51
|
Litholdo CG, Eamens AL, Waterhouse PM. The phenotypic and molecular assessment of the non-conserved Arabidopsis MICRORNA163/S-ADENOSYL-METHYLTRANSFERASE regulatory module during biotic stress. Mol Genet Genomics 2017; 293:503-523. [PMID: 29196849 DOI: 10.1007/s00438-017-1399-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/22/2017] [Indexed: 10/18/2022]
Abstract
In plants, microRNAs (miRNAs) have evolved in parallel to the protein-coding genes that they target for expression regulation, and miRNA-directed gene expression regulation is central to almost every cellular process. MicroRNA, miR163, is unique to the Arabidopsis genus and is processed into a 24-nucleotide (nt) mature small regulatory RNA (sRNA) from a single precursor transcript transcribed from a single locus, the MIR163 gene. The MIR163 locus is a result of a recent inverted duplication event of one of the five closely related S-ADENOSYL-METHYLTRANSFERASE genes that the mature miR163 sRNA targets for expression regulation. Currently, however, little is known about the role of the miR163/S-ADENOSYL-METHYLTRANSFERASE regulatory module in response to biotic stress. Here, we document the expression domains of MIR163 and the S-ADENOSYL-METHYLTRANSFERASE target genes following fusion of their putative promoter sequences to the β-glucuronidase (GUS) reporter gene and subsequent in planta expression. Further, we report on our phenotypic and molecular assessment of Arabidopsis thaliana plants with altered miR163 accumulation, namely the mir163-1 and mir163-2 insertion knockout mutants and the miR163 overexpression line, the MIR163-OE plant. Finally, we reveal miR163 accumulation and S-ADENOSYL-METHYLTRANSFERASE target gene expression post treatment with the defence elicitors, salicylic acid and jasmonic acid, and following Fusarium oxysporum infection, wounding, and herbivory attack. Together, the work presented here provides a comprehensive new biological insight into the role played by the Arabidopsis genus-specific miR163/S-ADENOSYL-METHYLTRANSFERASE regulatory module in normal A. thaliana development and during the exposure of A. thaliana plants to biotic stress.
Collapse
Affiliation(s)
- Celso Gaspar Litholdo
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia. .,Citrus Biotechnology Lab, Centro de Citricultura, Instituto Agronômico de Campinas, Cordeirópolis, SP, 13490-000, Brazil.
| | - Andrew Leigh Eamens
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia.,School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Peter Michael Waterhouse
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia.,Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| |
Collapse
|
52
|
Miyaji N, Shimizu M, Miyazaki J, Osabe K, Sato M, Ebe Y, Takada S, Kaji M, Dennis ES, Fujimoto R, Okazaki K. Comparison of transcriptome profiles by Fusarium oxysporum inoculation between Fusarium yellows resistant and susceptible lines in Brassica rapa L. PLANT CELL REPORTS 2017; 36:1841-1854. [PMID: 28819684 DOI: 10.1007/s00299-017-2198-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/07/2017] [Indexed: 05/25/2023]
Abstract
Resistant and susceptible lines in Brassica rapa have different immune responses against Fusarium oxysporum inoculation. Fusarium yellows caused by Fusarium oxysporum f. sp. conglutinans (Foc) is an important disease of Brassicaceae; however, the mechanism of how host plants respond to Foc is still unknown. By comparing with and without Foc inoculation in both resistant and susceptible lines of Chinese cabbage (Brassica rapa var. pekinensis), we identified differentially expressed genes (DEGs) between the bulked inoculated (6, 12, 24, and 72 h after inoculation (HAI)) and non-inoculated samples. Most of the DEGs were up-regulated by Foc inoculation. Quantitative real-time RT-PCR showed that most up-regulated genes increased their expression levels from 24 HAI. An independent transcriptome analysis at 24 and 72 HAI was performed in resistant and susceptible lines. GO analysis using up-regulated genes at 24 HAI indicated that Foc inoculation activated systemic acquired resistance (SAR) in resistant lines and tryptophan biosynthetic process and responses to chitin and ethylene in susceptible lines. By contrast, GO analysis using up-regulated genes at 72 HAI showed the overrepresentation of some categories for the defense response in susceptible lines but not in the resistant lines. We also compared DEGs between B. rapa and Arabidopsis thaliana after F. oxysporum inoculation at the same time point, and identified genes related to defense response that were up-regulated in the resistant lines of Chinese cabbage and A. thaliana. Particular genes that changed expression levels overlapped between the two species, suggesting that they are candidates for genes involved in the resistance mechanisms against F. oxysporum.
Collapse
Affiliation(s)
- Naomi Miyaji
- Graduate School of Agricultural Science, Kobe University, Rokkodai, Nada-ku, Kobe, 657-8501, Japan
| | - Motoki Shimizu
- Iwate Biotechnology Research Center, Narita, Kitakami, Iwate, 024-0003, Japan
| | - Junji Miyazaki
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Kenji Osabe
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-Son, Okinawa, 904-0495, Japan
| | - Maho Sato
- Graduate School of Science and Technology, Niigata University, Ikarashi-ninocho, Niigata, 950-2181, Japan
| | - Yusuke Ebe
- Graduate School of Science and Technology, Niigata University, Ikarashi-ninocho, Niigata, 950-2181, Japan
| | - Satoko Takada
- Graduate School of Agricultural Science, Kobe University, Rokkodai, Nada-ku, Kobe, 657-8501, Japan
| | - Makoto Kaji
- Watanabe seed Co., Ltd, Machiyashiki, Misato-Cho, Miyagi, 987-8607, Japan
| | | | - Ryo Fujimoto
- Graduate School of Agricultural Science, Kobe University, Rokkodai, Nada-ku, Kobe, 657-8501, Japan.
| | - Keiichi Okazaki
- Graduate School of Science and Technology, Niigata University, Ikarashi-ninocho, Niigata, 950-2181, Japan
| |
Collapse
|
53
|
Qin X, Wu H, Chen J, Wu L, Lin S, Khan MU, Boorboori MR, Lin W. Transcriptome analysis of Pseudostellaria heterophylla in response to the infection of pathogenic Fusarium oxysporum. BMC PLANT BIOLOGY 2017; 17:155. [PMID: 28923015 PMCID: PMC5604279 DOI: 10.1186/s12870-017-1106-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/08/2017] [Indexed: 05/26/2023]
Abstract
BACKGROUND Pseudostellaria heterophylla (P. heterophylla), a herbaceous perennial, belongs to Caryophyllaceae family and is one of the Chinese herbal medicine with high pharmacodynamic value. It can be used to treat the spleen deficiency, anorexia, weakness after illness and spontaneous perspiration symptoms. Our previous study found that consecutive monoculture of Pseudostellaria heterophylla could lead to the deterioration of the rhizosphere microenvironment. The specialized forms of pathogenic fungus Fusarium oxysporum f.Sp. heterophylla (F. oxysporum) in rhizosphere soils of P. heterophylla plays an important role in the consecutive monoculture of P. heterophylla. RESULTS In this study, F. oxysporum was used to infect the tissue culture plantlets of P. heterophylla to study the responding process at three different infection stages by using RNA-sequencing. We obtained 127,725 transcripts and 47,655 distinct unigenes by de novo assembly and obtained annotated information in details for 25,882 unigenes. The Kyoto Encyclopedia of Genes and Genomes pathway analysis and the real-time quantitative PCR results suggest that the calcium signal system and WRKY transcription factor in the plant-pathogen interaction pathway may play an important role in the response process, and all of the WRKY transcription factor genes were divided into three different types. Moreover, we also found that the stimulation of F. oxysporum may result in the accumulation of some phenolics in the plantlets and the programmed cell death of the plantlets. CONCLUSIONS This study has partly revealed the possible molecular mechanism of the population explosion of F. oxysporum in rhizosphere soils and signal response process, which can be helpful in unraveling the role of F. oxysporum in consecutive monoculture problems of P. heterophylla.
Collapse
Affiliation(s)
- Xianjin Qin
- Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education/College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, People's Republic of China
| | - Hongmiao Wu
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, People's Republic of China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Jun Chen
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, People's Republic of China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Linkun Wu
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, People's Republic of China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Sheng Lin
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, People's Republic of China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Muhammad Umar Khan
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, People's Republic of China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Mohammad Reza Boorboori
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, People's Republic of China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Wenxiong Lin
- Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education/College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, People's Republic of China.
