51
|
Sexual hormones regulate the redox status and mitochondrial function in the brain. Pathological implications. Redox Biol 2020; 31:101505. [PMID: 32201220 PMCID: PMC7212485 DOI: 10.1016/j.redox.2020.101505] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 02/11/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022] Open
Abstract
Compared to other organs, the brain is especially exposed to oxidative stress. In general, brains from young females tend to present lower oxidative damage in comparison to their male counterparts. This has been attributed to higher antioxidant defenses and a better mitochondrial function in females, which has been linked to neuroprotection in this group. However, these differences usually disappear with aging, and the incidence of brain pathologies increases in aged females. Sexual hormones, which suffer a decrease with normal aging, have been proposed as the key factors involved in these gender differences. Here, we provide an overview of redox status and mitochondrial function regulation by sexual hormones and their influence in normal brain aging. Furthermore, we discuss how sexual hormones, as well as phytoestrogens, may play an important role in the development and progression of several brain pathologies, including neurodegenerative diseases such as Alzheimer's and Parkinson's diseases, stroke or brain cancer. Sex hormones are reduced with aging, especially in females, affecting redox balance. Normal aging is associated to a worse redox homeostasis in the brain. Young females show better mitochondrial function and higher antioxidant defenses. Development of brain pathologies is influenced by sex hormones and phytoestrogens.
Collapse
|
52
|
Dai X, Yan X, Wintergerst KA, Cai L, Keller BB, Tan Y. Nrf2: Redox and Metabolic Regulator of Stem Cell State and Function. Trends Mol Med 2020; 26:185-200. [PMID: 31679988 DOI: 10.1016/j.molmed.2019.09.007] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/09/2019] [Accepted: 09/17/2019] [Indexed: 02/08/2023]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is ubiquitously expressed in most eukaryotic cells and functions to induce a broad range of cellular defenses against exogenous and endogenous stresses, including oxidants, xenobiotics, and excessive nutrient/metabolite supply. Because the production and fate of stem cells are often modulated by cellular redox and metabolic homeostasis, important roles of Nrf2 have emerged in the regulation of stem cell quiescence, survival, self-renewal, proliferation, senescence, and differentiation. In a rapidly advancing field, this review summarizes Nrf2 signaling in the context of stem cell state and function and provides a rationale for Nrf2 as a therapeutic target in stem cell-based regenerative medicine.
Collapse
Affiliation(s)
- Xiaozhen Dai
- School of Biosciences and Technology, Chengdu Medical College, Chengdu, Sichuan, China
| | - Xiaoqing Yan
- Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Kupper A Wintergerst
- Division of Endocrinology, Department of Pediatrics, University of Louisville, Louisville, KY, USA; Wendy Novak Diabetes Center, Louisville, KY, USA; Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, USA
| | - Lu Cai
- Wendy Novak Diabetes Center, Louisville, KY, USA; Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Bradley B Keller
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA; Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, USA.
