51
|
Chaturvedi AK, Patel MK, Mishra A, Tiwari V, Jha B. The SbMT-2 gene from a halophyte confers abiotic stress tolerance and modulates ROS scavenging in transgenic tobacco. PLoS One 2014; 9:e111379. [PMID: 25340650 PMCID: PMC4207811 DOI: 10.1371/journal.pone.0111379] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 10/01/2014] [Indexed: 01/12/2023] Open
Abstract
Heavy metals are common pollutants of the coastal saline area and Salicornia brachiata an extreme halophyte is frequently exposed to various abiotic stresses including heavy metals. The SbMT-2 gene was cloned and transformed to tobacco for the functional validation. Transgenic tobacco lines (L2, L4, L6 and L13) showed significantly enhanced salt (NaCl), osmotic (PEG) and metals (Zn++, Cu++ and Cd++) tolerance compared to WT plants. Transgenic lines did not show any morphological variation and had enhanced growth parameters viz. shoot length, root length, fresh weight and dry weight. High seed germination percentage, chlorophyll content, relative water content, electrolytic leakage and membrane stability index confirmed that transgenic lines performed better under salt (NaCl), osmotic (PEG) and metals (Zn++, Cu++ and Cd++) stress conditions compared to WT plants. Proline, H2O2 and lipid peroxidation (MDA) analyses suggested the role of SbMT-2 in cellular homeostasis and H2O2 detoxification. Furthermore in vivo localization of H2O2 and O2-; and elevated expression of key antioxidant enzyme encoding genes, SOD, POD and APX evident the possible role of SbMT-2 in ROS scavenging/detoxification mechanism. Transgenic lines showed accumulation of Cu++ and Cd++ in root while Zn++ in stem under stress condition. Under control (unstressed) condition, Zn++ was accumulated more in root but accumulation of Zn++ in stem under stress condition suggested that SbMT-2 may involve in the selective translocation of Zn++ from root to stem. This observation was further supported by the up-regulation of zinc transporter encoding genes NtZIP1 and NtHMA-A under metal ion stress condition. The study suggested that SbMT-2 modulates ROS scavenging and is a potential candidate to be used for phytoremediation and imparting stress tolerance.
Collapse
Affiliation(s)
- Amit Kumar Chaturvedi
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India
| | - Manish Kumar Patel
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India
| | - Avinash Mishra
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India
| | - Vivekanand Tiwari
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India
| | - Bhavanath Jha
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India
| |
Collapse
|
52
|
Tiwari V, Chaturvedi AK, Mishra A, Jha B. An efficient method of agrobacterium-mediated genetic transformation and regeneration in local Indian cultivar of groundnut (Arachis hypogaea) using grafting. Appl Biochem Biotechnol 2014; 175:436-53. [PMID: 25308617 DOI: 10.1007/s12010-014-1286-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/02/2014] [Indexed: 01/05/2023]
Abstract
Groundnut (Arachis hypogaea L.) is an industrial crop used as a source of edible oil and nutrients. In this study, an efficient method of regeneration and Agrobacterium-mediated genetic transformation is reported for a local cultivar GG-20 using de-embryonated cotyledon explant. A high regeneration 52.69 ± 2.32 % was achieved by this method with 66.6 μM 6-benzylaminopurine (BAP), while the highest number of shoot buds per explant, 17.67 ± 3.51, was found with 20 μM BAP and 10 μM 2,4-dichlorophenoxyacetic acid (2,4-D). The bacterial culture OD, acetosyringone and L-cysteine concentration were optimized as 1.8, 200 μM and 50 mg L(-1), respectively, in co-cultivation media. It was observed that the addition of 2,4-D in co-cultivation media induced accumulation of endogenous indole-3-acetic acid (IAA). The optimized protocol exhibited 85 % transformation efficiency followed by 14.65 ± 1.06 % regeneration, of which 3.82 ± 0.6 % explants were survived on hygromycin after selection. Finally, 14.58 ± 2.95 % shoots (regenerated on survived explants) were rooted on rooting media (RM3). In grafting method, regenerated shoots (after hygromycin selection) were grafted on the non-transformed stocks with 100 % survival and new leaves emerged in 3 weeks. The putative transgenic plants were then confirmed by PCR, Southern hybridization, reverse transcriptase PCR (RT-PCR) and β-glucuronidase (GUS) histochemical assay. The reported method is efficient and rapid and can also be applied to other crops which are recalcitrant and difficult in rooting.