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China.
| |
Collapse
|
54
|
Du N, Shi L, Yuan Y, Sun J, Shu S, Guo S. Isolation of a potential biocontrol agent Paenibacillus polymyxa NSY50 from vinegar waste compost and its induction of host defense responses against Fusarium wilt of cucumber. Microbiol Res 2017. [DOI: 10.1016/j.micres.2017.04.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
55
|
Shi Y, Niu K, Huang B, Liu W, Ma H. Transcriptional Responses of Creeping Bentgrass to 2,3-Butanediol, a Bacterial Volatile Compound (BVC) Analogue. Molecules 2017; 22:molecules22081318. [PMID: 28813015 PMCID: PMC6152298 DOI: 10.3390/molecules22081318] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 07/27/2017] [Accepted: 08/05/2017] [Indexed: 11/23/2022] Open
Abstract
Bacterial volatile compounds (BVCs) have been reported to enhance plant growth and elicit plant defenses against fungal infection and insect damage. The objective of this study was to determine transcriptomic changes in response to synthetic BVC that could be associated with plant resistance to Rhizoctonia solani in creeping bentgrass. The 2,3-butanediol (BD) (250 µM) was sprayed on creeping bentgrass leaves grown in jam jars. The result showed that synthetic BD induced plant defense against R. solani for creeping bentgrass. Transcriptomic analysis demonstrated that more genes were repressed by BD while less showed up-regulation. BD suppressed the expression of some regular stress-related genes in creeping bentgrass, such as pheromone activity, calcium channel activity, photosystem II oxygen evolving complex, and hydrolase activity, while up-regulated defense related transcription factors (TFs), such as basic helix-loop-helix (bHLH) TFs, cysteine2-cysteine2-contans-like (C2C2-CO) and no apical meristem TFs (NAC). Other genes related to disease resistance, such as jasmonic acid (JA) signaling, leucine rich repeats (LRR)-transmembrane protein kinase, pathogen-related (PR) gene 5 receptor kinase and nucleotide binding site-leucine rich repeats (NBS-LRR) domain containing plant resistance gene (R-gene) were also significantly up-regulated. These results suggest that BD may induce changes to the plant transcriptome in induced systemic resistance (ISR) pathways.
Collapse
Affiliation(s)
- Yi Shi
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China.
- Key Laboratory of Grassland Ecosystems, The Ministry of Education of China, Lanzhou 730070, China.
| | - Kuiju Niu
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China.
- Key Laboratory of Grassland Ecosystems, The Ministry of Education of China, Lanzhou 730070, China.
| | - Bingru Huang
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ 08901, USA.
| | - Wenhui Liu
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal Science and Veterinary Medicine, Xining 810016, China.
| | - Huiling Ma
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China.
- Key Laboratory of Grassland Ecosystems, The Ministry of Education of China, Lanzhou 730070, China.
| |
Collapse
|
56
|
Au PCK, Dennis ES, Wang MB. Analysis of Argonaute 4-Associated Long Non-Coding RNA in Arabidopsis thaliana Sheds Novel Insights into Gene Regulation through RNA-Directed DNA Methylation. Genes (Basel) 2017; 8:E198. [PMID: 28783101 PMCID: PMC5575662 DOI: 10.3390/genes8080198] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 12/20/2022] Open
Abstract
RNA-directed DNA methylation (RdDM) is a plant-specific de novo DNA methylation mechanism that requires long noncoding RNA (lncRNA) as scaffold to define target genomic loci. While the role of RdDM in maintaining genome stability is well established, how it regulates protein-coding genes remains poorly understood and few RdDM target genes have been identified. In this study, we obtained sequences of RdDM-associated lncRNAs using nuclear RNA immunoprecipitation against ARGONAUTE 4 (AGO4), a key component of RdDM that binds specifically with the lncRNA. Comparison of these lncRNAs with gene expression data of RdDM mutants identified novel RdDM target genes. Surprisingly, a large proportion of these target genes were repressed in RdDM mutants suggesting that they are normally activated by RdDM. These RdDM-activated genes are more enriched for gene body lncRNA than the RdDM-repressed genes. Histone modification and RNA analyses of several RdDM-activated stress response genes detected increased levels of active histone mark and short RNA transcript in the lncRNA-overlapping gene body regions in the ago4 mutant despite the repressed expression of these genes. These results suggest that RdDM, or AGO4, may play a role in maintaining or activating stress response gene expression by directing gene body chromatin modification preventing cryptic transcription.
Collapse
Affiliation(s)
- Phil Chi Khang Au
- Commonwealth Scientific and Industrial Research Organisation Agriculture, Canberra, Australian Capital Territory 2601, Australia.
| | - Elizabeth S Dennis
- Commonwealth Scientific and Industrial Research Organisation Agriculture, Canberra, Australian Capital Territory 2601, Australia.
| | - Ming-Bo Wang
- Commonwealth Scientific and Industrial Research Organisation Agriculture, Canberra, Australian Capital Territory 2601, Australia.
| |
Collapse
|
57
|
Eggermont L, Verstraeten B, Van Damme EJM. Genome-Wide Screening for Lectin Motifs in Arabidopsis thaliana. THE PLANT GENOME 2017; 10. [PMID: 28724081 DOI: 10.3835/plantgenome2017.02.0010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
For more than three decades, served as a model for plant biology research. At present only a few protein families have been studied in detail in . This study focused on all sequences with lectin motifs in the genome of . Based on amino acid sequence similarity (BLASTp searches), 217 putative lectin genes were retrieved belonging to 9 out of 12 different lectin families. The domain organization and genomic distribution for each lectin family were analyzed. Domain architecture analysis revealed that most of these lectin gene sequences are linked to other domains, often belonging to protein families with catalytic activity. Many protein domains identified are known to play a role in stress signaling and defense, suggesting a major contribution of the putative lectins in development and plant defense. This genome-wide screen for different lectin motifs will help to unravel the functional characteristics of lectins. In addition, phylogenetic trees and WebLogos were created and showed that most lectin sequences that share the same domain architecture evolved together. Furthermore, the amino acids responsible for carbohydrate binding are largely conserved. Our results provide information about the evolutionary relationships and functional divergence of the lectin motifs in .
Collapse
|
58
|
Xing P, Zhang X, Bao Y, Wang Y, Wang H, Li X. Comparative Transcriptome Analyses of Resistant and Susceptible Near-Isogenic Wheat Lines following Inoculation with Blumeria graminis f. sp. tritici. Int J Genomics 2017; 2017:7305684. [PMID: 28553643 PMCID: PMC5434243 DOI: 10.1155/2017/7305684] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/08/2017] [Accepted: 03/06/2017] [Indexed: 12/02/2022] Open
Abstract
Powdery mildew is one of the most important diseases of wheat. In this study, the leaf RNA samples of wheat NILs carrying powdery mildew resistant and susceptible Pm2 alleles (L031 and Chancellor) and its F1 hybrid at two time points (16 h and 96 h postinoculation) were used for RNA-seq analysis. We carry comparison between similar materials at different times and between different materials at same times. The overlapping DEGs between the dominant phenotypes (L031 and F1 hybrid) and the recessive phenotype (Chancellor) were 1028 and 2214 DEGs, which were clearly lower than those between the dominant and recessive parents and thus could provide relatively accurate and valuable information. GO and KEGG enrichment analysis of DEGs revealed that other than the expected defense-related genes, differential up- and downregulation of genes from many other signaling networks were also involved. Comparative transcriptome analysis also revealed that early-stage postinoculation is important and suitable time points to study expression profiles and signaling pathways of resistance-related genes following fungal inoculation. qRT-PCR analyses showed highly consistent expression patterns of genes with RNA-seq data. The results will aid in the identification of genes and signaling pathways involved in powdery mildew response in wheat.
