51
|
Zhang T, Huang L, Peng J, Zhang JH, Zhang H. LJ529 attenuates mast cell-related inflammation via A 3R-PKCε-ALDH2 pathway after subarachnoid hemorrhage in rats. Exp Neurol 2021; 340:113686. [PMID: 33713658 DOI: 10.1016/j.expneurol.2021.113686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/23/2021] [Accepted: 03/07/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND PURPOSE Mast cells (MCs) has been recognized as an effector of inflammation or a trigger of inflammatory factors during stroke. LJ529 was reported to attenuate inflammation through a Gi protein-coupled Adenosine A3 receptor (A3R) after ischemia. Here, we aim to study the protective effect and its mechanism of LJ529 in subarachnoid hemorrhage (SAH) rat model for mast cell-related inflammation. METHODS 155 Sprague-Dawley adult male rats were used in experiments. Endovascular perforation was used for SAH model. Intraperitoneal LJ529 was performed 1 h after SAH. Neurological scores were measured 24 h after SAH. Rotarod and morris water maze tests were evaluated for 21 days after SAH. Mast cell degranulation was assessed with Toluidine blue staining and Chymase/Typtase protein expressions. Mast cell-related inflammation was evaluated using IL-6, TNF-α and MCP-1 protein expressions. MRS1523, inhibitor of GPR18 and ε-V1-2, inhibitor of PKCε were respectively given intraperitoneally (i.p.) 1 h and 30 min before SAH for mechanism studies. Pathway related proteins were investigated with western blot and immunofluorescence staining. RESULTS Expression of A3R, PKCε increased after SAH. LJ529 treatment attenuated mast cell degranulation and inflammation. Meanwhile, both short-term and long-term neurological functions were improved after LJ529 treatment. Administration of LJ529 resulted in increased expressions of A3R, PKCε, ALDH2 proteins and decreased expressions of Chymase, Typtase, IL-6, TNF-α and MCP-1 proteins. MRS1523 abolished the treatment effects of LJ529 on neurobehavior and protein levels. ε-V1-2 also reversed the outcomes of LJ529 administration through reduction in protein expressions downstream of PKCε. CONCLUSIONS LJ529 attenuated mast cell-related inflammation through inhibiting degranulation via A3R-PKCε-ALDH2 pathway after SAH. LJ529 may serve as a potential treatment strategy to relieve post-SAH brain injury.
Collapse
Affiliation(s)
- Tongyu Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lei Huang
- Departments of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Jianhua Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - John H Zhang
- Departments of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Hongqi Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
52
|
Deng S, Jin P, Sherchan P, Liu S, Cui Y, Huang L, Zhang JH, Gong Y, Tang J. Recombinant CCL17-dependent CCR4 activation alleviates neuroinflammation and neuronal apoptosis through the PI3K/AKT/Foxo1 signaling pathway after ICH in mice. J Neuroinflammation 2021; 18:62. [PMID: 33648537 PMCID: PMC7923481 DOI: 10.1186/s12974-021-02112-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/16/2021] [Indexed: 02/07/2023] Open
Abstract
Background Intracerebral hemorrhage (ICH), a devastating subtype of stroke, is associated with high mortality and morbidity. Neuroinflammation is an important factor leading to ICH-induced neurological injuries. C-C Chemokine Receptor 4 (CCR4) plays an important role in enhancing hematoma clearance after ICH. However, it is unclear whether CCR4 activation can ameliorate neuroinflammation and apoptosis of neurons following ICH. The aim of the present study was to examine the effects of recombinant CCL17 (rCCL17)-dependent CCR4 activation on neuroinflammation and neuronal apoptosis in an intrastriatal autologous blood injection ICH model, and to determine whether the PI3K/AKT/Foxo1 signaling pathway was involved. Methods Two hundred twenty-six adult (8-week-old) male CD1 mice were randomly assigned to sham and ICH surgery groups. An intrastriatal autologous blood injection ICH model was used. rCCL17, a CCR4 ligand, was delivered by intranasal administration at 1 h, 3 h, and 6 h post-ICH. CCL17 antibody was administrated by intraventricular injection at 1 h post-ICH. C021, a specific inhibitor of CCR4 and GDC0068, an AKT inhibitor were delivered intraperitoneally 1 h prior to ICH induction. Brain edema, neurobehavioral assessments, western blotting, Fluoro-Jade C staining, terminal deoxynucleotidyl transferase dUTP nick end labeling, and immunofluorescence staining were conducted. Results Endogenous expression of CCL17 and CCR4 were increased following ICH, peaking at 5 days post-induction. CCR4 was found to co-localize with microglia, neurons, and astrocytes. rCCL17 treatment decreased brain water content, attenuated short- and long-term neurological deficits, deceased activation of microglia/macrophages and infiltration of neutrophils, and inhibited neuronal apoptosis in the perihematomal region post-ICH. Moreover, rCCL17 treatment post-ICH significantly increased the expression of CCR4, PI3K, phosphorylated AKT, and Bcl-2, while Foxo1, IL-1β, TNF-α, and Bax expression were decreased. The neuroprotective effects of rCCL17 were reversed with the administration of C021 or GDC0068. Conclusions rCCL17-dependent CCR4 activation ameliorated neurological deficits, reduced brain edema, and ameliorated neuroinflammation and neuronal apoptosis, at least in part, through the PI3K/AKT/Foxo1 signaling pathway after ICH. Thus, activation of CCR4 may provide a promising therapeutic approach for the early management of ICH. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02112-3.