Collapse
Affiliation(s)
- Vivekanand Tiwari
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, G.B. Road, Bhavnagar, 364002, Gujarat, India
| | | | | | | |
Collapse
|
53
|
Isolation, molecular characterization and functional analysis of OeMT2, an olive metallothionein with a bioremediation potential. Mol Genet Genomics 2014; 290:187-99. [PMID: 25204791 DOI: 10.1007/s00438-014-0908-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 08/23/2014] [Indexed: 10/24/2022]
Abstract
Metallothioneins are essential in plants for metal detoxification in addition to their other roles in plant life cycle. This study reports the characterization of an olive (Olea europaea L. cv. Ayvalik) metallothionein with respect to molecular and functional properties. A cDNA encoding a type 2 metallothionein from olive was isolated from a leaf cDNA library, characterized and named OeMT2 after its molecular and functional properties. OeMT2 was expressed in Escherichia coli, and a single protein band was confirmed by protein gel blot analysis. Metal tolerance ability of bacterial cells expressing OeMT2 was determined against 0.2 mM CdCl2, 0.4 mM CdCl2 and 1 mM CuSO4 in the growth medium. Metal ion contents of bacterial cells expressing OeMT2 were measured by ICP. Metal tolerance assays and ICP measurements suggested that OeMT2 effectively binds Cu and Cd. Molecular analysis of OeMT2 revealed two introns, three exons, a short 3' UTR and a long 5' UTR. Comparing the genomic sequences from 14 olive cultivars revealed OeMT2 had both intron and exon polymorphisms dividing the cultivars into three groups. Real-time PCR analysis demonstrated that OeMT2 expresses more or less the same amounts in all tissues of the olive tree examined. The genomic copy number of OeMT2 was also determined employing real-time PCR which suggested a single copy gene in the olive genome while three other MT2 members were determined from the draft olive genome sequences of Ayvalik cultivar and that of wild olive. This is the first report on molecular and functional characterization of an olive metallothionein and shows that OeMT2 expressed in E. coli has the capability of effectively binding toxic heavy metals. This may suggest that OeMT2 plays an important role in metal homeostasis in addition to a good potential for environmental and industrial usage.
Collapse
|
54
|
Gu CS, Liu LQ, Zhao YH, Deng YM, Zhu XD, Huang SZ. Overexpression of Iris. lactea var. chinensis metallothionein llMT2a enhances cadmium tolerance in Arabidopsis thaliana. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 105:22-28. [PMID: 24780229 DOI: 10.1016/j.ecoenv.2014.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 03/31/2014] [Accepted: 04/01/2014] [Indexed: 06/03/2023]
Abstract
Metallothioneins (MTs) are cysteine-rich, low molecular weight, heavy metal-binding protein molecules. Here, a full-length cDNA homologue of MT2a (type 2 metallothionein) was isolated from the cadmium-tolerant species Iris. lactea var. chinensis (I. lactea var. chinensis). Expression of IlMT2a in I. lactea var. chinensis roots and leaves was up-regulated in response to cadmium stress. When the gene was constitutively expressed in Arabidopsis thaliana (A. thaliana), root length of transgenic lines was longer than that of wild-type under 50μM or 100μM cadmium stress. However, there was no difference of cadmium absorption between wild-type and trangenic lines. Histochemical staining by 3,3-diaminobenzidine (DAB) and nitroblue tetrazoliu (NBT) clearly demonstrated that transgenic lines accumulated remarkably less H2O2 and O2(-) than wild-type. Together, IlMT2a may be a promising gene for the cadmium tolerance improvement.