| | - Yi Tan
- Wendy Novak Diabetes Center, Louisville, KY, USA; Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
53
|
Hydrogen Sulfide Protects against Paraquat-Induced Acute Liver Injury in Rats by Regulating Oxidative Stress, Mitochondrial Function, and Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6325378. [PMID: 32064027 PMCID: PMC6998754 DOI: 10.1155/2020/6325378] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/10/2019] [Accepted: 12/30/2019] [Indexed: 12/13/2022]
Abstract
In addition to the lung, the liver is considered another major target for paraquat (PQ) poisoning. Hydrogen sulfide (H2S) has been demonstrated to be effective in the inhibition of oxidative stress and inflammation. The aim of this study was to investigate the protective effect of exogenous H2S against PQ-induced acute liver injury. The acute liver injury model was established by a single intraperitoneal injection of PQ, evidenced by histological alteration and elevated serum aminotransferase levels. Different doses of NaHS were administered intraperitoneally one hour before exposure to PQ. Analysis of the data shows that exogenous H2S attenuated the PQ-induced liver injury and oxidative stress in a dose-dependent manner. H2S significantly suppressed reactive oxygen species (ROS) generation and the elevation of malondialdehyde content while it increased the ratio of GSH/GSSG and levels of antioxidant enzymes including SOD, GSH-Px, HO-1, and NQO-1. When hepatocytes were subjected to PQ-induced oxidative stress, H2S markedly enhanced nuclear translocation of Nrf2 via S-sulfhydration of Keap1 and resulted in the increase in IDH2 activity by regulating S-sulfhydration of SIRT3. In addition, H2S significantly suppressed NLRP3 inflammasome activation and subsequent IL-1β excretion in PQ-induced acute liver injury. Moreover, H2S cannot reverse the decrease in SIRT3 and activation of the NLRP3 inflammasome caused by PQ in Nrf2-knockdown hepatocytes. In summary, H2S attenuated the PQ-induced acute liver injury by enhancing antioxidative capability, regulating mitochondrial function, and suppressing ROS-induced NLRP3 inflammasome activation. The antioxidative effect of H2S in PQ-induced liver injury can at least partly be attributed to the promotion of Nrf2-driven antioxidant enzymes via Keap1 S-sulfhydration and regulation of SIRT3/IDH2 signaling via Nrf2-dependent SIRT3 gene transcription as well as SIRT3 S-sulfhydration. Thus, H2S supplementation can form the basis for a promising novel therapeutic strategy for PQ-induced acute liver injury.
Collapse
|
54
|
tert-Butylhydroquinone Treatment Alleviates Contrast-Induced Nephropathy in Rats by Activating the Nrf2/Sirt3/SOD2 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4657651. [PMID: 31929854 PMCID: PMC6939416 DOI: 10.1155/2019/4657651] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/21/2019] [Accepted: 11/30/2019] [Indexed: 12/29/2022]
Abstract
Oxidative stress plays a critical role in the pathophysiology of contrast-induced nephropathy (CIN). Since the specific treatment of CIN remains an unmet medical need, it is imperative to find an effective strategy against the clinical management of CIN. The transcription factor Nrf2 is known to regulate antioxidative stress response. The aim of the present study was to assess the effects of tert-butylhydroquinone (t-BHQ), an activator of Nrf2, in the prevention of CIN and elucidate the underlying mechanism of its action in vitro and in vivo. We established a rat model of CIN and treated the animals with t-BHQ (25 mg/kg). The effects of t-BHQ treatment on CIN rats were elucidated by assessing renal function, HE staining, immunohistochemistry, and western blotting. We also studied the activity of oxidative stress-related markers, such as intracellular ROS level, MDA level, SOD2 activity, and GSH/GSSG ratio. We validated our results by siRNA-mediated silencing of Nrf2 in HK-2 cells exposed to the radiocontrast agent. Treatment with t-BHQ significantly ameliorated the renal function and the histopathological lesions in CIN rats. Further, pretreatment with t-BHQ significantly increased the SOD2 activity and GSH/GSSG ratio and decreased the levels of ROS and MDA in animals subjected to ioversol exposure. In addition, t-BHQ treatment increased the expression of Nrf2, Sirt3, and SOD2 and concomitantly decreased the expression of acetylated-SOD2. When Nrf2-silenced HK-2 cells were exposed to radiocontrast agent, they suffered severe cell oxidative stress, exhibited lower expression of Sirt3 and SOD2, and expressed higher levels of acetylated-SOD2; however, t-BHQ treatment did not affect the protein expression of these indicators in si-Nrf2 HK-2 cells. Our findings suggested that Nrf2 plays an important role in the regulation of the Sirt3/SOD2 antioxidative pathway, and t-BHQ may be a potential agent to ameliorate radiocontrast-induced nephropathy via activating the Nrf2/Sirt3/SOD2 signaling pathway in vitro and in vivo.