Collapse
Affiliation(s)
- Piyi Xing
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, China
- Agronomy College, Shandong Agricultural University, Taian, Shandong, China
| | - Xueying Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, China
- Agronomy College, Shandong Agricultural University, Taian, Shandong, China
| | - Yinguang Bao
- Agronomy College, Shandong Agricultural University, Taian, Shandong, China
| | - Yuhai Wang
- College of Life Science, Zaozhuang University, Zaozhuang, Shandong, China
| | - Honggang Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, China
- Agronomy College, Shandong Agricultural University, Taian, Shandong, China
| | - Xingfeng Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, China
- Agronomy College, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
59
|
Zhao H, Sun H, Li L, Lou Y, Li R, Qi L, Gao Z. Transcriptome-based investigation of cirrus development and identifying microsatellite markers in rattan (Daemonorops jenkinsiana). Sci Rep 2017; 7:46107. [PMID: 28383053 PMCID: PMC5382692 DOI: 10.1038/srep46107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/08/2017] [Indexed: 11/09/2022] Open
Abstract
Rattan is an important group of regenerating non-wood climbing palm in tropical forests. The cirrus is an essential climbing organ and provides morphological evidence for evolutionary and taxonomic studies. However, limited data are available on the molecular mechanisms underlying the development of the cirrus. Thus, we performed in-depth transcriptomic sequencing analyses to characterize the cirrus development at different developmental stages of Daemonorops jenkinsiana. The result showed 404,875 transcripts were assembled, including 61,569 high-quality unigenes were identified, of which approximately 76.16% were annotated and classified by seven authorized databases. Moreover, a comprehensive analysis of the gene expression profiles identified differentially expressed genes (DEGs) concentrated in developmental pathways, cell wall metabolism, and hook formation between the different stages of the cirri. Among them, 37 DEGs were validated by qRT-PCR. Furthermore, 14,693 transcriptome-based microsatellites were identified. Of the 168 designed SSR primer pairs, 153 were validated and 16 pairs were utilized for the polymorphic analysis of 25 rattan accessions. These findings can be used to interpret the molecular mechanisms of cirrus development, and the developed microsatellites markers provide valuable data for assisting rattan taxonomy and expanding the understanding of genomic study in rattan.
Collapse
Affiliation(s)
- Hansheng Zhao
- State Forestry Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Huayu Sun
- State Forestry Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Lichao Li
- State Forestry Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Yongfeng Lou
- State Forestry Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Rongsheng Li
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510000, China
| | - Lianghua Qi
- State Forestry Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Zhimin Gao
- State Forestry Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, International Center for Bamboo and Rattan, Beijing 100102, China
| |
Collapse
|
60
|
Silvia Sebastiani M, Bagnaresi P, Sestili S, Biselli C, Zechini A, Orrù L, Cattivelli L, Ficcadenti N. Transcriptome Analysis of the Melon- Fusarium oxysporum f. sp. melonis Race 1.2 Pathosystem in Susceptible and Resistant Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:362. [PMID: 28367157 PMCID: PMC5356040 DOI: 10.3389/fpls.2017.00362] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 03/01/2017] [Indexed: 05/20/2023]
Abstract
Fusarium oxysporum f. sp. melonis Snyd. & Hans race 1.2 (FOM1.2) is the most virulent and yield-limiting pathogen of melon (Cucumis melo L.) worldwide. Current information suggest that the resistance to race 1.2 is controlled by multiple recessive genes and strongly affected by the environment. RNA-Seq analysis was used to identify candidate resistance genes and to dissect the early molecular processes deployed during melon-FOM1.2 interaction in the resistant doubled haploid line NAD and in the susceptible genotype Charentais-T (CHT) at 24 and 48 h post-inoculation (hpi). The transcriptome analysis of the NAD-FOM1.2 interaction identified 2,461 and 821 differentially expressed genes (DEGs) at 24 hpi and at 48 hpi, respectively, while in susceptible combination CHT-FOM1.2, 882 and 2,237 DEGs were recovered at 24 hpi and at 48 hpi, respectively. The overall expression profile suggests a prompt activation of the defense responses in NAD due to its basal defense-related machinery that allows an early pathogen recognition. Gene Ontology (GO) enrichment analyses revealed a total of 57 GO terms shared by both genotypes and consistent with response to fungal infection. GO classes named "chitinase activity," "cellulase activity," "defense response, incompatible interaction," "auxin polar transport" emerged as major factors of resistance to FOM1.2. The data indicated that NAD reacts to FOM1.2 with a fine regulation of Ca2+-mediated signaling pathways, cell wall reorganization, and hormone crosstalk (jasmonate and ethylene, auxin and abscissic acid). Several unannotated transcripts were recovered providing a basis for a further exploration of the melon resistance genes. DEGs belonging to the FOM1.2 genome were also detected in planta as a resource for the identification of potential pathogenicity factors. This work provides a broader view of the dynamic changes of the melon transcriptome triggered by FOM1.2 and highlights that the resistance response of NAD is mainly signaled by jasmonic acid and ethylene pathways mediated by ABA and auxin. The role of candidate plant and fungal responsive genes involved in the resistance is discussed.
Collapse
Affiliation(s)
- M. Silvia Sebastiani
- Research Unit for Vegetable Crops in Central Areas, Council for Agricultural Research and EconomicsAscoli Piceno, Italy
| | - Paolo Bagnaresi
- Genomics Research Centre, Council for Agricultural Research and EconomicsPiacenza, Italy
| | - Sara Sestili
- Research Unit for Vegetable Crops in Central Areas, Council for Agricultural Research and EconomicsAscoli Piceno, Italy
| | - Chiara Biselli
- Genomics Research Centre, Council for Agricultural Research and EconomicsPiacenza, Italy
| | - Antonella Zechini
- Genomics Research Centre, Council for Agricultural Research and EconomicsPiacenza, Italy
| | - Luigi Orrù
- Genomics Research Centre, Council for Agricultural Research and EconomicsPiacenza, Italy
| | - Luigi Cattivelli
- Genomics Research Centre, Council for Agricultural Research and EconomicsPiacenza, Italy
| | - Nadia Ficcadenti
- Research Unit for Vegetable Crops in Central Areas, Council for Agricultural Research and EconomicsAscoli Piceno, Italy
| |
Collapse
|
61
|
Thatcher LF, Williams AH, Garg G, Buck SAG, Singh KB. Transcriptome analysis of the fungal pathogen Fusarium oxysporum f. sp. medicaginis during colonisation of resistant and susceptible Medicago truncatula hosts identifies differential pathogenicity profiles and novel candidate effectors. BMC Genomics 2016; 17:860. [PMID: 27809762 PMCID: PMC5094085 DOI: 10.1186/s12864-016-3192-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/22/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pathogenic members of the Fusarium oxysporum species complex are responsible for vascular wilt disease on many important crops including legumes, where they can be one of the most destructive disease causing necrotrophic fungi. We previously developed a model legume-infecting pathosystem based on the reference legume Medicago truncatula and a pathogenic F. oxysporum forma specialis (f. sp.) medicaginis (Fom). To dissect the molecular pathogenicity arsenal used by this root-infecting pathogen, we sequenced its transcriptome during infection of a susceptible and resistant host accession. RESULTS High coverage RNA-Seq of Fom infected root samples harvested from susceptible (DZA315) or resistant (A17) M. truncatula seedlings at early or later stages of infection (2 or 7 days post infection (dpi)) and from vegetative (in vitro) samples facilitated the identification of unique and overlapping sets of in planta differentially expressed genes. This included enrichment, particularly in DZA315 in planta up-regulated datasets, for proteins associated with sugar, protein and plant cell wall metabolism, membrane transport, nutrient uptake and oxidative processes. Genes encoding effector-like proteins were identified, including homologues of the F. oxysporum f. sp. lycopersici Secreted In Xylem (SIX) proteins, and several novel candidate effectors based on predicted secretion, small protein size and high in-planta induced expression. The majority of the effector candidates contain no known protein domains but do share high similarity to predicted proteins predominantly from other F. oxysporum ff. spp. as well as other Fusaria (F. solani, F. fujikori, F. verticilloides, F. graminearum and F. pseudograminearum), and from another wilt pathogen of the same class, a Verticillium species. Overall, this suggests these novel effector candidates may play important roles in Fusaria and wilt pathogen virulence. CONCLUSION Combining high coverage in planta RNA-Seq with knowledge of fungal pathogenicity protein features facilitated the identification of differentially expressed pathogenicity associated genes and novel effector candidates expressed during infection of a resistant or susceptible M. truncatula host. The knowledge from this first in depth in planta transcriptome sequencing of any F. oxysporum ff. spp. pathogenic on legumes will facilitate the dissection of Fusarium wilt pathogenicity mechanisms on many important legume crops.