Collapse
Affiliation(s)
- Chun-Sun Gu
- Institute of Botany, Jiangsu Province and Chinese Academy of Science, Nanjing 210014, China
| | - Liang-qin Liu
- College of Horticulture, Nanjing Agricultural University Nanjing 210014, China
| | - Yan-Hai Zhao
- Institute of Botany, Jiangsu Province and Chinese Academy of Science, Nanjing 210014, China
| | - Yan-ming Deng
- Institute of Agrobiotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xu-dong Zhu
- College of Horticulture, Nanjing Agricultural University Nanjing 210014, China
| | - Su-Zhen Huang
- Institute of Botany, Jiangsu Province and Chinese Academy of Science, Nanjing 210014, China.
| |
Collapse
|
55
|
Ectopic over-expression of peroxisomal ascorbate peroxidase (SbpAPX) gene confers salt stress tolerance in transgenic peanut (Arachis hypogaea). Gene 2014; 547:119-25. [PMID: 24954532 DOI: 10.1016/j.gene.2014.06.037] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/16/2014] [Accepted: 06/18/2014] [Indexed: 01/30/2023]
Abstract
Peroxisomal ascorbate peroxidase gene (SbpAPX) of an extreme halophyte Salicornia brachiata imparts abiotic stress endurance and plays a key role in the protection against oxidative stress. The cloned SbpAPX gene was transformed to local variety of peanut and about 100 transgenic plants were developed using optimized in vitro regeneration and Agrobacterium mediated genetic transformation method. The T0 transgenic plants were confirmed for the gene integration; grown under controlled condition in containment green house facility; seeds were harvested and T1 plants were raised. Transgenic plants (T1) were further confirmed by PCR using gene specific primers and histochemical GUS assay. About 40 transgenic plants (T1) were selected randomly and subjected for salt stress tolerance study. Transgenic plants remained green however non-transgenic plants showed bleaching and yellowish leaves under salt stress conditions. Under stress condition, transgenic plants continued normal growth and completed their life cycle. Transgenic peanut plants exhibited adequate tolerance under salt stress condition and thus could be explored for the cultivation in salt affected areas for the sustainable agriculture.
Collapse
|
56
|
Singh N, Mishra A, Jha B. Over-expression of the peroxisomal ascorbate peroxidase (SbpAPX) gene cloned from halophyte Salicornia brachiata confers salt and drought stress tolerance in transgenic tobacco. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2014; 16:321-32. [PMID: 24197564 DOI: 10.1007/s10126-013-9548-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 09/19/2013] [Indexed: 05/20/2023]
Abstract
Salicornia brachiata Roxb., an extreme halophyte, is a naturally adapted higher plant model for additional gene resources to engineer salt tolerance in plants. Ascorbate peroxidase (APX) plays a key role in protecting plants against oxidative stress and thus confers abiotic stress tolerance. A full-length SbpAPX cDNA, encoding peroxisomal ascorbate peroxidase, was cloned from S. brachiata. The open reading frame encodes for a polypeptide of 287 amino acid residues (31.3-kDa protein). The deduced amino acid sequence of the SbpAPX gene showed characteristic peroxisomal targeting sequences (RKRAI) and a C-terminal hydrophobic region of 39 amino acid residues containing a transmembrane domain (TMD) of 23 amino acid residues. Northern blot analysis showed elevated SbpAPX transcript in response to salt, cold, abscisic acid and salicylic acid stress treatments. The SbpAPX gene was transformed to tobacco for their functional validation under stresses. Transgenic plants over-expressing SbpAPX gene showed enhanced salt and drought stress tolerance compared to wild-type plants. Transgenic plants showed enhanced vegetative growth and germination rate both under normal and stressed conditions. Present study revealed that the SbpAPX gene is a potential candidate, which not only confers abiotic stress tolerance to plants but also seems to be involved in plant growth.
Collapse
Affiliation(s)
- Natwar Singh
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, 362 002, Gujarat, India,
| | | | | |
Collapse
|
57
|
Nezhad RM, Shahpiri A, Mirlohi A. Discrimination between two rice metallothionein isoforms belonging to type 1 and type 4 in metal-binding ability. Biotechnol Appl Biochem 2014; 60:275-82. [PMID: 23782215 DOI: 10.1002/bab.1078] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Accepted: 12/12/2012] [Indexed: 10/26/2022]
Abstract
Metallothioneins (MTs) are a superfamily of low-molecular-weight, cysteine (Cys)-rich proteins that are believed to play important roles in protection against metal toxicity and oxidative stress. Plants have several MT isoforms, which are classified into four types based on the arrangement of Cys residues. In this study, two rice (Oryza sativa) MT isoforms, OsMTI-1b and OsMTII-1a from type 1 and type 4, respectively, were heterologously expressed in Escherichia coli as carboxy-terminal extensions of glutathione-S-transferase (GST). Transformed cells expressing GST-OsMTI-1b showed increased tolerance to Ni(2+) , Cd(2+) , and Zn(2+) and accumulated more metal ions compared with cells expressing GST alone. However, heterologous expression of GST-OsMTII-1a had no significant effects on metal tolerance or ion accumulation. The UV absorption spectra and competitive reactions of in vitro Cd-incubated proteins with 5-5'-dithiobis(2-nitrobenzoic) acid revealed that GST-OsMTI-1b, but not GST-OsMTII-1a, is able to form Cd-thiolate clusters. Furthermore, heterologous expression of both GST-OsMTI-1b and GST-OsMTII-1a conferred H2 O2 tolerance to E. coli cells. Taken together, the results presented here show that two different rice MT isoforms belonging to type 1 and type 4 differ in Ni(2+) , Cd(2+) , and Zn(2+) binding abilities, but they may have overlapping function in protection of cells against oxidative stress.
