in heart and skeletal muscle mitochondria. FEBS Lett 2020; 595:415-432. [PMID: 33112430 PMCID: PMC7894513 DOI: 10.1002/1873-3468.13973] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/29/2020] [Accepted: 10/11/2020] [Indexed: 12/11/2022]
Abstract
Barth syndrome (BTHS) is a rare X-linked genetic disorder caused by mutations in the gene encoding the transacylase tafazzin and characterized by loss of cardiolipin and severe cardiomyopathy. Mitochondrial oxidants have been implicated in the cardiomyopathy in BTHS. Eleven mitochondrial sites produce superoxide/hydrogen peroxide (H2 O2 ) at significant rates. Which of these sites generate oxidants at excessive rates in BTHS is unknown. Here, we measured the maximum capacity of superoxide/H2 O2 production from each site and the ex vivo rate of superoxide/H2 O2 production in the heart and skeletal muscle mitochondria of the tafazzin knockdown mice (tazkd) from 3 to 12 months of age. Despite reduced oxidative capacity, superoxide/H2 O2 production was indistinguishable between tazkd mice and wild-type littermates. These observations raise questions about the involvement of mitochondrial oxidants in BTHS pathology.
Collapse
Affiliation(s)
- Renata L S Goncalves
- Sabri Ülker Center for Metabolic Research and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Michael Schlame
- Departments of Anesthesiology and Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Alexander Bartelt
- Sabri Ülker Center for Metabolic Research and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
| | | | - Gökhan S Hotamışlıgil
- Sabri Ülker Center for Metabolic Research and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
58
|
Brand MD. Riding the tiger - physiological and pathological effects of superoxide and hydrogen peroxide generated in the mitochondrial matrix. Crit Rev Biochem Mol Biol 2020; 55:592-661. [PMID: 33148057 DOI: 10.1080/10409238.2020.1828258] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Elevated mitochondrial matrix superoxide and/or hydrogen peroxide concentrations drive a wide range of physiological responses and pathologies. Concentrations of superoxide and hydrogen peroxide in the mitochondrial matrix are set mainly by rates of production, the activities of superoxide dismutase-2 (SOD2) and peroxiredoxin-3 (PRDX3), and by diffusion of hydrogen peroxide to the cytosol. These considerations can be used to generate criteria for assessing whether changes in matrix superoxide or hydrogen peroxide are both necessary and sufficient to drive redox signaling and pathology: is a phenotype affected by suppressing superoxide and hydrogen peroxide production; by manipulating the levels of SOD2, PRDX3 or mitochondria-targeted catalase; and by adding mitochondria-targeted SOD/catalase mimetics or mitochondria-targeted antioxidants? Is the pathology associated with variants in SOD2 and PRDX3 genes? Filtering the large literature on mitochondrial redox signaling using these criteria highlights considerable evidence that mitochondrial superoxide and hydrogen peroxide drive physiological responses involved in cellular stress management, including apoptosis, autophagy, propagation of endoplasmic reticulum stress, cellular senescence, HIF1α signaling, and immune responses. They also affect cell proliferation, migration, differentiation, and the cell cycle. Filtering the huge literature on pathologies highlights strong experimental evidence that 30-40 pathologies may be driven by mitochondrial matrix superoxide or hydrogen peroxide. These can be grouped into overlapping and interacting categories: metabolic, cardiovascular, inflammatory, and neurological diseases; cancer; ischemia/reperfusion injury; aging and its diseases; external insults, and genetic diseases. Understanding the involvement of mitochondrial matrix superoxide and hydrogen peroxide concentrations in these diseases can facilitate the rational development of appropriate therapies.
Collapse
|
59
|
Dias Amoedo N, Dard L, Sarlak S, Mahfouf W, Blanchard W, Rousseau B, Izotte J, Claverol S, Lacombe D, Rezvani HR, Pierri CL, Rossignol R. Targeting Human Lung Adenocarcinoma with a Suppressor of Mitochondrial Superoxide Production. Antioxid Redox Signal 2020; 33:883-902. [PMID: 32475148 DOI: 10.1089/ars.2019.7892] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aims: REDOX signaling from reactive oxygen species (ROS) generated by the mitochondria (mitochondrial reactive oxygen species [mtROS]) has been implicated in cancer growth and survival. Here, we investigated the effect of 5-(4-methoxyphenyl)-3H-1,2-dithiole-3-thione (AOL), a recently characterized member of the new class of mtROS suppressors (S1QELs), on human lung adenocarcinoma proteome reprogramming, bioenergetics, and growth. Results: AOL reduced steady-state cellular ROS levels in human lung cancer cells without altering the catalytic activity of complex I. AOL treatment induced dose-dependent inhibition of lung cancer cell proliferation and triggered a reduction in tumor growth in vivo. Molecular investigations demonstrated that AOL reprogrammed the proteome of human lung cancer cells. In particular, AOL suppressed the determinants of the Warburg effect and increased the expression of the complex I subunit NDUFV1 which was also identified as AOL binding site using molecular modeling computer simulations. Comparison of the molecular changes induced by AOL and MitoTEMPO, an mtROS scavenger that is not an S1QEL, identified a core component of 217 proteins commonly altered by the two treatments, as well as drug-specific targets. Innovation: This study provides proof-of-concept data on the anticancer effect of AOL on mouse orthotopic human lung tumors. A unique dataset on proteomic reprogramming by AOL and MitoTEMPO is also provided. Lastly, our study revealed the repression of NDUFV1 by S1QEL AOL. Conclusion: Our findings demonstrate the preclinical anticancer properties of S1QEL AOL and delineate its mode of action on REDOX and cancer signaling.