Collapse
Affiliation(s)
- Louise F. Thatcher
- CSIRO Agriculture and Food, Centre for Environment and Life Sciences, Wembley, Western Australia 6913 Australia
| | - Angela H. Williams
- CSIRO Agriculture and Food, Centre for Environment and Life Sciences, Wembley, Western Australia 6913 Australia
- The Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009 Australia
| | - Gagan Garg
- CSIRO Agriculture and Food, Centre for Environment and Life Sciences, Wembley, Western Australia 6913 Australia
| | - Sally-Anne G. Buck
- CSIRO Agriculture and Food, Centre for Environment and Life Sciences, Wembley, Western Australia 6913 Australia
| | - Karam B. Singh
- CSIRO Agriculture and Food, Centre for Environment and Life Sciences, Wembley, Western Australia 6913 Australia
- The Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009 Australia
| |
Collapse
|
62
|
Ngaki MN, Wang B, Sahu BB, Srivastava SK, Farooqi MS, Kambakam S, Swaminathan S, Bhattacharyya MK. Tanscriptomic Study of the Soybean-Fusarium virguliforme Interaction Revealed a Novel Ankyrin-Repeat Containing Defense Gene, Expression of Whose during Infection Led to Enhanced Resistance to the Fungal Pathogen in Transgenic Soybean Plants. PLoS One 2016; 11:e0163106. [PMID: 27760122 PMCID: PMC5070833 DOI: 10.1371/journal.pone.0163106] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 09/04/2016] [Indexed: 12/13/2022] Open
Abstract
Fusarium virguliforme causes the serious disease sudden death syndrome (SDS) in soybean. Host resistance to this pathogen is partial and is encoded by a large number of quantitative trait loci, each conditioning small effects. Breeding SDS resistance is therefore challenging and identification of single-gene encoded novel resistance mechanisms is becoming a priority to fight this devastating this fungal pathogen. In this transcriptomic study we identified a few putative soybean defense genes, expression of which is suppressed during F. virguliforme infection. The F. virguliforme infection-suppressed genes were broadly classified into four major classes. The steady state transcript levels of many of these genes were suppressed to undetectable levels immediately following F. virguliforme infection. One of these classes contains two novel genes encoding ankyrin repeat-containing proteins. Expression of one of these genes, GmARP1, during F. virguliforme infection enhances SDS resistance among the transgenic soybean plants. Our data suggest that GmARP1 is a novel defense gene and the pathogen presumably suppress its expression to establish compatible interaction.
Collapse
Affiliation(s)
- Micheline N. Ngaki
- Department of Agronomy, Iowa State University, Ames, IA, United States of America
| | - Bing Wang
- Department of Agronomy, Iowa State University, Ames, IA, United States of America
| | - Binod B. Sahu
- Department of Agronomy, Iowa State University, Ames, IA, United States of America
| | - Subodh K. Srivastava
- Department of Agronomy, Iowa State University, Ames, IA, United States of America
| | - Mohammad S. Farooqi
- Department of Agronomy, Iowa State University, Ames, IA, United States of America
| | - Sekhar Kambakam
- Department of Agronomy, Iowa State University, Ames, IA, United States of America
| | | | | |
Collapse
|
63
|
Vogan PJ, Schoettle AW. Carbon Costs of Constitutive and Expressed Resistance to a Non-Native Pathogen in Limber Pine. PLoS One 2016; 11:e0162913. [PMID: 27706249 PMCID: PMC5051957 DOI: 10.1371/journal.pone.0162913] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 08/30/2016] [Indexed: 12/20/2022] Open
Abstract
Increasing the frequency of resistance to the non-native fungus Cronartium ribicola (causative agent of white pine blister rust, WPBR) in limber pine populations is a primary management objective to sustain high-elevation forest communities. However, it is not known to what extent genetic disease resistance is costly to plant growth or carbon economy. In this study, we measured growth and leaf-level physiology in (1) seedling families from seed trees that have previously been inferred to carry or not carry Cr4, the dominant R gene allele conferring complete, gene-for-gene resistance to WPBR in limber pine, and (2) populations that were and were not infected with C. ribicola. We found that, in the absence of C. ribicola exposure, there was no significant difference in carbon relations between families born from seed trees that harbor the resistance allele compared to those that lack it, either to plant growth and phenology or leaf-level photosynthetic traits. However, post-infection with C. ribicola, growth was significantly reduced in inoculation survivors expressing complete resistance compared to uninoculated seedlings. Furthermore, inoculation survivors exhibited significant increases in a suite of traits including photosynthetic rate, respiration rate, leaf N, and stomatal conductance and a decrease in photosynthetic water-use efficiency. The lack of constitutive carbon costs associated with Cr4 resistance in non-stressed limber pine is consistent with a previous report that the R gene allele is not under selection in the absence of C. ribicola and suggests that host resistance may not bear a constitutive cost in pathosystems that have not coevolved. However, under challenge by C. ribicola, complete resistance to WPBR in limber pine has a significant cost to plant growth, though enhanced carbon acquisition post-infection may offset this somewhat. These costs and effects on performance further complicate predictions of this species’ response in warmer future climates in the presence of WPBR.
Collapse
Affiliation(s)
- Patrick J. Vogan
- Mountain Studies Institute, Post Office Box 426, Silverton, Colorado 81433, United States of America
- Rocky Mountain Research Station, United States Department of Agriculture Forest Service, 240 West Prospect Road, Fort Collins, Colorado 80526, United States of America
| | - Anna W. Schoettle
- Rocky Mountain Research Station, United States Department of Agriculture Forest Service, 240 West Prospect Road, Fort Collins, Colorado 80526, United States of America
- * E-mail:
| |
Collapse
|
64
|
Schaker PDC, Palhares AC, Taniguti LM, Peters LP, Creste S, Aitken KS, Van Sluys MA, Kitajima JP, Vieira MLC, Monteiro-Vitorello CB. RNAseq Transcriptional Profiling following Whip Development in Sugarcane Smut Disease. PLoS One 2016; 11:e0162237. [PMID: 27583836 PMCID: PMC5008620 DOI: 10.1371/journal.pone.0162237] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/21/2016] [Indexed: 11/25/2022] Open
Abstract
Sugarcane smut disease is caused by the biotrophic fungus Sporisorium scitamineum. The disease is characterized by the development of a whip-like structure from the primary meristems, where billions of teliospores are produced. Sugarcane smut also causes tillering and low sucrose and high fiber contents, reducing cane productivity. We investigated the biological events contributing to disease symptoms in a smut intermediate-resistant sugarcane genotype by examining the transcriptional profiles (RNAseq) shortly after inoculating the plants and immediately after whip emission. The overall picture of disease progression suggests that premature transcriptional reprogramming of the shoot meristem functions continues until the emergence of the whip. The guidance of this altered pattern is potentially primarily related to auxin mobilization in addition to the involvement of other hormonal imbalances. The consequences associated with whip emission are the modulation of typical meristematic functions toward reproductive organ differentiation, requiring strong changes in carbon partitioning and energy production. These changes include the overexpression of genes coding for invertases and trehalose-6P synthase, as well as other enzymes from key metabolic pathways, such as from lignin biosynthesis. This is the first report describing changes in the transcriptional profiles following whip development, providing a hypothetical model and candidate genes to further study sugarcane smut disease progression.
Collapse
Affiliation(s)
- Patricia D. C. Schaker
- Departamento de Genética, Universidade de São Paulo, Escola Superior de Agricultura “Luiz de Queiroz”, Piracicaba, São Paulo, Brazil
| | - Alessandra C. Palhares
- Departamento de Genética, Universidade de São Paulo, Escola Superior de Agricultura “Luiz de Queiroz”, Piracicaba, São Paulo, Brazil
| | - Lucas M. Taniguti
- Departamento de Genética, Universidade de São Paulo, Escola Superior de Agricultura “Luiz de Queiroz”, Piracicaba, São Paulo, Brazil
| | - Leila P. Peters
- Departamento de Genética, Universidade de São Paulo, Escola Superior de Agricultura “Luiz de Queiroz”, Piracicaba, São Paulo, Brazil
| | - Silvana Creste
- Instituto Agronômico de Campinas, Centro de Cana, Ribeirão Preto, São Paulo, Brazil
| | - Karen S. Aitken
- CSIRO Agriculture, Queensland Bioscience Precinct, St Lucia, Queensland, Australia
| | - Marie-Anne Van Sluys
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | | | - Maria L. C. Vieira
- Departamento de Genética, Universidade de São Paulo, Escola Superior de Agricultura “Luiz de Queiroz”, Piracicaba, São Paulo, Brazil
| | - Claudia B. Monteiro-Vitorello
- Departamento de Genética, Universidade de São Paulo, Escola Superior de Agricultura “Luiz de Queiroz”, Piracicaba, São Paulo, Brazil
| |
Collapse
|
65
|
Johnson KCM, Yu Y, Gao L, Eng RC, Wasteneys GO, Chen X, Li X. A partial loss-of-function mutation in an Arabidopsis RNA polymerase III subunit leads to pleiotropic defects. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2219-30. [PMID: 26865731 PMCID: PMC4809280 DOI: 10.1093/jxb/erw020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plants employ five DNA-dependent RNA polymerases (Pols) in transcription. One of these polymerases, Pol III, has previously been reported to transcribe 5S rRNA, tRNAs, and a number of small RNAs. However, in-depth functional analysis is complicated by the fact that knockout mutations in Pol subunits are typically lethal. Here, we report the characterization of the first known viable Pol III subunit mutant,nrpc7-1 This mutant was originally isolated from a forward genetic screen designed to identify enhancers of the autoimmune mutantsnc1, which contains a gain-of-function mutation in a nucleotide-binding leucine-rich repeat (NLR) immune receptor-encoding gene. Thenrpc7-1mutation occurs in an intron-exon splice site and results in intron retention in someNRPC7transcripts. There is a global disruption in RNA equilibrium innrpc7-1, exemplified by the altered expression of a number of RNA molecules, some of which are not reported to be transcribed by Pol III. There are developmental defects associated with the mutation, as homozygous mutant plants are dwarf, have stunted roots and siliques, and possess serrated leaves. These defects are possibly due to altered small RNA stability or activity. Additionally, thenrpc7-1mutation confers anNLR-specific alternative splicing defect that correlates with enhanced disease resistance, highlighting the importance of alternative splicing in regulating NLR activity. Altogether, these results reveal novel roles for Pol III in maintaining RNA homeostasis, adjusting the expression of a diverse suite of genes, and indirectly modulating gene splicing. Future analyses using thenrpc7-1mutant will be instrumental in examining other unknown Pol III functions.