Collapse
Affiliation(s)
- Shuixiang Deng
- Department of Critical Care Medicine, HuaShan Hospital, Fudan University, 12 middle WuLuMuQi, Shanghai, 200040, China.,Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92350, USA
| | - Peng Jin
- Department of Critical Care Medicine, HuaShan Hospital, Fudan University, 12 middle WuLuMuQi, Shanghai, 200040, China.,Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92350, USA
| | - Prativa Sherchan
- Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92350, USA
| | - Shengpeng Liu
- Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92350, USA.,Department of Pediatrics, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, China
| | - Yuhui Cui
- Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92350, USA
| | - Lei Huang
- Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92350, USA.,Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.,Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Ye Gong
- Department of Critical Care Medicine, HuaShan Hospital, Fudan University, 12 middle WuLuMuQi, Shanghai, 200040, China. .,Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Jiping Tang
- Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92350, USA.
| |
Collapse
|
53
|
Deng S, Liu S, Jin P, Feng S, Tian M, Wei P, Zhu H, Tan J, Zhao F, Gong Y. Albumin Reduces Oxidative Stress and Neuronal Apoptosis via the ERK/Nrf2/HO-1 Pathway after Intracerebral Hemorrhage in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8891373. [PMID: 33708336 PMCID: PMC7932792 DOI: 10.1155/2021/8891373] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/19/2020] [Accepted: 02/11/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Albumin has been regarded as a potent antioxidant with free radical scavenging activities. Oxidative stress and neuronal apoptosis are responsible for its highly damaging effects on brain injury after intracerebral hemorrhage (ICH). Here, the present study investigated the neuroprotective effect of albumin against early brain injury after ICH and the potential underlying mechanisms. METHODS Adult male Sprague-Dawley rats were subjected to intrastriatal injection of autologous blood to induce ICH. Human serum albumin was given by intravenous injection 1 h after ICH. U0126, an inhibitor of extracellular signal-regulated kinase (ERK1/2), and ML385, an inhibitor of nuclear factor-E2-related factor 2 (Nrf2), were intraperitoneally administered 1 h before ICH induction. Short- and long-term neurobehavioral tests, western blotting, immunofluorescence staining, oxidative stress evaluations, and apoptosis measurements were performed. RESULTS Endogenous expression of albumin (peaked at 5 days) and heme oxygenase 1 (HO-1, peaked at 24 h) was increased after ICH compared with the sham group. Albumin and HO-1 were colocalized with neurons. Compared with vehicle, albumin treatment significantly improved short- and long-term neurobehavioral deficits and reduced oxidative stress and neuronal death at 72 h after ICH. Moreover, albumin treatment significantly promoted the phosphorylation of ERK1/2; increased the expression of Nrf2, HO-1, and Bcl-2; and downregulated the expression of Romo1 and Bax. U0126 and ML385 abolished the treatment effects of albumin on behavior and protein levels after ICH. CONCLUSIONS Albumin attenuated oxidative stress-related neuronal death may in part via the ERK/Nrf2/HO-1 signaling pathway after ICH in rats. Our study suggests that albumin may be a novel therapeutic method to ameliorate brain injury after ICH.
Collapse
Affiliation(s)
- Shuixiang Deng
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shengpeng Liu
- Department of Pediatrics, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, China
| | - Peng Jin
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shengjie Feng
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Mi Tian
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Pengju Wei
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Hongda Zhu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jiaying Tan
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Feng Zhao
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ye Gong
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
54
|
Liang H, Matei N, McBride DW, Xu Y, Zhou Z, Tang J, Luo B, Zhang JH. TGR5 activation attenuates neuroinflammation via Pellino3 inhibition of caspase-8/NLRP3 after middle cerebral artery occlusion in rats. J Neuroinflammation 2021; 18:40. [PMID: 33531049 PMCID: PMC7856773 DOI: 10.1186/s12974-021-02087-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/15/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Nucleotide-binding oligomerization domain-like receptor pyrin domain-containing protein 3 (NLRP3) plays an important role in mediating inflammatory responses during ischemic stroke. Bile acid receptor Takeda-G-protein-receptor-5 (TGR5) has been identified as an important component in regulating brain inflammatory responses. In this study, we investigated the mechanism of TGR5 in alleviating neuroinflammation after middle cerebral artery occlusion (MCAO). METHODS Sprague-Dawley rats were subjected to MCAO and TGR5 agonist INT777 was administered intranasally 1 h after MCAO. Small interfering RNAs (siRNA) targeting TGR5 and Pellino3 were administered through intracerebroventricular injection 48 h before MCAO. Infarct volumes and neurologic scores were evaluated, and ELISA, flow cytometry, immunofluorescence staining, immunoblotting, and co-immunoprecipitation were used for the evaluations. RESULTS Endogenous TGR5 and Pellino3 levels increased after MCAO. TGR5 activation by INT777 significantly decreased pro-inflammatory cytokine, cleaved caspase-8, and NLRP3 levels, thereby reducing brain infarctions; both short- and long-term neurobehavioral assessments showed improvements. Ischemic damage induced the interaction of TGR5 with Pellino3. Knockdown of either TGR5 or Pellino3 increased the accumulation of cleaved caspase-8 and NLRP3, aggravated cerebral impairments, and abolished the anti-inflammatory effects of INT777 after MCAO. CONCLUSIONS TGR5 activation attenuated brain injury by inhibiting neuroinflammation after MCAO, which could be mediated by Pellino3 inhibition of caspase-8/NLRP3.