Collapse
Affiliation(s)
- Nivea Dias Amoedo
- CELLOMET, Functional Genomics Center (CGFB), Bordeaux, France.,Bordeaux University, Bordeaux, France.,INSERM U1211, University of Bordeaux, Bordeaux, France
| | - Laetitia Dard
- CELLOMET, Functional Genomics Center (CGFB), Bordeaux, France.,Bordeaux University, Bordeaux, France.,INSERM U1211, University of Bordeaux, Bordeaux, France
| | - Saharnaz Sarlak
- Bordeaux University, Bordeaux, France.,INSERM U1211, University of Bordeaux, Bordeaux, France
| | - Walid Mahfouf
- Bordeaux University, Bordeaux, France.,Inserm, BMGIC, UMR 1035, University of Bordeaux, Bordeaux, France
| | - Wendy Blanchard
- CELLOMET, Functional Genomics Center (CGFB), Bordeaux, France.,Bordeaux University, Bordeaux, France.,INSERM U1211, University of Bordeaux, Bordeaux, France
| | - Benoît Rousseau
- Bordeaux University, Bordeaux, France.,Transgenic Animal Core Facility, University of Bordeaux, Bordeaux, France
| | - Julien Izotte
- Bordeaux University, Bordeaux, France.,Transgenic Animal Core Facility, University of Bordeaux, Bordeaux, France
| | - Stéphane Claverol
- Bordeaux University, Bordeaux, France.,Proteomics Core Facility, Functional Genomics Center (CGFB), Bordeaux, France
| | - Didier Lacombe
- Bordeaux University, Bordeaux, France.,INSERM U1211, University of Bordeaux, Bordeaux, France.,CHU Bordeaux, Haut-Lévèque Hospital, Thoracic Surgery, Bordeaux, France
| | - Hamid Reza Rezvani
- Bordeaux University, Bordeaux, France.,Inserm, BMGIC, UMR 1035, University of Bordeaux, Bordeaux, France
| | - Ciro Leonardo Pierri
- Laboratory of Biochemistry and Molecular Biology, University of Bari, Bari, Italy
| | - Rodrigue Rossignol
- CELLOMET, Functional Genomics Center (CGFB), Bordeaux, France.,Bordeaux University, Bordeaux, France.,INSERM U1211, University of Bordeaux, Bordeaux, France
| |
Collapse
|
60
|
Fang J, Wong HS, Brand MD. Production of superoxide and hydrogen peroxide in the mitochondrial matrix is dominated by site I Q of complex I in diverse cell lines. Redox Biol 2020; 37:101722. [PMID: 32971363 PMCID: PMC7511732 DOI: 10.1016/j.redox.2020.101722] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 12/21/2022] Open
Abstract
Understanding how mitochondria contribute to cellular oxidative stress and drive signaling and disease is critical, but quantitative assessment is difficult. Our previous studies of cultured C2C12 cells used inhibitors of specific sites of superoxide and hydrogen peroxide production to show that mitochondria generate about half of the hydrogen peroxide released by the cells, and site IQ of respiratory complex I produces up to two thirds of the superoxide and hydrogen peroxide generated in the mitochondrial matrix. Here, we used the same approach to measure the engagement of these sites in seven diverse cell lines to determine whether this pattern is specific to C2C12 cells, or more general. These diverse cell lines covered primary, immortalized, and cancerous cells, from seven tissues (liver, cervix, lung, skin, neuron, heart, bone) of three species (human, rat, mouse). The rate of appearance of hydrogen peroxide in the extracellular medium spanned a 30-fold range from HeLa cancer cells (3 pmol/min/mg protein) to AML12 liver cells (84 pmol/min/mg protein). The mean contribution of identified mitochondrial sites to this extracellular hydrogen peroxide signal was 30 ± 7% SD; the mean contribution of NADPH oxidases was 60 ± 14%. The relative contributions of different sites in the mitochondrial electron transport chain were broadly similar in all seven cell types (and similar to published results for C2C12 cells). 70 ± 4% of identified superoxide/hydrogen peroxide generation in the mitochondrial matrix was from site IQ; 30 ± 4% was from site IIIQo. We conclude that although absolute rates vary considerably, the relative contributions of different sources of hydrogen peroxide production are similar in nine diverse cell types under unstressed conditions in vitro. Identified mitochondrial sites account for one third of total cellular hydrogen peroxide production (half each from sites IQ and IIIQo); in the mitochondrial matrix the majority (two thirds) of superoxide/hydrogen peroxide is from site IQ.
Collapse
Affiliation(s)
- Jingqi Fang
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA.
| | - Hoi-Shan Wong
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA.
| | - Martin D Brand
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA.
| |
Collapse
|
61
|
GKT136901 protects primary human brain microvascular endothelial cells against methamphetamine-induced blood-brain barrier dysfunction. Life Sci 2020; 256:117917. [DOI: 10.1016/j.lfs.2020.117917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/30/2020] [Accepted: 06/03/2020] [Indexed: 01/01/2023]
|
62
|
Choi YH. Trans-cinnamaldehyde protects C2C12 myoblasts from DNA damage, mitochondrial dysfunction and apoptosis caused by oxidative stress through inhibiting ROS production. Genes Genomics 2020; 43:303-312. [PMID: 32851512 DOI: 10.1007/s13258-020-00987-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/12/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Oxidative stress-induced myoblast damage is one of the major causes of skeletal muscle loss associated with inhibition of myogenic differentiation and muscle dysfunction. Trans-cinnamaldehyde (tCA), the most common essential oil constituent in cinnamon, is known to possess strong anti-oxidant activity. However, it has not been determined whether tCA can protect myoblasts from oxidative damage. OBJECTIVES The aim of this study was to investigate the protective effect of tCA against oxidative stress-induced damage in mouse myoblast C2C12 cells. METHODS To examine the efficacy of tCA to protect against oxidative damage, cell viability, morphological changes, DNA damage, mitochondrial membrane potential (MMP) analysis, reactive oxygen species (ROS) generation, and Western blotting were applied. RESULTS tCA suppressed hydrogen peroxide (H2O2)-induced growth inhibition and DNA damage by blocking abnormal ROS accumulation. In addition, tCA attenuated apoptosis by suppressing loss of MMP and cytosolic release of cytochrome c, increasing the rate of Bcl-2/Bax expression and reducing the activity of caspase-3 in H2O2-stimulated cells, suggesting that tCA protected C2C12 cells from mitochondria-mediated apoptosis caused by oxidative stress. CONCLUSION The results showed that tCA may be useful as a potential treatment for the prevention and treatment of various oxidative stress-related muscle disorders in the future.
Collapse
Affiliation(s)
- Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan, 47340, Republic of Korea. .,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, 47227, Republic of Korea.
| |
Collapse
|
63
|
Voituron Y, Boël M, Roussel D. Mitochondrial threshold for H 2O 2 release in skeletal muscle of mammals. Mitochondrion 2020; 54:85-91. [PMID: 32738356 DOI: 10.1016/j.mito.2020.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/08/2020] [Accepted: 07/27/2020] [Indexed: 11/25/2022]
Abstract
The aim of the study was to evaluate the interplay between mitochondrial respiration and H2O2 release during the transition from basal non-phosphorylating to maximal phosphorylating states. We conducted a large scale comparative study of mitochondrial oxygen consumption, H2O2 release and electron leak (% H2O2/O) in skeletal muscle mitochondria isolated from mammal species ranging from 7 g to 500 kg. Mitochondrial fluxes were measured at different steady state rates in presence of pyruvate, malate, and succinate as respiratory substrates. Every species exhibited a burst of H2O2 release from skeletal muscle mitochondria at a low rate of oxidative phosphorylation, essentially once the activity of mitochondrial oxidative phosphorylation reached 26% of the maximal respiration. This threshold for ROS generation thus appears as a general characteristic of skeletal muscle mitochondria in mammals. These findings may have implications in situations promoting succinate accumulation within mitochondria, such as ischemia or hypoxia.