Collapse
Affiliation(s)
- Kaeli C M Johnson
- Department of Botany, University of British Columbia, Vancouver, V6T 1Z4, Canada Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Yu Yu
- Institute for Integrative Genome Biology, Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA
| | - Lei Gao
- Institute for Integrative Genome Biology, Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA
| | - Ryan C Eng
- Department of Botany, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Geoffrey O Wasteneys
- Department of Botany, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Xuemei Chen
- Institute for Integrative Genome Biology, Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA
| | - Xin Li
- Department of Botany, University of British Columbia, Vancouver, V6T 1Z4, Canada Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4, Canada
| |
Collapse
|
66
|
Schroeder M, Tsuchiya T, He S, Eulgem T. Use of enhancer trapping to identify pathogen-induced regulatory events spatially restricted to plant-microbe interaction sites. MOLECULAR PLANT PATHOLOGY 2016; 17:388-97. [PMID: 26095625 PMCID: PMC6638459 DOI: 10.1111/mpp.12287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Plant genes differentially expressed during plant-pathogen interactions can be important for host immunity or can contribute to pathogen virulence. Large-scale transcript profiling studies, such as microarray- or mRNA-seq-based analyses, have revealed hundreds of genes that are differentially expressed during plant-pathogen interactions. However, transcriptional responses limited to a small number of cells at infection sites can be difficult to detect using these approaches, as they are under-represented in the whole-tissue datasets typically generated by such methods. This study examines the interactions between Arabidopsis thaliana (Arabidopsis) and the pathogenic oomycete Hyaloperonospora arabidopsidis (Hpa) by enhancer trapping to uncover novel plant genes involved in local infection responses. We screened a β-glucuronidase (GUS) reporter-based enhancer-trap population for expression patterns related to Hpa infection. Several independent lines exhibited GUS expression in leaf mesophyll cells surrounding Hpa structures, indicating a regulatory response to pathogen infection. One of these lines contained a single enhancer-trap insertion in an exon of At1g08800 (MyoB1, Myosin Binding Protein 1) and was subsequently found to exhibit reduced susceptibility to Hpa. Two additional Arabidopsis lines with T-DNA insertions in exons of MyoB1 also exhibited approximately 30% fewer spores than wild-type plants. This study demonstrates that our enhancer-trapping strategy can result in the identification of functionally relevant pathogen-responsive genes. Our results further suggest that MyoB1 either positively contributes to Hpa virulence or negatively affects host immunity against this pathogen.
Collapse
Affiliation(s)
- Mercedes Schroeder
- ChemGen, Integrative Graduate Education and Research Traineeship Program, University of California, Riverside, CA, 92521, USA
- Institute for Integrative Genome Biology, Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Tokuji Tsuchiya
- Institute for Integrative Genome Biology, Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Shuilin He
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Thomas Eulgem
- Institute for Integrative Genome Biology, Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
67
|
Chand SK, Nanda S, Joshi RK. Regulation of miR394 in Response to Fusarium oxysporum f. sp. cepae (FOC) Infection in Garlic (Allium sativum L). FRONTIERS IN PLANT SCIENCE 2016; 7:258. [PMID: 26973694 PMCID: PMC4777725 DOI: 10.3389/fpls.2016.00258] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/16/2016] [Indexed: 05/23/2023]
Abstract
MicroRNAs (miRNAs) are a class of post-transcriptional regulators that negatively regulate gene expression through target mRNA cleavage or translational inhibition and play important roles in plant development and stress response. In the present study, six conserved miRNAs from garlic (Allium sativum L.) were analyzed to identify differentially expressed miRNAs in response to Fusarium oxysporum f. sp. cepae (FOC) infection. Stem-loop RT-PCR revealed that miR394 is significantly induced in garlic seedlings post-treatment with FOC for 72 h. The induction of miR394 expression during FOC infection was restricted to the basal stem plate tissue, the primary site of infection. Garlic miR394 was also upregulated by exogenous application of jasmonic acid. Two putative targets of miR394 encoding F-box domain and cytochrome P450 (CYP450) family proteins were predicted and verified using 5' RLM-RACE (RNA ligase mediated rapid amplification of cDNA ends) assay. Quantitative RT-PCR showed that the transcript levels of the predicted targets were significantly reduced in garlic plants exposed to FOC. When garlic cultivars with variable sensitivity to FOC were exposed to the pathogen, an upregulation of miR394 and down regulation of the targets were observed in both varieties. However, the expression pattern was delayed in the resistant genotypes. These results suggest that miR394 functions in negative modulation of FOC resistance and the difference in timing and levels of expression in variable genotypes could be examined as markers for selection of FOC resistant garlic cultivars.
Collapse
|
68
|
Transcriptome Profiling of Resistance to Fusarium oxysporum f. sp. conglutinans in Cabbage (Brassica oleracea) Roots. PLoS One 2016; 11:e0148048. [PMID: 26849436 PMCID: PMC4744058 DOI: 10.1371/journal.pone.0148048] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/11/2016] [Indexed: 11/19/2022] Open
Abstract
Fusarium wilt caused by Fusarium oxysporum f. sp. conglutinans (FOC) is a destructive disease of Brassica crops, which results in severe yield losses. There is little information available about the mechanism of disease resistance. To obtain an overview of the transcriptome profiles in roots of R4P1, a Brassica oleracea variety that is highly resistant to fusarium wilt, we compared the transcriptomes of samples inoculated with FOC and samples inoculated with distilled water. RNA-seq analysis generated more than 136 million 100-bp clean reads, which were assembled into 62,506 unigenes (mean size = 741 bp). Among them, 49,959 (79.92%) genes were identified based on sequence similarity searches, including SwissProt (29,050, 46.47%), Gene Ontology (GO) (33,767, 54.02%), Clusters of Orthologous Groups (KOG) (14,721, 23.55%) and Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG) (12,974, 20.76%) searches; digital gene expression analysis revealed 885 differentially expressed genes (DEGs) between infected and control samples at 4, 12, 24 and 48 hours after inoculation. The DEGs were assigned to 31 KEGG pathways. Early defense systems, including the MAPK signaling pathway, calcium signaling and salicylic acid-mediated hypersensitive response (SA-mediated HR) were activated after pathogen infection. SA-dependent systemic acquired resistance (SAR), ethylene (ET)- and jasmonic (JA)-mediated pathways and the lignin biosynthesis pathway play important roles in plant resistance. We also analyzed the expression of defense-related genes, such as genes encoding pathogenesis-related (PR) proteins, UDP-glycosyltransferase (UDPG), pleiotropic drug resistance, ATP-binding cassette transporters (PDR-ABC transporters), myrosinase, transcription factors and kinases, which were differentially expressed. The results of this study may contribute to efforts to identify and clone candidate genes associated with disease resistance and to uncover the molecular mechanism underlying FOC resistance in cabbage.