Collapse
MESH Headings
- Administration, Intranasal
- Animals
- Brain/drug effects
- Brain/metabolism
- Caspase 8/metabolism
- Cholic Acids/administration & dosage
- Infarction, Middle Cerebral Artery/metabolism
- Infarction, Middle Cerebral Artery/prevention & control
- Inflammation Mediators/antagonists & inhibitors
- Inflammation Mediators/metabolism
- Injections, Intraventricular
- Male
- NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- RNA, Small Interfering/administration & dosage
- Rats
- Rats, Sprague-Dawley
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/metabolism
- Ubiquitin-Protein Ligases/antagonists & inhibitors
- Ubiquitin-Protein Ligases/metabolism
Collapse
Affiliation(s)
- Hui Liang
- Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Physiology and Pharmacology and Department of Anesthesiology, Loma Linda University, 11041 Campus St, Risley Hall, Room 219, Loma Linda, CA 92354 USA
| | - Nathanael Matei
- Department of Physiology and Pharmacology and Department of Anesthesiology, Loma Linda University, 11041 Campus St, Risley Hall, Room 219, Loma Linda, CA 92354 USA
| | - Devin W. McBride
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX USA
| | - Yang Xu
- Department of Physiology and Pharmacology and Department of Anesthesiology, Loma Linda University, 11041 Campus St, Risley Hall, Room 219, Loma Linda, CA 92354 USA
| | - Zhenhua Zhou
- Department of Physiology and Pharmacology and Department of Anesthesiology, Loma Linda University, 11041 Campus St, Risley Hall, Room 219, Loma Linda, CA 92354 USA
| | - Jiping Tang
- Department of Physiology and Pharmacology and Department of Anesthesiology, Loma Linda University, 11041 Campus St, Risley Hall, Room 219, Loma Linda, CA 92354 USA
| | - Benyan Luo
- Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - John H. Zhang
- Department of Physiology and Pharmacology and Department of Anesthesiology, Loma Linda University, 11041 Campus St, Risley Hall, Room 219, Loma Linda, CA 92354 USA
| |
Collapse
|
55
|
Hu X, Yan J, Huang L, Araujo C, Peng J, Gao L, Liu S, Tang J, Zuo G, Zhang JH. INT-777 attenuates NLRP3-ASC inflammasome-mediated neuroinflammation via TGR5/cAMP/PKA signaling pathway after subarachnoid hemorrhage in rats. Brain Behav Immun 2021; 91:587-600. [PMID: 32961266 PMCID: PMC7749833 DOI: 10.1016/j.bbi.2020.09.016] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/05/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Inflammasome-mediated neuroinflammation plays an important role in the pathogenesis of early brain injury (EBI) following subarachnoid hemorrhage (SAH). The activation of the TGR5 receptor has been shown to be neuroprotective in a variety of neurological diseases. This study aimed to investigate the effects of the specific synthetic TGR5 agonist, INT-777, in attenuating NLRP3-ASC inflammasome activation and reducing neuroinflammation after SAH. METHODS One hundred and eighty-four male Sprague Dawley rats were used. SAH was induced by the endovascular perforation. INT-777 was administered intranasally at 1 h after SAH induction. To elucidate the signaling pathway involved in the effect of INT-777 on inflammasome activation during EBI, TGR5 knockout CRISPR and PKA inhibitor H89 were administered intracerebroventricularly and intraperitoneally at 48 h and 1 h before SAH. The SAH grade, short- and long-term neurobehavioral assessments, brain water content, western blot, immunofluorescence staining, and Nissl staining were performed. RESULTS The expressions of endogenous TGR5, p-PKA, and NLRP3-ASC inflammasome were increased after SAH. INT-777 administration significantly decreased NLRP3-ASC inflammasome activation in microglia, reduced brain edema and neuroinflammation, leading to improved short-term neurobehavioral functions at 24 h after SAH. The administration of TGR5 CRISPR or PKA inhibitor (H89) abolished the anti-inflammation effects of INT-777, on NLRP3-ASC inflammasome, pro-inflammatory cytokines (IL-6, IL-1β, and TNF-a), and neutrophil infiltration at 24 h after SAH. Moreover, early administration of INT-777 attenuated neuronal degeneration in hippocampus on 28 d after SAH. CONCLUSIONS INT-777 attenuated NLRP3-ASC inflammasome-dependent neuroinflammation in the EBI after SAH, partially via TGR5/cAMP/PKA signaling pathway. Early administration of INT-777 may serve as a potential therapeutic strategy for EBI management in the setting of SAH.
Collapse
Affiliation(s)
- Xiao Hu
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China; Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA
| | - Jun Yan
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA; Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China
| | - Lei Huang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA; Department of Neurosurgery, Loma Linda University, Loma Linda, CA 92350, USA
| | - Camila Araujo
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA
| | - Jun Peng
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA; Department of Neurosurgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, Hainan 570000, China
| | - Ling Gao
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA; Department of Neurosurgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, Hainan 570000, China
| | - Shengpeng Liu
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA
| | - Gang Zuo
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA; Department of Neurosurgery, Taicang Hospital Affiliated to Soochow University, Taicang, Suzhou, Jiangsu 215400, China.