Collapse
Affiliation(s)
- Yann Voituron
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622 Villeurbanne, France.
| | - Mélanie Boël
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622 Villeurbanne, France
| | - Damien Roussel
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622 Villeurbanne, France
| |
Collapse
|
64
|
Mason SA, Trewin AJ, Parker L, Wadley GD. Antioxidant supplements and endurance exercise: Current evidence and mechanistic insights. Redox Biol 2020; 35:101471. [PMID: 32127289 PMCID: PMC7284926 DOI: 10.1016/j.redox.2020.101471] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 01/07/2023] Open
Abstract
Antioxidant supplements are commonly consumed by endurance athletes to minimize exercise-induced oxidative stress, with the intention of enhancing recovery and improving performance. There are numerous commercially available nutritional supplements that are targeted to athletes and health enthusiasts that allegedly possess antioxidant properties. However, most of these compounds are poorly investigated with respect to their in vivo redox activity and efficacy in humans. Therefore, this review will firstly provide a background to endurance exercise-related redox signalling and the subsequent adaptations in skeletal muscle and vascular function. The review will then discuss commonly available compounds with purported antioxidant effects for use by athletes. N-acetyl cysteine may be of benefit over the days prior to an endurance event; while chronic intake of combined 1000 mg vitamin C + vitamin E is not recommended during periods of heavy training associated with adaptations in skeletal muscle. Melatonin, vitamin E and α-lipoic acid appear effective at decreasing markers of exercise-induced oxidative stress. However, evidence on their effects on endurance performance are either lacking or not supportive. Catechins, anthocyanins, coenzyme Q10 and vitamin C may improve vascular function, however, evidence is either limited to specific sub-populations and/or does not translate to improved performance. Finally, additional research should clarify the potential benefits of curcumin in improving muscle recovery post intensive exercise; and the potential hampering effects of astaxanthin, selenium and vitamin A on skeletal muscle adaptations to endurance training. Overall, we highlight the lack of supportive evidence for most antioxidant compounds to recommend to athletes.
Collapse
Affiliation(s)
- Shaun A Mason
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Adam J Trewin
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Lewan Parker
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Glenn D Wadley
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia.
| |
Collapse
|
65
|
Cadmium-Induced Oxidative Stress: Focus on the Central Nervous System. Antioxidants (Basel) 2020; 9:antiox9060492. [PMID: 32516892 PMCID: PMC7346204 DOI: 10.3390/antiox9060492] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/22/2020] [Accepted: 06/02/2020] [Indexed: 12/18/2022] Open
Abstract
Cadmium (Cd), a category I human carcinogen, is a well-known widespread environmental pollutant. Chronic Cd exposure affects different organs and tissues, such as the central nervous system (CNS), and its deleterious effects can be linked to indirect reactive oxygen species (ROS) generation. Since Cd is predominantly present in +2 oxidation state, it can interplay with a plethora of channels and transporters in the cell membrane surface in order to enter the cells. Mitochondrial dysfunction, ROS production, glutathione depletion and lipid peroxidation are reviewed in order to better characterize the Cd-elicited molecular pathways. Furthermore, Cd effects on different CNS cell types have been highlighted to better elucidate its role in neurodegenerative disorders. Indeed, Cd can increase blood-brain barrier (BBB) permeability and promotes Cd entry that, in turn, stimulates pericytes in maintaining the BBB open. Once inside the CNS, Cd acts on glial cells (astrocytes, microglia, oligodendrocytes) triggering a pro-inflammatory cascade that accounts for the Cd deleterious effects and neurons inducing the destruction of synaptic branches.
Collapse
|
66
|
Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol 2020; 21:363-383. [PMID: 32231263 DOI: 10.1038/s41580-020-0230-3] [Citation(s) in RCA: 2675] [Impact Index Per Article: 535.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2020] [Indexed: 02/07/2023]
Abstract
'Reactive oxygen species' (ROS) is an umbrella term for an array of derivatives of molecular oxygen that occur as a normal attribute of aerobic life. Elevated formation of the different ROS leads to molecular damage, denoted as 'oxidative distress'. Here we focus on ROS at physiological levels and their central role in redox signalling via different post-translational modifications, denoted as 'oxidative eustress'. Two species, hydrogen peroxide (H2O2) and the superoxide anion radical (O2·-), are key redox signalling agents generated under the control of growth factors and cytokines by more than 40 enzymes, prominently including NADPH oxidases and the mitochondrial electron transport chain. At the low physiological levels in the nanomolar range, H2O2 is the major agent signalling through specific protein targets, which engage in metabolic regulation and stress responses to support cellular adaptation to a changing environment and stress. In addition, several other reactive species are involved in redox signalling, for instance nitric oxide, hydrogen sulfide and oxidized lipids. Recent methodological advances permit the assessment of molecular interactions of specific ROS molecules with specific targets in redox signalling pathways. Accordingly, major advances have occurred in understanding the role of these oxidants in physiology and disease, including the nervous, cardiovascular and immune systems, skeletal muscle and metabolic regulation as well as ageing and cancer. In the past, unspecific elimination of ROS by use of low molecular mass antioxidant compounds was not successful in counteracting disease initiation and progression in clinical trials. However, controlling specific ROS-mediated signalling pathways by selective targeting offers a perspective for a future of more refined redox medicine. This includes enzymatic defence systems such as those controlled by the stress-response transcription factors NRF2 and nuclear factor-κB, the role of trace elements such as selenium, the use of redox drugs and the modulation of environmental factors collectively known as the exposome (for example, nutrition, lifestyle and irradiation).