Collapse
|
69
|
Belowground Defence Strategies Against Fusarium oxysporum. BELOWGROUND DEFENCE STRATEGIES IN PLANTS 2016. [DOI: 10.1007/978-3-319-42319-7_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|
70
|
Di X, Takken FLW, Tintor N. How Phytohormones Shape Interactions between Plants and the Soil-Borne Fungus Fusarium oxysporum. FRONTIERS IN PLANT SCIENCE 2016; 7:170. [PMID: 26909099 PMCID: PMC4754410 DOI: 10.3389/fpls.2016.00170] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/01/2016] [Indexed: 05/06/2023]
Abstract
Plants interact with a huge variety of soil microbes, ranging from pathogenic to mutualistic. The Fusarium oxysporum (Fo) species complex consists of ubiquitous soil inhabiting fungi that can infect and cause disease in over 120 different plant species including tomato, banana, cotton, and Arabidopsis. However, in many cases Fo colonization remains symptomless or even has beneficial effects on plant growth and/or stress tolerance. Also in pathogenic interactions a lengthy asymptomatic phase usually precedes disease development. All this indicates a sophisticated and fine-tuned interaction between Fo and its host. The molecular mechanisms underlying this balance are poorly understood. Plant hormone signaling networks emerge as key regulators of plant-microbe interactions in general. In this review we summarize the effects of the major phytohormones on the interaction between Fo and its diverse hosts. Generally, Salicylic Acid (SA) signaling reduces plant susceptibility, whereas Jasmonic Acid (JA), Ethylene (ET), Abscisic Acid (ABA), and auxin have complex effects, and are potentially hijacked by Fo for host manipulation. Finally, we discuss how plant hormones and Fo effectors balance the interaction from beneficial to pathogenic and vice versa.
Collapse
|
71
|
Galindo-González L, Deyholos MK. RNA-seq Transcriptome Response of Flax ( Linum usitatissimum L.) to the Pathogenic Fungus Fusarium oxysporum f. sp. lini. FRONTIERS IN PLANT SCIENCE 2016; 7:1766. [PMID: 27933082 PMCID: PMC5121121 DOI: 10.3389/fpls.2016.01766] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/09/2016] [Indexed: 05/19/2023]
Abstract
Fusarium oxysporum f. sp. lini is a hemibiotrophic fungus that causes wilt in flax. Along with rust, fusarium wilt has become an important factor in flax production worldwide. Resistant flax cultivars have been used to manage the disease, but the resistance varies, depending on the interactions between specific cultivars and isolates of the pathogen. This interaction has a strong molecular basis, but no genomic information is available on how the plant responds to attempted infection, to inform breeding programs on potential candidate genes to evaluate or improve resistance across cultivars. In the current study, disease progression in two flax cultivars [Crop Development Center (CDC) Bethune and Lutea], showed earlier disease symptoms and higher susceptibility in the later cultivar. Chitinase gene expression was also divergent and demonstrated and earlier molecular response in Lutea. The most resistant cultivar (CDC Bethune) was used for a full RNA-seq transcriptome study through a time course at 2, 4, 8, and 18 days post-inoculation (DPI). While over 100 genes were significantly differentially expressed at both 4 and 8 DPI, the broadest deployment of plant defense responses was evident at 18 DPI with transcripts of more than 1,000 genes responding to the treatment. These genes evidenced a reception and transduction of pathogen signals, a large transcriptional reprogramming, induction of hormone signaling, activation of pathogenesis-related genes, and changes in secondary metabolism. Among these, several key genes that consistently appear in studies of plant-pathogen interactions, had increased transcript abundance in our study, and constitute suitable candidates for resistance breeding programs. These included: an induced RPMI-induced protein kinase; transcription factors WRKY3, WRKY70, WRKY75, MYB113, and MYB108; the ethylene response factors ERF1 and ERF14; two genes involved in auxin/glucosinolate precursor synthesis (CYP79B2 and CYP79B3); the flavonoid-related enzymes chalcone synthase, dihydroflavonol reductase and multiple anthocyanidin synthases; and a peroxidase implicated in lignin formation (PRX52). Additionally, regulation of some genes indicated potential pathogen manipulation to facilitate infection; these included four disease resistance proteins that were repressed, indole acetic acid amido/amino hydrolases which were upregulated, activated expansins and glucanases, amino acid transporters and aquaporins, and finally, repression of major latex proteins.
Collapse
Affiliation(s)
| | - Michael K. Deyholos
- IK Barber School of Arts and Sciences, University of British Columbia, KelownaBC, Canada
- *Correspondence: Michael K. Deyholos,
| |
Collapse
|
72
|
Liu CH, Fan C. De novo Transcriptome Assembly of Floral Buds of Pineapple and Identification of Differentially Expressed Genes in Response to Ethephon Induction. FRONTIERS IN PLANT SCIENCE 2016; 7:203. [PMID: 26955375 PMCID: PMC4767906 DOI: 10.3389/fpls.2016.00203] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 02/05/2016] [Indexed: 05/11/2023]
Abstract
A remarkable characteristic of pineapple is its ability to undergo floral induction in response to external ethylene stimulation. However, little information is available regarding the molecular mechanism underlying this process. In this study, the differentially expressed genes (DEGs) in plants exposed to 1.80 mL·L(-1) (T1) or 2.40 mL·L(-1) ethephon (T2) compared with Ct plants (control, cleaning water) were identified using RNA-seq and gene expression profiling. Illumina sequencing generated 65,825,224 high-quality reads that were assembled into 129,594 unigenes with an average sequence length of 1173 bp. Of these unigenes, 24,775 were assigned to specific KEGG pathways, of which metabolic pathways and biosynthesis of secondary metabolites were the most highly represented. Gene Ontology (GO) analysis of the annotated unigenes revealed that the majority were involved in metabolic and cellular processes, cell and cell part, catalytic activity and binding. Gene expression profiling analysis revealed 3788, 3062, and 758 DEGs in the comparisons of T1 with Ct, T2 with Ct, and T2 with T1, respectively. GO analysis indicated that these DEGs were predominantly annotated to metabolic and cellular processes, cell and cell part, catalytic activity, and binding. KEGG pathway analysis revealed the enrichment of several important pathways among the DEGs, including metabolic pathways, biosynthesis of secondary metabolites and plant hormone signal transduction. Thirteen DEGs were identified as candidate genes associated with the process of floral induction by ethephon, including three ERF-like genes, one ETR-like gene, one LTI-like gene, one FT-like gene, one VRN1-like gene, three FRI-like genes, one AP1-like gene, one CAL-like gene, and one AG-like gene. qPCR analysis indicated that the changes in the expression of these 13 candidate genes were consistent with the alterations in the corresponding RPKM values, confirming the accuracy and credibility of the RNA-seq and gene expression profiling results. Ethephon-mediated induction likely mimics the process of vernalization in the floral transition in pineapple by increasing LTI, FT, and VRN1 expression and promoting the up-regulation of floral meristem identity genes involved in flower development. The candidate genes screened can be used in investigations of the molecular mechanisms of the flowering pathway and of various other biological mechanisms in pineapple.
Collapse
Affiliation(s)
- Chuan-He Liu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural SciencesGuangzhou, China
- Key Laboratory of South Subtropical Fruit Biology, Genetic Resource Utilization Ministry of AgricultureGuangzhou, China
- *Correspondence: Chuan-He Liu
| | - Chao Fan
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural SciencesGuangzhou, China
- Key Laboratory of South Subtropical Fruit Biology, Genetic Resource Utilization Ministry of AgricultureGuangzhou, China
| |
Collapse
|
73
|
Lanubile A, Muppirala UK, Severin AJ, Marocco A, Munkvold GP. Transcriptome profiling of soybean (Glycine max) roots challenged with pathogenic and non-pathogenic isolates of Fusarium oxysporum. BMC Genomics 2015; 16:1089. [PMID: 26689712 PMCID: PMC4687377 DOI: 10.1186/s12864-015-2318-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/15/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Fusarium oxysporum is one of the most common fungal pathogens causing soybean root rot and seedling blight in U.S.A. In a recent study, significant variation in aggressiveness was observed among isolates of F. oxysporum collected from roots in Iowa, ranging from highly pathogenic to weakly or non-pathogenic isolates. RESULTS We used RNA-seq analysis to investigate the molecular aspects of the interactions of a partially resistant soybean genotype with non-pathogenic/pathogenic isolates of F. oxysporum at 72 and 96 h post inoculation (hpi). Markedly different gene expression profiles were observed in response to the two isolates. A peak of highly differentially expressed genes (HDEGs) was triggered at 72 hpi in soybean roots and the number of HDEGs was about eight times higher in response to the pathogenic isolate compared to the non-pathogenic one (1,659 vs. 203 HDEGs, respectively). Furthermore, the magnitude of induction was much greater in response to the pathogenic isolate. This response included a stronger activation of defense-related genes, transcription factors, and genes involved in ethylene biosynthesis, secondary and sugar metabolism. CONCLUSIONS The obtained data provide an important insight into the transcriptional responses of soybean-F. oxysporum interactions and illustrate the more drastic changes in the host transcriptome in response to the pathogenic isolate. These results may be useful in the developing new methods of broadening resistance of soybean to F. oxysporum, including the over-expression of key soybean genes.