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA; Department of Neurosurgery, Loma Linda University, Loma Linda, CA 92350, USA; Department of Anesthesiology, Loma Linda University, Loma Linda, CA 92350, USA.
| |
Collapse
|
56
|
Jin P, Deng S, Tian M, Lenahan C, Wei P, Wang Y, Tan J, Wen H, Zhao F, Gao Y, Gong Y. INT-777 prevents cognitive impairment by activating Takeda G protein-coupled receptor 5 (TGR5) and attenuating neuroinflammation via cAMP/ PKA/ CREB signaling axis in a rat model of sepsis. Exp Neurol 2021; 335:113504. [PMID: 33058889 DOI: 10.1016/j.expneurol.2020.113504] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Survivors of sepsis must often endure significant cognitive and behavioral impairments after discharge, but research on the relevant mechanisms and interventions remains lacking. TGR5, a member of the class A GPCR family, plays an important role in many physiological processes, and recent studies have shown that agonists of TGR5 show neuroprotective effects in a variety of neurological disorders. To date, no studies have assessed the effects of TGR5 on neuroinflammatory, cognitive, or behavioral changes in sepsis models. METHODS A total of 267 eight-week-old male Sprague-Dawley rats were used in this study. Sepsis was induced via cecal ligation and puncture (CLP). All animals received volume resuscitation. The rats were given TGR5 CRISPR oligonucleotide intracerebroventricularly 48 h before CLP surgery. INT-777 was administered intranasally 1 h after CLP, and the cAMP inhibitor, SQ22536, was administered intracerebroventricularly 1 h after CLP. Survival rate, bodyweight change, and clinical scores were assessed, and neurobehavioral tests, western blot, and immunofluorescence staining were performed. The cognitive function of rats was measured using the Morris water maze during 15-20 days after CLP. RESULTS The expression of TGR5 in the rat hippocampus was upregulated, and peaked at 3 days after CLP. The survival rate of rats after CLP was less than 50%, and the growth rate, in terms of weight, was significantly decreased. While INT-777 treatment did not improve these changes, the treatment did reduce the clinical scores of rats at 24 h after CLP. On day 15 and later, the surviving mice completed a series of behavioral tests. CLP rats showed spatial and memory deficits and anxiety-like behaviors, but INT-777 treatment significantly improved these effects. Mechanistically, immunofluorescence analysis showed that INT-777 treatment reduced the number of microglia in the hippocampus, neutrophilic infiltration, and the expression of inflammatory factors after CLP in rats. Moreover, INT-777 treatment significantly increased the expression of TGR5, cAMP, p-PKA, and p-CREB, but downregulated the expression of IL-1β, IL-6, and TNF-α. CRISPR-mediated TGR5 knockdown and SQ22536 treatment abolished the neuroprotective effects of TGR5 activation after CLP. CONCLUSION This study demonstrates that INT-777 treatment reduced neuroinflammation and microglial cell activation, but improved cognitive impairment in the experimental sepsis rats. TGR5 has translational potential as a therapeutic target to improve neurological outcomes in sepsis survivors.
Collapse
Affiliation(s)
- Peng Jin
- Department of Intensive Care Unit, HuaShan Hospital, Fudan University, Shanghai 200040, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Shuixiang Deng
- Department of Intensive Care Unit, HuaShan Hospital, Fudan University, Shanghai 200040, China
| | - Mi Tian
- Department of Intensive Care Unit, HuaShan Hospital, Fudan University, Shanghai 200040, China
| | - Cameron Lenahan
- Burrell College of Osteopathic Medicine, Las Cruces, NM 88003, USA; Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Pengju Wei
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yao Wang
- Department of Intensive Care Unit, HuaShan Hospital, Fudan University, Shanghai 200040, China
| | - Jiaying Tan
- Department of Intensive Care Unit, HuaShan Hospital, Fudan University, Shanghai 200040, China
| | - Huimei Wen
- Department of Intensive Care Unit, HuaShan Hospital, Fudan University, Shanghai 200040, China
| | - Feng Zhao
- Department of Intensive Care Unit, HuaShan Hospital, Fudan University, Shanghai 200040, China
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Ye Gong
- Department of Intensive Care Unit, HuaShan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
57
|
Gao L, Shi H, Sherchan P, Tang H, Peng L, Xie S, Liu R, Hu X, Tang J, Xia Y, Zhang JH. Inhibition of lysophosphatidic acid receptor 1 attenuates neuroinflammation via PGE2/EP2/NOX2 signalling and improves the outcome of intracerebral haemorrhage in mice. Brain Behav Immun 2021; 91:615-626. [PMID: 33035633 DOI: 10.1016/j.bbi.2020.09.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 08/01/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022] Open
Abstract
Lysophosphatidic acid receptor 1 (LPA1) plays a critical role in proinflammatory processes in the central nervous system by modulating microglia activation. The aim of this study was to explore the anti-inflammatory effects and neurological function improvement of LPA1 inhibition after intracerebral haemorrhage (ICH) in mice and to determine whether prostaglandin E2 (PGE2), E-type prostaglandin receptor 2 (EP2), and NADPH oxidase 2 (NOX2) signalling are involved in LPA1-mediated neuroinflammation. ICH was induced in CD1 mice by autologous whole blood injection. AM966, a selective LPA1 antagonist, was administered by oral gavage 1 h and 12 h after ICH. The LPA1 endogenous ligand, LPA was administered to verify the effect of LPA1 activation. To elucidate potential inflammatory mechanisms of LPA1, the selective EP2 activator butaprost was administered by intracerebroventricular injection with either AM966 or LPA1 CRISPR knockout (KO). Water content of the brain, neurobehavior, immunofluorescence staining, and western blot were performed. After ICH, EP2 was expressed in microglia whereas LPA1 was expressed in microglia, neurons, and astrocytes, which peaked after 24 h. AM966 inhibition of LPA1 improved neurologic function, reduced brain oedema, and suppressed perihematomal inflammatory cells after ICH. LPA administration aggravated neurological deficits after ICH. AM966 treatment and LPA1 CRISPR KO both decreased the expressions of PGE2, EP2, NOX2, NF-κB, TNF-α, IL-6, and IL-1β expressions after ICH, which was reversed by butaprost. This study demonstrated that inhibition of LPA1 attenuated neuroinflammation caused by ICH via PGE2/EP2/NOX2 signalling pathway in mice, which consequently improved neurobehavioral functions and alleviated brain oedema. LPA1 may be a promising therapeutic target to attenuate ICH-induced secondary brain injury.