Collapse
Affiliation(s)
- Rezvan Mohammadi Nezhad
- Department of Agricultural Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | | | | |
Collapse
|
58
|
Heterologous expression of an uncharacterized universal stress protein gene (SbUSP) from the extreme halophyte, Salicornia brachiata, which confers salt and osmotic tolerance to E. coli. Gene 2014; 536:163-70. [DOI: 10.1016/j.gene.2013.11.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 11/01/2013] [Accepted: 11/09/2013] [Indexed: 12/26/2022]
|
59
|
He Y, Ma W, Li Y, Liu J, Jing W, Wang L. Expression of metallothionein of freshwater crab (Sinopotamon henanense) in Escherichia coli enhances tolerance and accumulation of zinc, copper and cadmium. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:56-64. [PMID: 24276409 DOI: 10.1007/s10646-013-1151-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/14/2013] [Indexed: 06/02/2023]
Abstract
Metallothioneins (MTs) are ubiquitous metal-binding, cysteine-rich, small proteins and play a major role in metal homeostasis and/or detoxification in all organisms. In a previous study, a novel full length MT gene was isolated from the freshwater crab (Sinopotamon henanense), a species widely distributed in Shanxi and Henan Provinces, China. In this report, the gene for the crab MT was inserted into a PET-28a-6His-SUMO vector and recombinant soluble MT was over-expressed as fusions with SUMO in Escherichia coli. The recombinant fusion protein was purified by affinity chromatography and its biochemical properties were analyzed. In addition, on the basis of constructing SUMO-MT, two mutants, namely SUMO-MTt1 and SUMO-MTt2, were constructed to change the primary structure of SUMO-MT using site-directed mutagenesis techniques with the amino acid substitutions D3C and S37C in order to increase metal-binding capacity of MT. E. coli cells expressing SUMO-MT and these single-mutant proteins exhibited enhanced metal tolerance and higher accumulation of metal ions than control cells. The results showed that the bioaccumulation and tolerance of Zn(2+), Cu(2+) and Cd(2+) in these strains followed the decreasing order of SUMO-MTt1 > SUMO-MTt2 > SUMO-MT. E. coli cells have low tolerance and high accumulation towards cadmium compared to zinc and copper. These results show that the MT of S. henanense could enhance tolerance and accumulation of metal ions. Moreover, we were able to create a novel protein based on the crab MT to bind metal ions at high density and with high affinity. Therefore, SUMO-MT and its mutants can provide potential candidates for heavy metal bioremediation. This study could help further elucidate the mechanism of how the crab detoxifies heavy metals and provide a scientific basis for environment bioremediation of heavy metal pollution using the over-expression of the crab MT and mutant proteins.