Collapse
Affiliation(s)
- Alessandra Lanubile
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy.
- Department of Plant Pathology and Microbiology, Iowa State University, 50011, Ames, IA, USA.
| | - Usha K Muppirala
- Genome Informatics Facility, Office of Biotechnology, Iowa State University, 50011, Ames, IA, USA.
| | - Andrew J Severin
- Genome Informatics Facility, Office of Biotechnology, Iowa State University, 50011, Ames, IA, USA.
| | - Adriano Marocco
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy.
| | - Gary P Munkvold
- Department of Plant Pathology and Microbiology, Iowa State University, 50011, Ames, IA, USA.
| |
Collapse
|
74
|
Sudheesh S, Sawbridge TI, Cogan NO, Kennedy P, Forster JW, Kaur S. De novo assembly and characterisation of the field pea transcriptome using RNA-Seq. BMC Genomics 2015; 16:611. [PMID: 26275991 PMCID: PMC4537571 DOI: 10.1186/s12864-015-1815-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 05/15/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Field pea (Pisum sativum L.) is a cool-season grain legume that is cultivated world-wide for both human consumption and stock-feed purposes. Enhancement of genetic and genomic resources for field pea will permit improved understanding of the control of traits relevant to crop productivity and quality. Advances in second-generation sequencing and associated bioinformatics analysis now provide unprecedented opportunities for the development of such resources. The objective of this study was to perform transcriptome sequencing and characterisation from two genotypes of field pea that differ in terms of seed and plant morphological characteristics. RESULTS Transcriptome sequencing was performed with RNA templates from multiple tissues of the field pea genotypes Kaspa and Parafield. Tissue samples were collected at various growth stages, and a total of 23 cDNA libraries were sequenced using Illumina high-throughput sequencing platforms. A total of 407 and 352 million paired-end reads from the Kaspa and Parafield transcriptomes, respectively were assembled into 129,282 and 149,272 contigs, which were filtered on the basis of known gene annotations, presence of open reading frames (ORFs), reciprocal matches and degree of coverage. Totals of 126,335 contigs from Kaspa and 145,730 from Parafield were subsequently selected as the reference set. Reciprocal sequence analysis revealed that c. 87% of contigs were expressed in both cultivars, while a small proportion were unique to each genotype. Reads from different libraries were aligned to the genotype-specific assemblies in order to identify and characterise expression of contigs on a tissue-specific basis, of which 87% were expressed in more than one tissue, while others showed distinct expression patterns in specific tissues, providing unique transcriptome signatures. CONCLUSION This study provided a comprehensive assembled and annotated transcriptome set for field pea that can be used for development of genetic markers, in order to assess genetic diversity, construct linkage maps, perform trait-dissection and implement whole-genome selection strategies in varietal improvement programs, as well to identify target genes for genetic modification approaches on the basis of annotation and expression analysis. In addition, the reference field pea transcriptome will prove highly valuable for comparative genomics studies and construction of a finalised genome sequence.
Collapse
Affiliation(s)
- Shimna Sudheesh
- Department of Economic Development, Jobs, Transport and Resources, Biosciences Research Division, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC, 3083, Australia.
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3086, Australia.
| | - Timothy I Sawbridge
- Department of Economic Development, Jobs, Transport and Resources, Biosciences Research Division, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC, 3083, Australia.
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3086, Australia.
| | - Noel Oi Cogan
- Department of Economic Development, Jobs, Transport and Resources, Biosciences Research Division, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC, 3083, Australia.
| | - Peter Kennedy
- Department of Economic Development, Jobs, Transport and Resources, Biosciences Research Division, Grains Innovation Park, Horsham, VIC, 3401, Australia.
| | - John W Forster
- Department of Economic Development, Jobs, Transport and Resources, Biosciences Research Division, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC, 3083, Australia.
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3086, Australia.
| | - Sukhjiwan Kaur
- Department of Economic Development, Jobs, Transport and Resources, Biosciences Research Division, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC, 3083, Australia.
| |
Collapse
|
75
|
Fan G, Xu E, Deng M, Zhao Z, Niu S. Phenylpropanoid metabolism, hormone biosynthesis and signal transduction-related genes play crucial roles in the resistance of Paulownia fortunei to paulownia witches’ broom phytoplasma infection. Genes Genomics 2015. [DOI: 10.1007/s13258-015-0321-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
76
|
Tarazona S, Furió-Tarí P, Turrà D, Pietro AD, Nueda MJ, Ferrer A, Conesa A. Data quality aware analysis of differential expression in RNA-seq with NOISeq R/Bioc package. Nucleic Acids Res 2015; 43:e140. [PMID: 26184878 PMCID: PMC4666377 DOI: 10.1093/nar/gkv711] [Citation(s) in RCA: 376] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/01/2015] [Indexed: 12/14/2022] Open
Abstract
As the use of RNA-seq has popularized, there is an increasing consciousness of the importance of experimental design, bias removal, accurate quantification and control of false positives for proper data analysis. We introduce the NOISeq R-package for quality control and analysis of count data. We show how the available diagnostic tools can be used to monitor quality issues, make pre-processing decisions and improve analysis. We demonstrate that the non-parametric NOISeqBIO efficiently controls false discoveries in experiments with biological replication and outperforms state-of-the-art methods. NOISeq is a comprehensive resource that meets current needs for robust data-aware analysis of RNA-seq differential expression.
Collapse
Affiliation(s)
- Sonia Tarazona
- Genomics of Gene Expression Lab, Centro de Investigación Príncipe Felipe, Eduardo Primo Yúfera 3, 46012, Valencia, Spain Department of Applied Statistics, Operations Research and Quality, Universidad Politécnica de Valencia, Camí de Vera, 46022, Valencia, Spain
| | - Pedro Furió-Tarí
- Genomics of Gene Expression Lab, Centro de Investigación Príncipe Felipe, Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - David Turrà
- Department of Genetics, Universidad de Córdoba, Campus de Rabanales Edificio Gregor Mendel, 14071, Córdoba, Spain
| | - Antonio Di Pietro
- Department of Genetics, Universidad de Córdoba, Campus de Rabanales Edificio Gregor Mendel, 14071, Córdoba, Spain
| | - María José Nueda
- Statistics and Operational Research Department, Universidad de Alicante, Carretera San Vicente del Raspeig s/n, 03690, Alicante, Spain
| | - Alberto Ferrer
- Department of Applied Statistics, Operations Research and Quality, Universidad Politécnica de Valencia, Camí de Vera, 46022, Valencia, Spain
| | - Ana Conesa
- Genomics of Gene Expression Lab, Centro de Investigación Príncipe Felipe, Eduardo Primo Yúfera 3, 46012, Valencia, Spain Microbiology and Cell Science Department, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, FL 32603, USA
| |
Collapse
|
77
|
Mardi M, Karimi Farsad L, Gharechahi J, Salekdeh GH. In-Depth Transcriptome Sequencing of Mexican Lime Trees Infected with Candidatus Phytoplasma aurantifolia. PLoS One 2015; 10:e0130425. [PMID: 26132073 PMCID: PMC4489016 DOI: 10.1371/journal.pone.0130425] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 05/20/2015] [Indexed: 12/31/2022] Open
Abstract
Witches' broom disease of acid lime greatly affects the production of Mexican lime in Iran. It is caused by a phytoplasma (Candidatus Phytoplasma aurantifolia). However, the molecular mechanisms that underlie phytoplasma pathogenicity and the mode of interactions with host plants are largely unknown. Here, high-throughput transcriptome sequencing was conducted to explore gene expression signatures associated with phytoplasma infection in Mexican lime trees. We assembled 78,185 unique transcript sequences (unigenes) with an average length of 530 nt. Of these, 41,805 (53.4%) were annotated against the NCBI non-redundant (nr) protein database using a BLASTx search (e-value ≤ 1e-5). When the abundances of unigenes in healthy and infected plants were compared, 2,805 transcripts showed significant differences (false discovery rate ≤ 0.001 and log2 ratio ≥ 1.5). These differentially expressed genes (DEGs) were significantly enriched in 43 KEGG metabolic and regulatory pathways. The up-regulated DEGs were mainly categorized into pathways with possible implication in plant-pathogen interaction, including cell wall biogenesis and degradation, sucrose metabolism, secondary metabolism, hormone biosynthesis and signalling, amino acid and lipid metabolism, while down-regulated DEGs were predominantly enriched in ubiquitin proteolysis and oxidative phosphorylation pathways. Our analysis provides novel insight into the molecular pathways that are deregulated during the host-pathogen interaction in Mexican lime trees infected by phytoplasma. The findings can be valuable for unravelling the molecular mechanisms of plant-phytoplasma interactions and can pave the way for engineering lime trees with resistance to witches' broom disease.