Collapse
Affiliation(s)
- Ling Gao
- Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou 570208, China; Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Hui Shi
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; Department of Neurosurgery, Affiliated Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Prativa Sherchan
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Hong Tang
- Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou 570208, China; Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Li Peng
- Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou 570208, China; Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Shucai Xie
- Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou 570208, China; Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Rui Liu
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; Department of Neurology, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Xiao Hu
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; Department of Neurology, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Jiping Tang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Ying Xia
- Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou 570208, China.
| | - John H Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; Department of Neurosurgery and Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
| |
Collapse
|
58
|
Shao A, Lin D, Wang L, Tu S, Lenahan C, Zhang J. Oxidative Stress at the Crossroads of Aging, Stroke and Depression. Aging Dis 2020; 11:1537-1566. [PMID: 33269106 PMCID: PMC7673857 DOI: 10.14336/ad.2020.0225] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 02/25/2020] [Indexed: 12/17/2022] Open
Abstract
Epidemiologic studies have shown that in the aging society, a person dies from stroke every 3 minutes and 42 seconds, and vast numbers of people experience depression around the globe. The high prevalence and disability rates of stroke and depression introduce enormous challenges to public health. Accumulating evidence reveals that stroke is tightly associated with depression, and both diseases are linked to oxidative stress (OS). This review summarizes the mechanisms of OS and OS-mediated pathological processes, such as inflammation, apoptosis, and the microbial-gut-brain axis in stroke and depression. Pathological changes can lead to neuronal cell death, neurological deficits, and brain injury through DNA damage and the oxidation of lipids and proteins, which exacerbate the development of these two disorders. Additionally, aging accelerates the progression of stroke and depression by overactive OS and reduced antioxidant defenses. This review also discusses the efficacy and safety of several antioxidants and antidepressants in stroke and depression. Herein, we propose a crosstalk between OS, aging, stroke, and depression, and provide potential therapeutic strategies for the treatment of stroke and depression.
Collapse
Affiliation(s)
- Anwen Shao
- 1Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Danfeng Lin
- 2Department of Surgical Oncology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Lingling Wang
- 2Department of Surgical Oncology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Sheng Tu
- 3State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, China
| | - Cameron Lenahan
- 4Burrell College of Osteopathic Medicine, Las Cruces, USA.,5Center for Neuroscience Research, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Jianmin Zhang
- 1Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China.,6Brain Research Institute, Zhejiang University, Zhejiang, China.,7Collaborative Innovation Center for Brain Science, Zhejiang University, Zhejiang, China
| |
Collapse
|
59
|
Zhang W, Yang L, Li L, Feng W. Dihydromyricetin attenuates neuropathic pain via enhancing the transition from M1 to M2 phenotype polarization by potentially elevating ALDH2 activity in vitro and vivo. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1151. [PMID: 33241000 PMCID: PMC7576025 DOI: 10.21037/atm-20-5838] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Treatment for neuropathic pain as a refractory disease remains unsatisfactory and represents a significant clinical challenge. A highly effective drug is thus urgently needed for neuropathic pain treatment. Dihydromyricetin (DMY) is a flavonoid with a wide range of biological activities. The purpose of this research is to explore the effects of DMY on neuropathic pain and the underlying mechanism of its effect. Methods The effect of DMY was investigated in BV-2 cells and lipopolysaccharide (LPS)-induced BV-2 cells. A neuropathic pain model was established via spared nerve injury (SNI) surgery in mice, and the protein expression level was detected via Western blot assay. The percent of M1 and M2 phenotype polarization cells were detected via flow cytometry assay. Immunochemical staining assay was also performed to measure the marker levels of the M1 and M2 phenotype polarization cells and aldehyde dehydrogenase 2 (ALDH2) level, and mechanical pain sensitivity was evaluated via measurement of the mechanical withdrawal threshold. Results We found that DMY promoted the transition from M1 to M2 polarization and upregulated the ALDH2 level in vitro and vitro. ALDA-1, an ALDH2 agonist, promoted the switching from M1 to M2 polarization in vivo and vitro. DMY alleviated pain hypersensitivity induced by SNI via enhancing M2 phenotype polarization by elevating ALDH2 activity in mice. After DMY- or ALDA-1-microglia were injected into SNI-induced pain hypersensitive mice, the mechanical withdrawal threshold was increased significantly when compared with the SNI group. Conclusions Our data demonstrated that DMY alleviated neuropathic pain via enhancing the polarization transition from the M1 to M2 phenotype by potentially elevating ALDH2 activity in vitro and vivo. DMY- or ALDA-1-microglia may have alleviative effects on neuropathic pain. The findings herein provide a promising avenue for neuropathic pain treatment, suggesting a new target, ALDH2, in the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lingxiao Yang