Collapse
Affiliation(s)
- Helmut Sies
- Institute for Biochemistry and Molecular Biology I, Heinrich Heine University Düsseldorf, Düsseldorf, Germany. .,Leibniz Research Institute for Environmental Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Dean P Jones
- Department of Medicine, Emory University, Atlanta, GA, USA.
| |
Collapse
|
67
|
Mazat JP, Devin A, Ransac S. Modelling mitochondrial ROS production by the respiratory chain. Cell Mol Life Sci 2020; 77:455-465. [PMID: 31748915 PMCID: PMC11104992 DOI: 10.1007/s00018-019-03381-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/04/2019] [Accepted: 11/12/2019] [Indexed: 12/31/2022]
Abstract
ROS (superoxide and oxygen peroxide in this paper) play a dual role as signalling molecules and strong oxidizing agents leading to oxidative stress. Their production mainly occurs in mitochondria although they may have other locations (such as NADPH oxidase in particular cell types). Mitochondrial ROS production depends in an interweaving way upon many factors such as the membrane potential, the cell type and the respiratory substrates. Moreover, it is experimentally difficult to quantitatively assess the contribution of each potential site in the respiratory chain. To overcome these difficulties, mathematical models have been developed with different degrees of complexity in order to analyse different physiological questions ranging from a simple reproduction/simulation of experimental results to a detailed model of the possible mechanisms leading to ROS production. Here, we analyse experimental results concerning ROS production including results still under discussion. We then critically review the three models of ROS production in the whole respiratory chain available in the literature and propose some direction for future modelling work.
Collapse
Affiliation(s)
- Jean-Pierre Mazat
- UMR 5095, IBGC CNRS, 1 Rue Camille Saint-Saëns 33077, Bordeaux Cedex, France.
- Université de Bordeaux, 146 Rue Léo-Saignat, 33076, Bordeaux Cedex, France.
| | - Anne Devin
- UMR 5095, IBGC CNRS, 1 Rue Camille Saint-Saëns 33077, Bordeaux Cedex, France
| | - Stéphane Ransac
- UMR 5095, IBGC CNRS, 1 Rue Camille Saint-Saëns 33077, Bordeaux Cedex, France
- Université de Bordeaux, 146 Rue Léo-Saignat, 33076, Bordeaux Cedex, France
| |
Collapse
|
68
|
Isei MO, Kamunde C. Effects of copper and temperature on heart mitochondrial hydrogen peroxide production. Free Radic Biol Med 2020; 147:114-128. [PMID: 31825803 DOI: 10.1016/j.freeradbiomed.2019.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 11/19/2022]
Abstract
High energy demand for continuous mechanical work and large number of mitochondria predispose the heart to excessive reactive oxygen species (ROS) production that may precipitate oxidative stress and heart failure. While mitochondria have been proposed as a unifying cellular target and driver of adverse effects induced by diverse stressful states, there is limited understanding of how heart mitochondrial ROS homeostasis is affected by combinations of stress factors. Thus, we probed the effect of copper (Cu) and thermal stress on ROS (as hydrogen peroxide, H2O2) emission and elucidated the effects of Cu on ROS production sites in rainbow trout heart mitochondria using the Amplex UltraRed-horseradish peroxidase detection system optimized for our model. Mitochondria oxidizing malate-glutamate or succinate were incubated at 4, 11 (control) and 23 °C and exposed to a range (1-100 μM) of Cu concentrations. We found that the rates and patterns of H2O2 emission depended on substrate type, Cu concentration and temperature. In mitochondria oxidizing malate-glutamate, Cu increased the rate of H2O2 emission with a spike at 1 μM while temperature had no effect. In contrast, both temperature and Cu increased the rate of H2O2 emission in mitochondria oxidizing succinate with a prominent spike at 25 μM Cu. The rates of H2O2 emission at the three temperatures during the spike imposed by 25 μM Cu were of the order 11 > 23 > 4 °C. Interestingly, 5 μM Cu supressed H2O2 emission in mitochondria oxidizing succinate or malate-glutamate suggesting a common mechanism of action independent of substrate type. In the absence of Cu, the site-specific capacities of H2O2 emission were: complex III outer ubiquinone binding site (site IIIQo) > complex II flavin site (site IIF) ≥ complex I flavin site (site IF) > complex I ubiquinone-binding site (site IQ). Rotenone marginally increased succinate-driven H2O2 emission suggesting either the absence of reverse electron transport (RET)-driven ROS production at site IQ or masking of the expected rotenone response (reduction) by H2O2 produced from other sites. Cu acted at multiple sites in the electron transport system resulting in different site-specific H2O2 emission responses depending on the concentration. Specifically, site IF H2O2 emission was suppressed by Cu concentration-dependently while H2O2 emission by site IIF was inhibited and stimulated by low and high concentrations of Cu, respectively. Additionally, emission from site IIIQo was stimulated by low and inhibited by high Cu concentrations. Overall, our study unveiled distinctive effects and sites of modulation of mitochondrial ROS production by Cu with implications for cardiac redox signaling networks and development of mitochondria-targeted Cu-based drugs.
Collapse
Affiliation(s)
- Michael O Isei
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, C1A 4P3, Canada
| | - Collins Kamunde
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, C1A 4P3, Canada.
| |
Collapse
|
69
|
Heslop KA, Rovini A, Hunt EG, Fang D, Morris ME, Christie CF, Gooz MB, DeHart DN, Dang Y, Lemasters JJ, Maldonado EN. JNK activation and translocation to mitochondria mediates mitochondrial dysfunction and cell death induced by VDAC opening and sorafenib in hepatocarcinoma cells. Biochem Pharmacol 2020; 171:113728. [PMID: 31759978 PMCID: PMC7309270 DOI: 10.1016/j.bcp.2019.113728] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023]
Abstract
The multikinase inhibitor sorafenib, and opening of voltage dependent anion channels (VDAC) by the erastin-like compound X1 promotes oxidative stress and mitochondrial dysfunction in hepatocarcinoma cells. Here, we hypothesized that X1 and sorafenib induce mitochondrial dysfunction by increasing reactive oxygen species (ROS) formation and activating c-Jun N-terminal kinases (JNKs), leading to translocation of activated JNK to mitochondria. Both X1 and sorafenib increased production of ROS and activated JNK. X1 and sorafenib caused a drop in mitochondrial membrane potential (ΔΨ), a readout of mitochondrial metabolism, after 60 min. Mitochondrial depolarization after X1 and sorafenib occurred in parallel with JNK activation, increased superoxide (O2•-) production, decreased basal and oligomycin sensitive respiration, and decreased maximal respiratory capacity. Increased production of O2•- after X1 or sorafenib was abrogated by JNK inhibition and antioxidants. S3QEL 2, a specific inhibitor of site IIIQo, at Complex III, prevented depolarization induced by X1. JNK inhibition by JNK inhibitors VIII and SP600125 also prevented mitochondrial depolarization. After X1, activated JNK translocated to mitochondria as assessed by proximity ligation assays. Tat-Sab KIM1, a peptide selectively preventing the binding of JNK to the outer mitochondrial membrane protein Sab, blocked the depolarization induced by X1 and sorafenib. X1 promoted cell death mostly by necroptosis that was partially prevented by JNK inhibition. These results indicate that JNK activation and translocation to mitochondria is a common mechanism of mitochondrial dysfunction induced by both VDAC opening and sorafenib.