Collapse
Affiliation(s)
- Yongji He
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi, People's Republic of China
| | | | | | | | | | | |
Collapse
|
60
|
Tiwari V, Chaturvedi AK, Mishra A, Jha B. The Transcriptional Regulatory Mechanism of the Peroxisomal Ascorbate Peroxidase (pAPX) Gene Cloned from an Extreme Halophyte, Salicornia brachiata. ACTA ACUST UNITED AC 2013; 55:201-17. [DOI: 10.1093/pcp/pct172] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
61
|
Isolation and characterization of a Δ1-pyrroline-5-carboxylate synthetase (NtP5CS) from Nitraria tangutorum Bobr. and functional comparison with its Arabidopsis homologue. Mol Biol Rep 2013; 41:563-72. [PMID: 24338163 DOI: 10.1007/s11033-013-2893-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 12/03/2013] [Indexed: 01/30/2023]
Abstract
Several functional and regulatory proteins play important roles in controlling plant stress tolerance. Proline (Pro) is one of the most accumulated osmolytes correlated with tolerance to stresses. Δ(1)-Pyrroline-5-carboxylate synthetase (P5CS) is a rate-limiting enzyme in Pro biosynthesis. In the present study, we isolated the cDNA for a P5CS gene (NtP5CS) from the halophyte Nitraria tangutorum. Phylogenetic analysis and subcellular localization analysis of NtP5CS-GFP protein in onion cells showed that NtP5CS was a new P5CS gene and was involved in Pro synthesis in N. tangutorum. Expression of the NtP5CS gene was induced by salt stress, dehydration, and high and low temperatures. Escherichia coli overexpressing AtP5CS or NtP5CS exhibited better growth in all treatments, including high salinity, high alkalinity, dehydration, osmotic, heat and cold stresses. Additionally, NtP5CS recombinant E. coli cells grew better than did AtP5CS recombinant cells in response to abiotic stresses. Our data demonstrate that the P5CS from a halophytic species functions more efficiently than its homologue from a glycophytic species in improving the stress tolerance of E. coli.
Collapse
|
62
|
Mudalkar S, Golla R, Sengupta D, Ghatty S, Reddy AR. Molecular cloning and characterisation of metallothionein type 2a gene from Jatropha curcas L., a promising biofuel plant. Mol Biol Rep 2013; 41:113-24. [DOI: 10.1007/s11033-013-2843-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 10/26/2013] [Indexed: 11/28/2022]
|
63
|
Liu D, Mao Z, An Z, Ma L, Lu Z. Significantly improved Escherichia coli tolerance and accumulation of Cd2+, Zn2+ and Cu2+ expressing Streptococcus thermophilus StGCS-GS with high glutathione content. ANN MICROBIOL 2013. [DOI: 10.1007/s13213-013-0730-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
64
|
Harshvardhan K, Mishra A, Jha B. Purification and characterization of cellulase from a marine Bacillus sp. H1666: A potential agent for single step saccharification of seaweed biomass. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2013.04.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
65
|
Heterologous expression and metal-binding characterization of a type 1 metallothionein isoform (OsMTI-1b) from rice (Oryza sativa). Protein J 2013; 32:131-7. [PMID: 23385446 DOI: 10.1007/s10930-013-9469-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Metallothioneins (MTs) are ubiquitous, low molecular mass and cysteine-rich proteins that play important roles in maintaining intracellular metal homeostasis, eliminating metal toxification and protecting the cells against oxidative damages. MTs are able to bind metal ions through the thiol groups of their cysteine residues. Plants have several MT isoforms which are classified into four types based on the arrangement of cysteine residues. In the present study, a rice (Oryza sativa) gene encoding type 1 MT isoform, OsMTI-1b, was inserted in vector pET41a and overexpressed in Escherichia coli as carboxy-terminal extensions of glutathione-S-transferase (GST). The recombinant protein GST-OsMTI-1b was purified using affinity chromatography and its ability to bind with Ni(2+), Cd(2+), Zn(2+) and Cu(2+) ions was analyzed. The results demonstrated that this isoform has ability to bind Ni(2+), Cd(2+) and Zn(2+) ions in vitro, whereas it has no substantial ability to bind Cu(2+) ions. From competitive reaction with 5,5'-dithiobis(2-nitrobenzoic acid), DTNB, the affinity of metal ions for recombinant form of GST-OsMTI-1b was as follows: Ni(2+)/Cd(2+) > Zn(2+) > Cu(2+).
Collapse
|
66
|
Mishra A, Joshi M, Jha B. Oligosaccharide mass profiling of nutritionally important Salicornia brachiata, an extreme halophyte. Carbohydr Polym 2013; 92:1942-5. [DOI: 10.1016/j.carbpol.2012.11.055] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/07/2012] [Accepted: 11/21/2012] [Indexed: 11/30/2022]
|
67
|
Leszczyszyn OI, Imam HT, Blindauer CA. Diversity and distribution of plant metallothioneins: a review of structure, properties and functions. Metallomics 2013; 5:1146-69. [DOI: 10.1039/c3mt00072a] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|