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Longyun Li
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wei Feng
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
60
|
Fang Y, Shi H, Ren R, Huang L, Okada T, Lenahan C, Gamdzyk M, Travis ZD, Lu Q, Tang L, Huang Y, Zhou K, Tang J, Zhang J, Zhang JH. Pituitary Adenylate Cyclase-Activating Polypeptide Attenuates Brain Edema by Protecting Blood-Brain Barrier and Glymphatic System After Subarachnoid Hemorrhage in Rats. Neurotherapeutics 2020; 17:1954-1972. [PMID: 32918234 PMCID: PMC7851266 DOI: 10.1007/s13311-020-00925-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2020] [Indexed: 12/14/2022] Open
Abstract
Brain edema is a vital contributor to early brain injury after subarachnoid hemorrhage (SAH), which is responsible for prolonged hospitalization and poor outcomes. Pharmacological therapeutic targets on edema formation have been the focus of research for decades. Pituitary adenylate cyclase-activating polypeptide (PACAP) has been shown to participate in neural development and brain injury. Here, we used PACAP knockout CRISPR to demonstrate that endogenous PACAP plays an endogenous neuroprotective role against brain edema formation after SAH in rats. The exogenous PACAP treatment provided both short- and long-term neurological benefits by preserving the function of the blood-brain barrier and glymphatic system after SAH. Pretreatment of inhibitors of PACAP receptors showed that the PACAP-involved anti-edema effect and neuroprotection after SAH was facilitated by the selective PACAP receptor (PAC1). Further administration of adenylyl cyclase (AC) inhibitor and sulfonylurea receptor 1 (SUR1) CRISPR activator suggested that the AC-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) axis participated in PACAP signaling after SAH, which inhibited the expression of edema-related proteins, SUR1 and aquaporin-4 (AQP4), through SUR1 phosphorylation. Thus, PACAP may serve as a potential clinical treatment to alleviate brain edema in patients with SAH.
Collapse
Affiliation(s)
- Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Zhejiang, 310009, Hangzhou, China
| | - Hui Shi
- Department of Neurosurgery, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Reng Ren
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Zhejiang, 310009, Hangzhou, China
| | - Lei Huang
- Department of Neurosurgery, Loma Linda University, Loma Linda, California, USA
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, Risley Hall, Room 219, Loma Linda, California, 92354, USA
| | - Takeshi Okada
- Department of Neurosurgery, Loma Linda University, Loma Linda, California, USA
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, Risley Hall, Room 219, Loma Linda, California, 92354, USA
| | - Cameron Lenahan
- Department of Neurosurgery, Loma Linda University, Loma Linda, California, USA
- Burrell College of Osteopathic Medicine, Las Cruces, New Mexico, USA
| | - Marcin Gamdzyk
- Department of Neurosurgery, Loma Linda University, Loma Linda, California, USA
| | - Zachary D Travis
- Department of Neurosurgery, Loma Linda University, Loma Linda, California, USA
| | - Qin Lu
- Department of Neurosurgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lihui Tang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Zhejiang, 310009, Hangzhou, China
| | - Yi Huang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Zhejiang, 310009, Hangzhou, China
| | - Keren Zhou
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Zhejiang, 310009, Hangzhou, China
| | - Jiping Tang
- Department of Neurosurgery, Loma Linda University, Loma Linda, California, USA
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, Risley Hall, Room 219, Loma Linda, California, 92354, USA
- Department of Anesthesiology, Loma Linda University, Loma Linda, California, USA
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Zhejiang, 310009, Hangzhou, China.
| | - John H Zhang
- Department of Neurosurgery, Loma Linda University, Loma Linda, California, USA.
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, Risley Hall, Room 219, Loma Linda, California, 92354, USA.
- Department of Anesthesiology, Loma Linda University, Loma Linda, California, USA.
| |
Collapse
|
61
|
Zhang XS, Lu Y, Tao T, Wang H, Liu GJ, Liu XZ, Liu C, Xia DY, Hang CH, Li W. Fucoxanthin Mitigates Subarachnoid Hemorrhage-Induced Oxidative Damage via Sirtuin 1-Dependent Pathway. Mol Neurobiol 2020; 57:5286-5298. [PMID: 32876840 DOI: 10.1007/s12035-020-02095-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022]
Abstract
Oxidative stress is a key component of the pathological cascade in subarachnoid hemorrhage (SAH). Fucoxanthin (Fx) possesses a strong antioxidant property and has shown neuroprotective effects in acute brain injuries such as ischemic stroke and traumatic brain injury. Here, we investigated the beneficial effects of Fx against SAH-induced oxidative insults and the possible molecular mechanisms. Our data showed that Fx could significantly inhibit SAH-induced reactive oxygen species production and lipid peroxidation, and restore the impairment of endogenous antioxidant enzymes activities. In addition, Fx supplementation improved mitochondrial morphology, ameliorated neural apoptosis, and reduced brain edema after SAH. Moreover, Fx administration exerted an improvement in short-term and long-term neurobehavior functions after SAH. Mechanistically, Fx inhibited oxidative damage and brain injury after SAH by deacetylation of forkhead transcription factors of the O class and p53 via sirtuin 1 (Sirt1) activation. EX527, a selective Sirt1 inhibitor, significantly abated Fx-induced Sirt1 activation and abrogated the antioxidant and neuroprotective effects of Fx after SAH. In primary neurons, Fx similarly suppressed oxidative insults and improved cell viability. These effects were associated with Sirt1 activation and were reversed by EX527 treatment. Taken together, our study explored that Fx provided protection against SAH-induced oxidative insults by inducing Sirt1 signaling, indicating that Fx might serve as a potential therapeutic drug for SAH.