Collapse
Affiliation(s)
- K A Heslop
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - A Rovini
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - E G Hunt
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - D Fang
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - M E Morris
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - C F Christie
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - M B Gooz
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - D N DeHart
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Y Dang
- Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - J J Lemasters
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States; Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, United States; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - E N Maldonado
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
70
|
Dogar I, Dixon S, Gill R, Young A, Mallay S, Oldford C, Mailloux RJ. C57BL/6J mice upregulate catalase to maintain the hydrogen peroxide buffering capacity of liver mitochondria. Free Radic Biol Med 2020; 146:59-69. [PMID: 31639438 DOI: 10.1016/j.freeradbiomed.2019.10.409] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 11/22/2022]
Abstract
Here, we demonstrate that the upregulation of catalase is required to compensate for the loss of nicotinamide nucleotide transhydrogenase (NNT) to maintain hydrogen peroxide (H2O2) steady-state levels in C57BL/6J liver mitochondria. Our investigations using the closely related mouse strains C57BL/6NJ (6NJ; +NNT) and C57BL/6J (6J; -NNT) revealed that NNT is required for the provision of NADPH and that the upregulation of isocitrate dehydrogenase-2 (IDH2) activity is not enough to compensate for the absence of NNT, which is consistent with previous observations. Intriguingly, despite the absence of NNT, 6J mitochondria had rates of H2O2 production (58.56 ± 3.79 pmol mg-1 min-1) that were similar to samples collected from 6NJ mice (72.75 ± 14.26 pmol mg-1 min-1) when pyruvate served as the substrate. However, 6NJ mitochondria energized with succinate produced significantly less H2O2 (59.95 ± 2.13 pmol mg-1 min-1) when compared to samples from 6J mice (116.39 ± 20.74 pmol mg-1 min-1), an effect that was attributed to the presence of NNT. Further investigations into the H2O2 eliminating capacities of these mitochondria led to the novel observation that 6J mitochondria compensate for the loss of NNT by upregulating catalase. Indeed, 6NJ and 6J mitochondria energized with pyruvate or succinate displayed similar rates for H2O2 elimination, quenching ~84% and ~86% of the H2O2, respectively, in the surrounding medium within 30 s. However, inclusion of palmitoyl-CoA, an NNT inhibitor, significantly limited H2O2 degradation by 6NJ mitochondria only (~55% of H2O2 eliminated in 30 s). Liver mitochondria from 6J mice treated with palmitoyl-CoA still cleared ~80% of the H2O2 from the surrounding environment. Inhibition of catalase with triazole compromised the capacity of 6J mitochondria to maintain H2O2 steady-state levels. By contrast, disabling NADPH-dependent antioxidant systems had a limited effect on the H2O2 clearing capacity of 6J mitochondria. Liver mitochondria collected from 6NJ mice, on the other hand, were more reliant on the GSH and TRX systems to clear exogenously added H2O2. However, catalase still played an integral in eliminating H2O2 in 6NJ liver mitochondria. Immunoblot analyses demonstrated that catalase protein levels were ~7.7-fold higher in 6J mitochondria. Collectively, our findings demonstrate for the first time that 6J liver mitochondria compensate for the loss of NNT by increasing catalase levels for the maintenance of H2O2 steady-state levels. In general, our observations reveal that catalase is an integral arm of the antioxidant response in liver mitochondria.
Collapse
Affiliation(s)
- Ibrahim Dogar
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Sarah Dixon
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Robert Gill
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Adrian Young
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Sarah Mallay
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Catherine Oldford
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Ryan J Mailloux
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada; The School of Human Nutrition, Faculty of Agricultural and Environmental Sciences, McGill University, Ste.-Anne-de-Bellevue, Quebec, Canada.
| |
Collapse
|
71
|
Luo M, Willis WT, Coletta DK, Langlais PR, Mengos A, Ma W, Finlayson J, Wagner GR, Shi CX, Mandarino LJ. Deletion of the Mitochondrial Protein VWA8 Induces Oxidative Stress and an HNF4α Compensatory Response in Hepatocytes. Biochemistry 2019; 58:4983-4996. [PMID: 31702900 DOI: 10.1021/acs.biochem.9b00863] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
von Willebrand A domain-containing protein 8 (VWA8) is a poorly characterized, mitochondrial matrix-targeted protein with an AAA ATPase domain and ATPase activity that increases in livers of mice fed a high-fat diet. This study was undertaken to use CRISPR/Cas9 to delete VWA8 in cultured mouse hepatocytes and gain insight into its function. Unbiased omics techniques and bioinformatics were used to guide subsequent assays, including the assessment of oxidative stress and the determination of bioenergetic capacity. Metabolomics analysis showed VWA8 null cells had higher levels of oxidative stress and protein degradation; assays of hydrogen peroxide production revealed higher levels of production of reactive oxygen species (ROS). Proteomics and transcriptomics analyses showed VWA8 null cells had higher levels of expression of mitochondrial proteins (electron transport-chain Complex I, ATP synthase), peroxisomal proteins, and lipid transport proteins. The pattern of higher protein abundance in the VWA8 null cells could be explained by a higher level of hepatocyte nuclear factor 4 α (HNF4α) expression. Bioenergetic assays showed higher rates of carbohydrate oxidation and mitochondrial and nonmitochondrial lipid oxidation in intact and permeabilized cells. Inhibitor assays localized sites of ROS production to peroxisomes and NOX1/4. The rescue of VWA8 protein restored the wild-type phenotype, and treatment with antioxidants decreased the level of HNF4α expression. Thus, loss of VWA8 produces a mitochondrial defect that may be sensed by NOX4, leading to an increase in the level of ROS that results in a higher level of HNF4α. The compensatory HNF4α response results in a higher oxidative capacity and an even higher level of ROS production. We hypothesize that VWA8 is an AAA ATPase protein that plays a role in mitochondrial protein quality.