Collapse
|
55
|
Crosstalk between mitochondrial metabolism and oxidoreductive homeostasis: a new perspective for understanding the effects of bioactive dietary compounds. Nutr Res Rev 2019; 33:90-101. [DOI: 10.1017/s0954422419000210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AbstractMitochondria play an important role in a number of fundamental cellular processes, including energy production, biosynthetic pathways and cellular oxidoreductive homeostasis (redox status), and their dysfunction can lead to numerous pathophysiological consequences. As the biochemical mechanisms orchestrating mitochondrial metabolism and redox homeostasis are functionally linked, mitochondria have been identified as a potential therapeutic target. Consequently, considerable effort has been made to evaluate the efficacy of natural compounds that modulate mitochondrial function. Molecules produced by plants (for example, polyphenols and isothiocyanates) have been shown to modulate mitochondrial metabolism/biogenesis and redox status; however, despite the existence of a functional link, few studies have considered the combined efficacy of these mitochondrial functions. The present review provides a complete overview of the molecular pathways involved in modulating mitochondrial metabolism/biogenesis and redox status. Crosstalk between these critical mechanisms is also discussed, whilst major data from the literature regarding their antioxidant abilities are described and critically analysed. We also provide a summary of recent evidence regarding the ability of several plant-derived compounds to target these mitochondrial functions. An in-depth understanding of the functional link between mitochondrial metabolism/biogenesis and redox status could facilitate the analysis of the biological effects of natural compounds as well as the development of new therapeutic approaches.
Collapse
|
56
|
Sun X, Zhang B, Pan X, Huang H, Xie Z, Ma Y, Hu B, Wang J, Chen Z, Shi P. Octyl itaconate inhibits osteoclastogenesis by suppressing Hrd1 and activating Nrf2 signaling. FASEB J 2019; 33:12929-12940. [PMID: 31490085 DOI: 10.1096/fj.201900887rr] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The endogenous metabolite itaconate has emerged as a regulator of macrophage function that limits inflammation. However, its effect on cell differentiation and osteoclast-related diseases is unclear. Here, for the first time, we explored the effect of itaconate and its cell-permeable itaconate derivative, 4-octyl itaconate (OI) on osteoclast differentiation in vitro and in vivo. Firstly, we demonstrated that itaconate concentration was lower in estrogen-deficient mice. OI released itaconate and induced the expression of nuclear factor-erythroid 2-related factor 2 (Nrf2) in bone marrow-derived macrophages during osteoclastogenesis. Furthermore, OI significantly suppressed the early, middle, and late stages of osteoclastogenesis induced by receptor activator of NF-κB ligand in vitro, as confirmed by tartrate-resistant acid phosphatase staining. Moreover, it significantly inhibited fibrous actin ring formation and bone resorption in vitro. Mechanistically, we observed that OI enhanced Nrf2 expression by suppressing its association with ubiquitin via inhibition of the E3 ubiquitin ligase (Hrd1). OI also inhibited LPS-induced the reactive oxygen species and inflammatory responses via Hrd1. An estrogen deficiency (via ovariectomy)-induced osteoporosis model was also established. Here, on micro-computed tomography and histologic analysis showed that OI effectively suppressed ovariectomy-induced bone loss. In summary, OI, an itaconate derivative, can inhibit osteoclastogenesis in vitro and in vivo, indicating that OI could be a potential drug to treat osteoclast-related diseases; our results also link itaconate to the development of osteoporosis.-Sun, X., Zhang, B., Pan, X., Huang, H., Xie, Z., Ma, Y., Hu, B., Wang, J., Chen, Z., Shi, P. Octyl itaconate inhibits osteoclastogenesis by suppressing Hrd1 and activating Nrf2 signaling.