Collapse
Affiliation(s)
- Xiang-Sheng Zhang
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.,Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Yue Lu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Tao Tao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Han Wang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Guang-Jie Liu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Xun-Zhi Liu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Cang Liu
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Da-Yong Xia
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, China
| | - Chun-Hua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
62
|
Hu X, Li S, Doycheva DM, Huang L, Lenahan C, Liu R, Huang J, Xie S, Tang J, Zuo G, Zhang JH. Rh-CSF1 attenuates neuroinflammation via the CSF1R/PLCG2/PKCε pathway in a rat model of neonatal HIE. J Neuroinflammation 2020; 17:182. [PMID: 32522286 PMCID: PMC7285566 DOI: 10.1186/s12974-020-01862-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/29/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Hypoxic-ischemic encephalopathy (HIE) is a life-threatening cerebrovascular disease. Neuroinflammation plays an important role in the pathogenesis of HIE, in which microglia are key cellular mediators in the regulation of neuroinflammatory processes. Colony-stimulating factor 1 (CSF1), a specific endogenous ligand of CSF1 receptor (CSF1R), is crucial in microglial growth, differentiation, and proliferation. Recent studies showed that the activation of CSF1R with CSF1 exerted anti-inflammatory effects in a variety of nervous system diseases. This study aimed to investigate the anti-inflammatory effects of recombinant human CSF1 (rh-CSF1) and the underlying mechanisms in a rat model of HIE. METHODS A total of 202 10-day old Sprague Dawley rat pups were used. HI was induced by the right common carotid artery ligation with subsequent exposure of 2.5-h hypoxia. At 1 h and 24 h after HI induction, exogenous rh-CSF1 was administered intranasally. To explore the underlying mechanism, CSF1R inhibitor, BLZ945, and phospholipase C-gamma 2 (PLCG2) inhibitor, U73122, were injected intraperitoneally at 1 h before HI induction, respectively. Brain infarct area, brain water content, neurobehavioral tests, western blot, and immunofluorescence staining were performed. RESULTS The expressions of endogenous CSF1, CSF1R, PLCG2, protein kinase C epsilon type (PKCε), and cAMP response element-binding protein (CREB) were gradually increased after HIE. Rh-CSF1 significantly improved the neurological deficits at 48 h and 4 weeks after HI, which was accompanied by a reduction in the brain infarct area, brain edema, brain atrophy, and neuroinflammation. Moreover, activation of CSF1R by rh-CSF1 significantly increased the expressions of p-PLCG2, p-PKCε, and p-CREB, but inhibited the activation of neutrophil infiltration, and downregulated the expressions of IL-1β and TNF-α. Inhibition of CSF1R and PLCG2 abolished these neuroprotective effects of rh-CSF1 after HI. CONCLUSIONS Our findings demonstrated that the activation of CSF1R by rh-CSF1 attenuated neuroinflammation and improved neurological deficits after HI. The anti-inflammatory effects of rh-CSF1 partially acted through activating the CSF1R/PLCG2/PKCε/CREB signaling pathway after HI. These results suggest that rh-CSF1 may serve as a potential therapeutic approach to ameliorate injury in HIE patients.
Collapse
Affiliation(s)
- Xiao Hu
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, 550002, China.,Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92350, USA
| | - Shirong Li
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, 550002, China.,Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92350, USA
| | - Desislava Met Doycheva
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92350, USA
| | - Lei Huang
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92350, USA.,Department of Neurosurgery, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Cameron Lenahan
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92350, USA.,Bvrrell College of Osteopathic Medicine, Las Cruces, NM, 88003, USA
| | - Rui Liu
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, 550002, China.,Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92350, USA
| | - Juan Huang
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92350, USA.,Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Shucai Xie
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92350, USA.,Department of Hepatobiliary Surgery, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan, China
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92350, USA
| | - Gang Zuo
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92350, USA. .,Department of Neurosurgery, Taicang Hospital Affiliated to Soochow University, Taicang, Suzhou, 215400, Jiangsu, China.
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92350, USA. .,Department of Neurosurgery, Loma Linda University, Loma Linda, CA, 92350, USA. .,Department of Anesthesiology, Loma Linda University, Loma Linda, CA, 92350, USA.