Collapse
Affiliation(s)
- Moulun Luo
- Division of Endocrinology, Department of Medicine , University of Arizona College of Medicine , Tucson , Arizona 85724 , United States
| | - Wayne T Willis
- Division of Endocrinology, Department of Medicine , University of Arizona College of Medicine , Tucson , Arizona 85724 , United States
| | - Dawn K Coletta
- Division of Endocrinology, Department of Medicine , University of Arizona College of Medicine , Tucson , Arizona 85724 , United States
| | - Paul R Langlais
- Division of Endocrinology, Department of Medicine , University of Arizona College of Medicine , Tucson , Arizona 85724 , United States
| | - April Mengos
- Mayo Clinic in Arizona , Scottsdale , Arizona 85259 , United States
| | - Wuqiong Ma
- Division of Endocrinology, Department of Medicine , University of Arizona College of Medicine , Tucson , Arizona 85724 , United States
| | - Jean Finlayson
- Division of Endocrinology, Department of Medicine , University of Arizona College of Medicine , Tucson , Arizona 85724 , United States
| | - Gregory R Wagner
- Metabolon, Inc. , Research Triangle Park , North Carolina 27709 , United States
| | - Chang-Xin Shi
- Mayo Clinic in Arizona , Scottsdale , Arizona 85259 , United States
| | - Lawrence J Mandarino
- Division of Endocrinology, Department of Medicine , University of Arizona College of Medicine , Tucson , Arizona 85724 , United States
| |
Collapse
|
72
|
Young A, Gardiner D, Kuksal N, Gill R, O'Brien M, Mailloux RJ. Deletion of the Glutaredoxin-2 Gene Protects Mice from Diet-Induced Weight Gain, Which Correlates with Increased Mitochondrial Respiration and Proton Leaks in Skeletal Muscle. Antioxid Redox Signal 2019; 31:1272-1288. [PMID: 31317766 DOI: 10.1089/ars.2018.7715] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aims: The aim of this study was to determine whether deleting the gene encoding glutaredoxin-2 (GRX2) could protect mice from diet-induced weight gain. Results: Subjecting wild-type littermates to a high fat diet (HFD) induced a significant increase in overall body mass, white adipose tissue hypertrophy, lipid droplet accumulation in hepatocytes, and higher circulating insulin and triglyceride levels. In contrast, GRX2 heterozygotes (GRX2+/-) fed an HFD had a body mass, white adipose tissue weight, and hepatic and circulating lipid and insulin levels similar to littermates fed a control diet. Examination of the bioenergetics of muscle mitochondria revealed that this protective effect was associated with an increase in respiration and proton leaks. Muscle mitochondria from GRX2+/- mice had a ∼2- to 3-fold increase in state 3 (phosphorylating) respiration when pyruvate/malate or succinate served as substrates and a ∼4-fold increase when palmitoyl-carnitine was being oxidized. Proton leaks were ∼2- to 3-fold higher in GRX2+/- muscle mitochondria. Treatment of mitochondria with either guanosine diphosphate, genipin, or octanoyl-carnitine revealed that the higher rate of O2 consumption under state 4 conditions was associated with increased leaks through uncoupling protein-3 and adenine nucleotide translocase. GRX2+/- mitochondria also had better protection from oxidative distress. Innovation: For the first time, we demonstrate that deleting the Grx2 gene can protect from diet-induced weight gain and the development of obesity-related disorders. Conclusions: Deleting the Grx2 gene protects mice from diet-induced weight gain. This effect was related to an increase in muscle fuel combustion, mitochondrial respiration, proton leaks, and reactive oxygen species handling. Antioxid. Redox Signal. 31, 1272-1288.
Collapse
Affiliation(s)
- Adrian Young
- Department of Biochemistry, Faculty of Science, Memorial University of Newfoundland, St. John's, Canada
| | - Danielle Gardiner
- Department of Biochemistry, Faculty of Science, Memorial University of Newfoundland, St. John's, Canada
| | - Nidhi Kuksal
- Department of Biochemistry, Faculty of Science, Memorial University of Newfoundland, St. John's, Canada
| | - Robert Gill
- Department of Biochemistry, Faculty of Science, Memorial University of Newfoundland, St. John's, Canada
| | - Marisa O'Brien
- Department of Biochemistry, Faculty of Science, Memorial University of Newfoundland, St. John's, Canada
| | - Ryan J Mailloux
- Department of Biochemistry, Faculty of Science, Memorial University of Newfoundland, St. John's, Canada
| |
Collapse
|
73
|
Wong HS, Monternier PA, Brand MD. S1QELs suppress mitochondrial superoxide/hydrogen peroxide production from site I Q without inhibiting reverse electron flow through Complex I. Free Radic Biol Med 2019; 143:545-559. [PMID: 31518685 DOI: 10.1016/j.freeradbiomed.2019.09.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 08/30/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022]
Abstract
Mitochondria are important sources of superoxide and hydrogen peroxide in cell signaling and disease. In particular, superoxide/hydrogen peroxide production during reverse electron transport from ubiquinol to NAD+ though Complex I is implicated in several physiological and pathological processes. S1QELs are small molecules that suppress superoxide/hydrogen peroxide production at Complex I without affecting forward electron transport. Their mechanism of action is disputed. To test different mechanistic models, we compared the effects of two inhibitors of Complex I electron transport (piericidin A and rotenone) and two S1QELs from different chemical families on superoxide/hydrogen peroxide production and electron transport by Complex I in isolated mitochondria. Piericidin A and rotenone (and S1QEL1.1 at higher concentrations) prevented superoxide/hydrogen peroxide production from sites IQ and IF in Complex I by inhibiting reverse electron transport into the complex. S1QELs decreased the potency of electron transport inhibition by piericidin A and rotenone, suggesting that S1QELs bind directly to Complex I. S1QEL2.1 (and S1QEL1.1 at lower concentrations) suppressed site IQ without affecting reverse electron transport or site IF, showing that sites IQ and IF are distinct, and that S1QELs do not work simply by decreasing reverse electron transport to site IF (or site IQ). S1QELs did not affect the reduction of NAD+ or the rate of site IF driven by reverse electron transport, therefore they do not alter the driving forces for reverse electron transport and that is not how they suppress site IQ. We conclude that S1QELs bind to Complex I to influence the conformation of the piericidin A and rotenone binding sites and directly suppress superoxide/hydrogen peroxide production at site IQ, which is a separate site from site IF.