Collapse
Affiliation(s)
- Xuewu Sun
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Boya Zhang
- Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Xin Pan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Hai Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Ziang Xie
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Yan Ma
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Bin Hu
- Department of Orthopedic Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jiying Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Zhijun Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Peihua Shi
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| |
Collapse
|
57
|
Zhao X, Jin Y, Li L, Xu L, Tang Z, Qi Y, Yin L, Peng J. MicroRNA-128-3p aggravates doxorubicin-induced liver injury by promoting oxidative stress via targeting Sirtuin-1. Pharmacol Res 2019; 146:104276. [PMID: 31112750 DOI: 10.1016/j.phrs.2019.104276] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 12/31/2022]
Abstract
As one classic anticancer drug, clinical application of Doxorubicin (Dox) is limited due to its side effects. In our previous work, we have investigated the drug targets to treat Dox-induced cardiotoxicity, hepatotoxicity and nephrotoxicity. In this paper, the mechanisms and new drug-target associated with Dox-induced hepatotoxicity were explored. The results showed that Dox markedly inhibited cell viability and cellular respiration, induced cell morphologic change and increased ROS level. Moreover, Dox increased ALT and AST levels, caused pathological damage, increased MDA level and decreased SOD level in mice. Mechanism investigation showed that Dox markedly up-regulated the expression level of miR-128-3p, down-regulated Sirt1 expression level and affected the protein levels of Nrf2, Keap1, Sirt3, NQO1 and HO-1 to cause oxidative stress in liver. Furthermore, double-luciferase reporter assay, and co-transfection test showed that miR-128-3p directly targeted Sirt1. In addition, miR-128-3p mimics in AML-12 cells enhanced Dox-induced oxidative damage via inhibiting cellular respiration, increasing ROS level and mitochondrial superoxide formation. The protein levels of Sirt1, Nrf2, Sirt3, NQO1 and HO-1 in miR-128-3p mimic + Dox group were decreased compared with Dox group. Transfection of miR-128-3p inhibitor weakened Dox-induced oxidative damage via increasing cellular respiration, suppressing cellular ROS level and mitochondrial superoxide formation. The protein levels of Sirt1, Nrf2, Sirt3, NQO1 and HO-1 in miR-128-3p inhibitor + Dox group were increased compared with Dox group. In mice, Dox-induced liver damage was deteriorated by miR-128-3p agomir via increasing the levels of ALT, AST, MDA, and down-regulating the protein levels of Sirt1, Nrf2, Sirt3, NQO1 and HO-1. While, miR-128-3p antagomir alleviated liver injury via decreasing the levels of ALT, AST, MDA, and up-regulating the protein levels of Sirt1, Nrf2, Sirt3, NQO1 and HO-1. Our data showed that miRNA-128-3p aggravated Dox-induced liver injury by promoting oxidative stress via targeting Sirt1, which should be considered as one new drug target to treat Dox-induced liver injury.
Collapse
Affiliation(s)
- Xuerong Zhao
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Yue Jin
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Lei Li
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Zeyao Tang
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Yan Qi
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China; Key Laboratory for Basic and Applied Research on Pharmacodynamic Substances of Traditional Chinese Medicine of Liaoning Province, Dalian Medical University, Dalian, China; National-Local Joint Engineering Research Center for Drug Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China.
| |
Collapse
|
58
|
Fafián-Labora JA, Morente-López M, Arufe MC. Effect of aging on behaviour of mesenchymal stem cells. World J Stem Cells 2019; 11:337-346. [PMID: 31293716 PMCID: PMC6600848 DOI: 10.4252/wjsc.v11.i6.337] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/29/2019] [Accepted: 05/06/2019] [Indexed: 02/06/2023] Open
Abstract
Organs whose source is the mesoderm lineage contain a subpopulation of stem cells that are able to differentiate among mesodermal derivatives (chondrocytes, osteocytes, adipocytes). This subpopulation of adult stem cells, called "mesenchymal stem cells" or "mesenchymal stromal cells (MSCs)", contributes directly to the homeostatic maintenance of their organs; hence, their senescence could be very deleterious for human bodily functions. MSCs are easily isolated and amenable their expansion in vitro because of the research demanding to test them in many diverse clinical indications. All of these works are shown by the rapidly expanding literature that includes many in vivo animal models. We do not have an in-depth understanding of mechanisms that induce cellular senescence, and to further clarify the consequences of the senescence process in MSCs, some hints may be derived from the study of cellular behaviour in vivo and in vitro, autophagy, mitochondrial stress and exosomal activity. In this particular work, we decided to review these biological features in the literature on MSC senescence over the last three years.