| |
Collapse
|
63
|
Ocak U, Eser Ocak P, Huang L, Xu W, Zuo Y, Li P, Gamdzyk M, Zuo G, Mo J, Zhang G, Zhang JH. Inhibition of mast cell tryptase attenuates neuroinflammation via PAR-2/p38/NFκB pathway following asphyxial cardiac arrest in rats. J Neuroinflammation 2020; 17:144. [PMID: 32366312 PMCID: PMC7199326 DOI: 10.1186/s12974-020-01808-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 04/08/2020] [Indexed: 02/07/2023] Open
Abstract
Background Cardiac arrest survivors suffer from neurological dysfunction including cognitive impairment. Cerebral mast cells, the key regulators of neuroinflammation contribute to neuroinflammation-associated cognitive dysfunction. Mast cell tryptase was demonstrated to have a proinflammatory effect on microglia via the activation of microglial protease-activated receptor-2 (PAR-2). This study investigated the potential anti-neuroinflammatory effect of mast cell tryptase inhibition and the underlying mechanism of PAR-2/p-p38/NFκB signaling following asphyxia-induced cardiac arrest in rats. Methods Adult male Sprague-Dawley rats resuscitated from 10 min of asphyxia-induced cardiac arrest were randomized to four separate experiments including time-course, short-term outcomes, long-term outcomes and mechanism studies. The effect of mast cell tryptase inhibition on asphyxial cardiac arrest outcomes was examined after intranasal administration of selective mast cell tryptase inhibitor (APC366; 50 μg/rat or 150 μg/rat). AC55541 (selective PAR-2 activator; 30 μg/rat) and SB203580 (selective p38 inhibitor; 300 μg/rat) were used for intervention. Short-term neurocognitive functions were evaluated using the neurological deficit score, number of seizures, adhesive tape removal test, and T-maze test, while long-term cognitive functions were evaluated using the Morris water maze test. Hippocampal neuronal degeneration was evaluated by Fluoro-Jade C staining. Results Mast cell tryptase and PAR-2 were dramatically increased in the brain following asphyxia-induced cardiac arrest. The inhibition of mast cell tryptase by APC366 improved both short- and long-term neurological outcomes in resuscitated rats. Such behavioral benefits were associated with reduced expressions of PAR-2, p-p38, NFκB, TNF-α, and IL-6 in the brain as well as less hippocampal neuronal degeneration. The anti-neuroinflammatory effect of APC366 was abolished by AC55541, which when used alone, indeed further exacerbated neuroinflammation, hippocampal neuronal degeneration, and neurologic deficits following cardiac arrest. The deleterious effects aggregated by AC55541 were minimized by p38 inhibitor. Conclusions The inhibition of mast cell tryptase attenuated neuroinflammation, led to less hippocampal neuronal death and improved neurological deficits following cardiac arrest. This effect was at least partly mediated via inhibiting the PAR-2/p-p38/NFκB signaling pathway. Thus, mast cell tryptase might be a novel therapeutic target in the management of neurological impairment following cardiac arrest.
Collapse
Affiliation(s)
- Umut Ocak
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.,Department of Emergency Medicine, Bursa Yuksek Ihtisas Training and Research Hospital, University of Health Sciences, 16310, Bursa, Turkey.,Department of Emergency Medicine, Bursa City Hospital, 16110, Bursa, Turkey
| | - Pinar Eser Ocak
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.,Department of Neurosurgery, Uludag University School of Medicine, 16069, Bursa, Turkey
| | - Lei Huang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.,Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Weilin Xu
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.,Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, Hangzhou, China
| | - Yuchun Zuo
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.,Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Peng Li
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Marcin Gamdzyk
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Gang Zuo
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.,Department of Neurosurgery, The Affiliated Taicang Hospital, Soochow University, Suzhou, Taicang, 215400, Jiangsu, China
| | - Jun Mo
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.,Department of Neurosurgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Guangyu Zhang
- Mass Spectrometry Core Facility, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA. .,Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA. .,Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA. .,Department of Neurology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.
| |
Collapse
|
64
|
Eser Ocak P, Ocak U, Sherchan P, Gamdzyk M, Tang J, Zhang JH. Overexpression of Mfsd2a attenuates blood brain barrier dysfunction via Cav-1/Keap-1/Nrf-2/HO-1 pathway in a rat model of surgical brain injury. Exp Neurol 2020; 326:113203. [PMID: 31954682 PMCID: PMC7038791 DOI: 10.1016/j.expneurol.2020.113203] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Disruption of the blood brain barrier (BBB) and subsequent cerebral edema formation is one of the major adverse effects of brain surgery, leading to postoperative neurological dysfunction. Recently, Mfsd2a has been shown to have a crucial role for the maintenance of BBB functions. In this study, we aimed to evaluate the role of Mfsd2a on BBB disruption following surgical brain injury (SBI) in rats. MATERIALS AND METHODS Rats were subjected to SBI by partial resection of the right frontal lobe. To evaluate the effect of Mfsd2a on BBB permeability and neurobehavior outcome following SBI, Mfsd2a was either overexpressed or downregulated in the brain by administering Mfsd2a CRISPR activation or knockout plasmids, respectively. The potential mechanism of Mfsd2a-mediated BBB protection through the cav-1/Nrf-2/HO-1 signaling pathway was evaluated. RESULTS Mfsd2a levels were significantly decreased while cav-1, Nrf-2 and HO-1 levels were increased in the right frontal perisurgical area following SBI. When overexpressed, Mfsd2a attenuated brain edema and abolished neurologic impairment caused by SBI while downregulation of Mfsd2a expression further deteriorated BBB functions and worsened neurologic performance following SBI. The beneficial effect of Mfsd2a overexpression on BBB functions was associated with diminished expression of cav-1, increased Keap-1/Nrf-2 dissociation and further augmented levels of Nrf-2 and HO-1 in the right frontal perisurgical area, leading to enhanced levels of tight junction proteins following SBI. The BBB protective effect of Mfsd2a was blocked by selective inhibitors of Nrf-2 and HO-1. CONCLUSIONS Mfsd2a attenuates BBB disruption through cav-1/Nrf-2/HO-1 signaling pathway in rats subjected to experimental SBI.
Collapse
Affiliation(s)
- Pinar Eser Ocak
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA; Department of Neurosurgery, Uludag University School of Medicine, Bursa 16120, Turkey
| | - Umut Ocak
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA; Department of Emergency Medicine, Bursa Yuksek Ihtisas Training and Research Hospital, University of Health Sciences, Bursa 16310, Turkey; Department of Emergency Medicine, Bursa City Hospital, Bursa 16110, Turkey
| | - Prativa Sherchan
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Marcin Gamdzyk
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA; Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA; Department of Neurology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA; Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| |
Collapse
|