Collapse
Affiliation(s)
- Hoi-Shan Wong
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA.
| | | | - Martin D Brand
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA.
| |
Collapse
|
74
|
Fink BD, Yu L, Sivitz WI. Modulation of complex II-energized respiration in muscle, heart, and brown adipose mitochondria by oxaloacetate and complex I electron flow. FASEB J 2019; 33:11696-11705. [PMID: 31361970 PMCID: PMC6902704 DOI: 10.1096/fj.201900690r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/01/2019] [Indexed: 01/10/2023]
Abstract
We recently reported that membrane potential (ΔΨ) primarily determines the relationship of complex II-supported respiration by isolated skeletal muscle mitochondria to ADP concentrations. We observed that O2 flux peaked at low ADP concentration ([ADP]) (high ΔΨ) before declining at higher [ADP] (low ΔΨ). The decline resulted from oxaloacetate (OAA) accumulation and inhibition of succinate dehydrogenase. This prompted us to question the effect of incremental [ADP] on respiration in interscapular brown adipose tissue (IBAT) mitochondria, wherein ΔΨ is intrinsically low because of uncoupling protein 1 (UCP1). We found that succinate-energized IBAT mitochondria, even in the absence of ADP, accumulate OAA and manifest limited respiration, similar to muscle mitochondria at high [ADP]. This could be prevented by guanosine 5'-diphosphate inhibition of UCP1. NAD+ cycling with NADH requires complex I electron flow and is needed to form OAA. Therefore, to assess the role of electron transit, we perturbed flow using a small molecule, N1-(3-acetamidophenyl)-N2-(2-(4-methyl-2-(p-tolyl)thiazol-5-yl)ethyl)oxalamide. We observed decreased OAA, increased NADH/NAD+, and increased succinate-supported mitochondrial respiration under conditions of low ΔΨ (IBAT) but not high ΔΨ (heart). In summary, complex II-energized respiration in IBAT mitochondria is tempered by complex I-derived OAA in a manner dependent on UCP1. These dynamics depend on electron transit in complex I.-Fink, B. D., Yu, L., Sivitz, W. I. Modulation of complex II-energized respiration in muscle, heart, and brown adipose mitochondria by oxaloacetate and complex I electron flow.
Collapse
Affiliation(s)
- Brian D. Fink
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa–Iowa City Veterans Affairs Health Care System, Iowa City, Iowa, USA
| | - Liping Yu
- Department of Biochemistry, University of Iowa–Iowa City Veterans Affairs Health Care System, Iowa City, Iowa, USA
- NMR Core Facility, University of Iowa–Iowa City Veterans Affairs Health Care System, Iowa City, Iowa, USA
| | - William I. Sivitz
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa–Iowa City Veterans Affairs Health Care System, Iowa City, Iowa, USA
| |
Collapse
|
75
|
Goncalves RLS, Watson MA, Wong HS, Orr AL, Brand MD. The use of site-specific suppressors to measure the relative contributions of different mitochondrial sites to skeletal muscle superoxide and hydrogen peroxide production. Redox Biol 2019; 28:101341. [PMID: 31627168 PMCID: PMC6812158 DOI: 10.1016/j.redox.2019.101341] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/27/2019] [Accepted: 10/08/2019] [Indexed: 01/14/2023] Open
Abstract
Reactive oxygen species are important signaling molecules crucial for muscle differentiation and adaptation to exercise. However, their uncontrolled generation is associated with an array of pathological conditions. To identify and quantify the sources of superoxide and hydrogen peroxide in skeletal muscle we used site-specific suppressors (S1QELs, S3QELs and NADPH oxidase inhibitors). We measured the rates of hydrogen peroxide release from isolated rat muscle mitochondria incubated in media mimicking the cytosol of intact muscle. By measuring the extent of inhibition caused by the addition of different site-specific suppressors of mitochondrial superoxide/hydrogen peroxide production (S1QELs for site IQ and S3QELs for site IIIQo), we determined the contributions of these sites to the total signal. In media mimicking resting muscle, their contributions were each 12–18%, consistent with a previous method. In C2C12 myoblasts, site IQ contributed 12% of cellular hydrogen peroxide production and site IIIQo contributed about 30%. When C2C12 myoblasts were differentiated to myotubes, hydrogen peroxide release increased five-fold, and the proportional contribution of site IQ doubled. The use of S1QELs and S3QELs is a powerful new way to measure the relative contributions of different mitochondrial sites to muscle hydrogen peroxide production under different conditions. Our results show that mitochondrial sites IQ and IIIQo make a substantial contribution to superoxide/hydrogen peroxide production in muscle mitochondria and C2C12 myoblasts. The total hydrogen peroxide release rate and the relative contribution of site IQ both increase substantially upon differentiation to myotubes. S1QELs, S3QELs and NOX inhibitors report sites of superoxide/H2O2 generation. Mitochondria and NOXs are the major sources of H2O2 in C2C12 cells. H2O2 release increases 5-fold during differentiation of C2C12 myoblasts to myotubes. The relative contribution of site IQ doubles during differentiation. The relative contributions of site IIIQo and NOXs remain the same.
Collapse
Affiliation(s)
| | - Mark A Watson
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Hoi-Shan Wong
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Adam L Orr
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Martin D Brand
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA.
| |
Collapse
|
76
|
Use of S1QELs and S3QELs to link mitochondrial sites of superoxide and hydrogen peroxide generation to physiological and pathological outcomes. Biochem Soc Trans 2019; 47:1461-1469. [DOI: 10.1042/bst20190305] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/16/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023]
Abstract
Abstract
Changes in mitochondrial superoxide and hydrogen peroxide production may contribute to various pathologies, and even aging, given that over time and in certain conditions, they damage macromolecules and disrupt normal redox signalling. Mitochondria-targeted antioxidants such as mitoQ, mitoVitE, and mitoTEMPO have opened up the study of the importance of altered mitochondrial matrix superoxide/hydrogen peroxide in disease. However, the use of such tools has caveats and they are unable to distinguish precise sites of production within the reactions of substrate oxidation and the electron transport chain. S1QELs are specific small-molecule Suppressors of site IQElectron Leak and S3QELs are specific small-molecule Suppressors of site IIIQoElectron Leak; they prevent superoxide/hydrogen production at specific sites without affecting electron transport or oxidative phosphorylation. We discuss the benefits of using S1QELs and S3QELs as opposed to mitochondria-targeted antioxidants, mitochondrial poisons, and genetic manipulation. We summarise pathologies in which site IQ in mitochondrial complex I and site IIIQo in mitochondrial complex III have been implicated using S1QELs and S3QELs.