Collapse
Affiliation(s)
- Juan Antonio Fafián-Labora
- Grupo de Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Ciencias Biomédicas y Medicina, Universidade da Coruña, A Coruña 15006, Spain
| | - Miriam Morente-López
- Grupo de Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Ciencias Biomédicas y Medicina, Universidade da Coruña, A Coruña 15006, Spain
| | - María C Arufe
- Grupo de Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Ciencias Biomédicas y Medicina, Universidade da Coruña, A Coruña 15006, Spain.
| |
Collapse
|
59
|
Surico D, Bordino V, Cantaluppi V, Mary D, Gentilli S, Oldani A, Farruggio S, Melluzza C, Raina G, Grossini E. Preeclampsia and intrauterine growth restriction: Role of human umbilical cord mesenchymal stem cells-trophoblast cross-talk. PLoS One 2019; 14:e0218437. [PMID: 31206561 PMCID: PMC6576763 DOI: 10.1371/journal.pone.0218437] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/02/2019] [Indexed: 12/27/2022] Open
Abstract
Background Oxidative stress is involved in the pathogenesis and maintenance of pregnancy-related disorders, such as intrauterine growth restriction (IUGR) and preeclampsia (PE). Human umbilical cord mesenchymal stem cells (hUMSCs) have been suggested as a possible therapeutic tool for the treatment of pregnancy-related disorders in view of their paracrine actions on trophoblast cells. Objectives To quantify the plasma markers of peroxidation in patients affected by PE and IUGR and to examine the role of oxidative stress in the pathophysiology of PE and IUGR in vitro by using hUMSCs from physiological and pathological pregnancies and a trophoblast cell line (HTR-8/SVneo). Study design In pathological and physiological pregnancies the plasma markers of oxidative stress, arterial blood pressure, serum uric acid, 24h proteinuria, weight gain and body mass index (BMI) were examined. Furthermore, the pulsatility index (PI) of uterine and umbilical arteries, and of fetal middle cerebral artery was measured. In vitro, the different responses of hUMSCs, taken from physiological and pathological pregnancies, and of HTR-8/SVneo to pregnancy-related hormones in terms of viability and nitric oxide (NO) release were investigated. In some experiments, the above measurements were performed on co-cultures between HTR-8/SVneo and hUMSCs. Results The results obtained have shown that in pathological pregnancies, body mass index, serum acid uric, pulsatility index in uterine and umbilical arteries and markers of oxidative stress were higher than those found in physiological ones. Moreover, in PE and IUGR, a relation was observed between laboratory and clinical findings and the increased levels of oxidative stress. HTR-8/SVneo and hUMSCs showed reduced viability and increased NO production when stressed with H2O2. Finally, HTR-8/SVneo cultured in cross-talk with hUMSCs from pathological pregnancies showed a deterioration of cell viability and NO release when treated with pregnancy-related hormones. Conclusion Our findings support that hUMSCs taken from patients affected by PE and IUGR have significant features in comparison with those from physiologic pregnancies. Moreover, the cross-talk between hUMSCs and trophoblast cells might be involved in the etiopathology of IUGR and PE secondary to oxidative stress.
Collapse
Affiliation(s)
- Daniela Surico
- Department of Translational Medicine, Gynecologic Unit, University East Piedmont, Azienda Ospedaliera Universitaria Maggiore della Carità, Novara, Italy
- Department of Translational Medicine, AGING PROJECT, University East Piedmont, Novara, Italy
| | - Valerio Bordino
- Department of Translational Medicine, Gynecologic Unit, University East Piedmont, Azienda Ospedaliera Universitaria Maggiore della Carità, Novara, Italy
| | - Vincenzo Cantaluppi
- Department of Translational Medicine, AGING PROJECT, University East Piedmont, Novara, Italy
- Department of Translational Medicine, Nephrology-Kidney Transplantation Unit and Center for Autoimmune and Allergic Diseases (CAAD), University East Piedmont, Azienda Ospedaliera Universitaria Maggiore della Carità, Novara, Italy
| | - David Mary
- Department of Translational Medicine, Laboratory of Physiology/Experimental Surgery, University East Piedmont, Novara, Italy
| | - Sergio Gentilli
- Department of Translational Medicine, Laboratory of Physiology/Experimental Surgery, University East Piedmont, Novara, Italy
| | - Alberto Oldani
- Department of Translational Medicine, Laboratory of Physiology/Experimental Surgery, University East Piedmont, Novara, Italy
| | - Serena Farruggio
- Department of Translational Medicine, AGING PROJECT, University East Piedmont, Novara, Italy
- Department of Translational Medicine, Laboratory of Physiology/Experimental Surgery, University East Piedmont, Novara, Italy
| | - Carmela Melluzza
- Department of Translational Medicine, Gynecologic Unit, University East Piedmont, Azienda Ospedaliera Universitaria Maggiore della Carità, Novara, Italy
| | - Giulia Raina
- Department of Translational Medicine, AGING PROJECT, University East Piedmont, Novara, Italy
- Department of Translational Medicine, Laboratory of Physiology/Experimental Surgery, University East Piedmont, Novara, Italy
| | - Elena Grossini
- Department of Translational Medicine, AGING PROJECT, University East Piedmont, Novara, Italy
- Department of Translational Medicine, Laboratory of Physiology/Experimental Surgery, University East Piedmont, Novara, Italy
- * E-mail:
| |
Collapse
|
60
|
Yin J, Chen X, Wang CC, Zhao Y, Sun YZ. Prediction of Small Molecule–MicroRNA Associations by Sparse Learning and Heterogeneous Graph Inference. Mol Pharm 2019; 16:3157-3166. [DOI: 10.1021/acs.molpharmaceut.9b00384] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jun Yin
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Xing Chen
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Chun-Chun Wang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Yan Zhao
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Ya-Zhou Sun
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
61
|
Pan JS, Sheikh-Hamad D. Mitochondrial dysfunction in acute kidney injury and sex-specific implications. MEDICAL RESEARCH ARCHIVES 2019; 7. [PMID: 31276028 DOI: 10.18103/mra.v7i2.1898] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The kidney is one of the most energy-demanding organs in the human body, and the maintenance of mitochondrial homeostasis is central to kidney function. Recent advances have led to a greater appreciation of how mitochondrial dysfunction contributes to the pathogenesis of AKI, from decreased ATP production, to enhanced mitochondrial oxidative stress, cell necrosis and apoptosis. Accumulating evidence suggests sexual dimorphism in the response to AKI with males demonstrating greater risk for developing ischemia-reperfusion and sepsis-induced kidney injury. In contrast, females may be more susceptible to nephrotoxic-AKI. There are important sex-related differences in mitochondrial respiration, biogenesis and dynamics that likely contribute to the observed sexual dimorphism in AKI. Sex hormones mediate many of these differences with multiple preclinical studies demonstrating the renoprotective actions of estrogen in many rodent models of AKI. Estrogenic control of mitochondrial biogenesis, function and reactive oxygen species (ROS) generation is discussed. Furthermore, the potential role for sex chromosomes in mediating sex differences in AKI is examined. Novel animal models such as the "four core genotypes" (FCG) mouse model provide us with important tools to study sex chromosome effects in kidney health and disease. By understanding the influences of sexual dimorphism or sex hormones on mitochondrial homeostasis and disease manifestations, we may be able to identify novel therapeutic targets and improve existing treatment options for AKI.
Collapse
Affiliation(s)
- Jenny S Pan
- Section of Nephrology and Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA.,Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - David Sheikh-Hamad
- Section of Nephrology and Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA.,Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|