Collapse
|
77
|
Okoye CN, MacDonald-Jay N, Kamunde C. Effects of bioenergetics, temperature and cadmium on liver mitochondria reactive oxygen species production and consumption. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 214:105264. [PMID: 31377504 DOI: 10.1016/j.aquatox.2019.105264] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
A by-product of mitochondrial substrate oxidation and electron transfer to generate cellular energy (ATP) is reactive oxygen species (ROS). Superoxide anion radical and hydrogen peroxide (H2O2) are the proximal ROS produced by the mitochondria. Because low levels of ROS serve critical regulatory roles in cell physiology while excessive levels or inappropriately localized ROS result in aberrant physiological states, mitochondrial ROS need to be tightly regulated. While it is known that regulation of mitochondrial ROS involves balancing the rates of production and removal, the effects of stressors on these processes remain largely unknown. To illuminate how stressors modulate mitochondrial ROS homeostasis, we investigated the effects of temperature and cadmium (Cd) on H2O2 emission and consumption in rainbow trout liver mitochondria. We show that H2O2 emission rates increase with temperature and Cd exposure. Energizing mitochondria with malate-glutamate or succinate increased the rate of H2O2 emission; however, Cd exposure imposed different patterns of H2O2 emission depending on the concentration and substrate. Specifically, mitochondria respiring on malate-glutamate exhibited a saturable graded concentration-response curve that plateaued at 5 μM while mitochondria respiring on succinate had a biphasic concentration-response curve characterized by a spike in the emission rate at 1 μM Cd followed by gradual diminution at higher Cd concentrations. To explain the observed substrate- and concentration-dependent effects of Cd, we sequestered specific mitochondrial ROS-emitting sites using blockers of electron transfer and then tested the effect of the metal. The results indicate that the biphasic H2O2 emission response imposed by succinate is due to site IIF but is further modified at sites IQ and IIIQo. Moreover, the saturable graded H2O2 emission response in mitochondria energized with malate-glutamate is consistent with effect of Cd on site IF. Additionally, Cd and temperature acted cooperatively to increase mitochondrial H2O2 emission suggesting that increased toxicity of Cd at high temperature may be due to increased oxidative insult. Surprisingly, despite their clear stimulatory effect on H2O2 emission, Cd, temperature and bioenergetic status did not affect the kinetics of mitochondrial H2O2 consumption; the rate constants and half-lives for all the conditions tested were similar. Overall, our study indicates that the production processes of rainbow trout liver mitochondrial H2O2 metabolism are highly responsive to stressors and bioenergetics while the consumption processes are recalcitrant. The latter denotes the presence of a robust H2O2 scavenging system in liver mitochondria that would maintain H2O2 homeostasis in the face of increased production and reduced scavenging capacity.
Collapse
Affiliation(s)
- Chidozie N Okoye
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, C1A 4P3, Canada
| | - Nicole MacDonald-Jay
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, C1A 4P3, Canada
| | - Collins Kamunde
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, C1A 4P3, Canada.
| |
Collapse
|
78
|
Potential of Mitochondria-Targeted Antioxidants to Prevent Oxidative Stress in Pancreatic β-cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1826303. [PMID: 31249641 PMCID: PMC6556329 DOI: 10.1155/2019/1826303] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/02/2019] [Accepted: 04/10/2019] [Indexed: 12/12/2022]
Abstract
Pancreatic β-cells are vulnerable to oxidative stress due to their low content of redox buffers, such as glutathione, but possess a rich content of thioredoxin, peroxiredoxin, and other proteins capable of redox relay, transferring redox signaling. Consequently, it may be predicted that cytosolic antioxidants could interfere with the cytosolic redox signaling and should not be recommended for any potential therapy. In contrast, mitochondrial matrix-targeted antioxidants could prevent the primary oxidative stress arising from the primary superoxide sources within the mitochondrial matrix, such as at the flavin (IF) and ubiquinone (IQ) sites of superoxide formation within respiratory chain complex I and the outer ubiquinone site (IIIQ) of complex III. Therefore, using time-resolved confocal fluorescence monitoring with MitoSOX Red, we investigated various effects of mitochondria-targeted antioxidants in model pancreatic β-cells (insulinoma INS-1E cells) and pancreatic islets. Both SkQ1 (a mitochondria-targeted plastoquinone) and a suppressor of complex III site Q electron leak (S3QEL) prevented superoxide production released to the mitochondrial matrix in INS-1E cells with stimulatory glucose, where SkQ1 also exhibited an antioxidant role for UCP2-silenced cells. SkQ1 acted similarly at nonstimulatory glucose but not in UCP2-silenced cells. Thus, UCP2 can facilitate the antioxidant mechanism based on SkQ1+ fatty acid anion− pairing. The elevated superoxide formation induced by antimycin A was largely prevented by S3QEL, and that induced by rotenone was decreased by SkQ1 and S3QEL and slightly by S1QEL, acting at complex I site Q. Similar results were obtained with the MitoB probe, for the LC-MS-based assessment of the 4 hr accumulation of reactive oxygen species within the mitochondrial matrix but for isolated pancreatic islets. For 2 hr INS-1E incubations, some samples were influenced by the cell death during the experiment. Due to the frequent dependency of antioxidant effects on metabolic modes, we suggest a potential use of mitochondria-targeted antioxidants for the treatment of prediabetic states after cautious nutrition-controlled tests. Their targeted delivery might eventually attenuate the vicious spiral leading to type 2 diabetes.
Collapse
|
79
|
Nilsson MI, Tarnopolsky MA. Mitochondria and Aging-The Role of Exercise as a Countermeasure. BIOLOGY 2019; 8:biology8020040. [PMID: 31083586 PMCID: PMC6627948 DOI: 10.3390/biology8020040] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/15/2019] [Accepted: 04/12/2019] [Indexed: 12/16/2022]
Abstract
Mitochondria orchestrate the life and death of most eukaryotic cells by virtue of their ability to supply adenosine triphosphate from aerobic respiration for growth, development, and maintenance of the ‘physiologic reserve’. Although their double-membrane structure and primary role as ‘powerhouses of the cell’ have essentially remained the same for ~2 billion years, they have evolved to regulate other cell functions that contribute to the aging process, such as reactive oxygen species generation, inflammation, senescence, and apoptosis. Biological aging is characterized by buildup of intracellular debris (e.g., oxidative damage, protein aggregates, and lipofuscin), which fuels a ‘vicious cycle’ of cell/DNA danger response activation (CDR and DDR, respectively), chronic inflammation (‘inflammaging’), and progressive cell deterioration. Therapeutic options that coordinately mitigate age-related declines in mitochondria and organelles involved in quality control, repair, and recycling are therefore highly desirable. Rejuvenation by exercise is a non-pharmacological approach that targets all the major hallmarks of aging and extends both health- and lifespan in modern humans.
Collapse
Affiliation(s)
- Mats I Nilsson
- Department of Pediatrics and Medicine, McMaster University Medical Center, Hamilton, ON L8S 4L8, Canada.
- Exerkine Corporation, McMaster University Medical Center, Hamilton, ON L8N 3Z5, Canada.
| | - Mark A Tarnopolsky
- Department of Pediatrics and Medicine, McMaster University Medical Center, Hamilton, ON L8S 4L8, Canada.
- Exerkine Corporation, McMaster University Medical Center, Hamilton, ON L8N 3Z5, Canada.
| |
Collapse
|