Collapse
Affiliation(s)
- Mohsen Mardi
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Karaj, Tehran, Iran
| | - Laleh Karimi Farsad
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Karaj, Tehran, Iran
| | - Javad Gharechahi
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ghasem Hosseini Salekdeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Karaj, Tehran, Iran
- Department of Molecular Systems Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
78
|
Castillejo MÁ, Bani M, Rubiales D. Understanding pea resistance mechanisms in response to Fusarium oxysporum through proteomic analysis. PHYTOCHEMISTRY 2015; 115:44-58. [PMID: 25672548 DOI: 10.1016/j.phytochem.2015.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/05/2015] [Accepted: 01/15/2015] [Indexed: 05/06/2023]
Abstract
Fusarium oxysporum f. sp. pisi (Fop) is an important and destructive pathogen affecting pea crop (Pisum sativum) throughout the world. Control of this disease is achieved mainly by integration of different disease management procedures. However, the constant evolution of the pathogen drives the necessity to broaden the molecular basis of resistance to Fop. Our proteomic study was performed on pea with the aim of identifying proteins involved in different resistance mechanisms operating during F. oxysporum infection. For such purpose, we used a two-dimensional electrophoresis (2-DE) coupled to mass spectrometry (MALDI-TOF/TOF) analysis to study the root proteome of three pea genotypes showing different resistance response to Fop race 2. Multivariate statistical analysis identified 132 differential protein spots under the experimental conditions (genotypes/treatments). All of these protein spots were subjected to mass spectrometry analysis to deduce their possible functions. A total of 53 proteins were identified using a combination of peptide mass fingerprinting (PMF) and MSMS fragmentation. The following main functional categories were assigned to the identified proteins: carbohydrate and energy metabolism, nucleotides and aminoacid metabolism, signal transduction and cellular process, folding and degradation, redox and homeostasis, defense, biosynthetic process and transcription/translation. Results obtained in this work suggest that the most susceptible genotypes have increased levels of enzymes involved in the production of reducing power which could then be used as cofactor for enzymes of the redox reactions. This is in concordance with the fact that a ROS burst occurred in the same genotypes, as well as an increase of PR proteins. Conversely, in the resistant genotype proteins responsible to induce changes in the membrane and cell wall composition related to reinforcement were identified. Results are discussed in terms of the differential response to Fop.
Collapse
Affiliation(s)
| | - Moustafa Bani
- Institute for Sustainable Agriculture, CSIC, 4084, 14080 Córdoba, Spain; Biotechnology Department, University of Blida, 09000 Blida, Algeria
| | - Diego Rubiales
- Institute for Sustainable Agriculture, CSIC, 4084, 14080 Córdoba, Spain
| |
Collapse
|
79
|
Lyons R, Stiller J, Powell J, Rusu A, Manners JM, Kazan K. Fusarium oxysporum triggers tissue-specific transcriptional reprogramming in Arabidopsis thaliana. PLoS One 2015; 10:e0121902. [PMID: 25849296 PMCID: PMC4388846 DOI: 10.1371/journal.pone.0121902] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/05/2015] [Indexed: 11/19/2022] Open
Abstract
Some of the most devastating agricultural diseases are caused by root-infecting pathogens, yet the majority of studies on these interactions to date have focused on the host responses of aerial tissues rather than those belowground. Fusarium oxysporum is a root-infecting pathogen that causes wilt disease on several plant species including Arabidopsis thaliana. To investigate and compare transcriptional changes triggered by F. oxysporum in different Arabidopsis tissues, we infected soil-grown plants with F. oxysporum and subjected root and leaf tissue harvested at early and late timepoints to RNA-seq analyses. At least half of the genes induced or repressed by F. oxysporum showed tissue-specific regulation. Regulators of auxin and ABA signalling, mannose binding lectins and peroxidases showed strong differential expression in root tissue. We demonstrate that ARF2 and PRX33, two genes regulated in the roots, promote susceptibility to F. oxysporum. In the leaves, defensins and genes associated with the response to auxin, cold and senescence were strongly regulated while jasmonate biosynthesis and signalling genes were induced throughout the plant.
Collapse
Affiliation(s)
- Rebecca Lyons
- CSIRO Agriculture Flagship, Queensland Bioscience Precinct, Brisbane, QLD, Australia
- * E-mail:
| | - Jiri Stiller
- CSIRO Agriculture Flagship, Queensland Bioscience Precinct, Brisbane, QLD, Australia
| | - Jonathan Powell
- CSIRO Agriculture Flagship, Queensland Bioscience Precinct, Brisbane, QLD, Australia
| | - Anca Rusu
- CSIRO Agriculture Flagship, Queensland Bioscience Precinct, Brisbane, QLD, Australia
| | - John M. Manners
- CSIRO Agriculture Flagship, Black Mountain Laboratories, Canberra, ACT, Australia
| | - Kemal Kazan
- CSIRO Agriculture Flagship, Queensland Bioscience Precinct, Brisbane, QLD, Australia
- Queensland Alliance for Agriculture & Food Innovation (QAAFI), The University of Queensland, St Lucia, Brisbane, Queensland, 4067, Australia
| |
Collapse
|
80
|
Seo E, Choi D. Functional studies of transcription factors involved in plant defenses in the genomics era. Brief Funct Genomics 2015; 14:260-7. [PMID: 25839837 DOI: 10.1093/bfgp/elv011] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Plant transcription factors (TFs) play roles in diverse biological processes including defense responses to pathogens. Here, we provide an overview of recent studies of plant TFs with regard to defense responses. TFs play roles in plant innate immunity by regulating genes related to pathogen-associated molecular pattern-triggered immunity, effector-triggered immunity, hormone signaling pathways and phytoalexin synthesis. Currently, genome-wide phylogenetic and transcriptomic analyses are as important as functional analyses in the study of plant TFs. The integration of genomics information with the knowledge obtained from functional studies provides new insights into the regulation of plant defense mechanisms as well as engineering crops with improved resistance to invading pathogens.
Collapse
|
81
|
Lehmann S, Serrano M, L'Haridon F, Tjamos SE, Metraux JP. Reactive oxygen species and plant resistance to fungal pathogens. PHYTOCHEMISTRY 2015; 112:54-62. [PMID: 25264341 DOI: 10.1016/j.phytochem.2014.08.027] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/18/2014] [Accepted: 08/28/2014] [Indexed: 05/18/2023]
Abstract
Reactive oxygen species (ROS) have been studied for their role in plant development as well as in plant immunity. ROS were consistently observed to accumulate in the plant after the perception of pathogens and microbes and over the years, ROS were postulated to be an integral part of the defence response of the plant. In this article we will focus on recent findings about ROS involved in the interaction of plants with pathogenic fungi. We will describe the ways to detect ROS, their modes of action and their importance in relation to resistance to fungal pathogens. In addition we include some results from works focussing on the fungal interactor and from studies investigating roots during pathogen attack.
Collapse
Affiliation(s)
- Silke Lehmann
- Department of Biology, University of Fribourg, 10 chemin du Musée, CH-1700 Fribourg, Switzerland.
| | - Mario Serrano
- Department of Biology, University of Fribourg, 10 chemin du Musée, CH-1700 Fribourg, Switzerland.
| | - Floriane L'Haridon
- Department of Biology, University of Fribourg, 10 chemin du Musée, CH-1700 Fribourg, Switzerland.
| | - Sotirios E Tjamos
- Laboratory of Plant Pathology, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos, 118 55 Athens, Greece.
| | - Jean-Pierre Metraux
- Department of Biology, University of Fribourg, 10 chemin du Musée, CH-1700 Fribourg, Switzerland.
| |
Collapse
|
82
|
De Coninck B, Timmermans P, Vos C, Cammue BPA, Kazan K. What lies beneath: belowground defense strategies in plants. TRENDS IN PLANT SCIENCE 2015; 20:91-101. [PMID: 25307784 DOI: 10.1016/j.tplants.2014.09.007] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 09/12/2014] [Accepted: 09/16/2014] [Indexed: 05/17/2023]
Abstract
Diseases caused by soil-borne pathogens result worldwide in significant yield losses in economically important crops. In contrast to foliar diseases, relatively little is known about the nature of root defenses against these pathogens. This review summarizes the current knowledge on root infection strategies, root-specific preformed barriers, pathogen recognition, and defense signaling. Studies reviewed here suggest that many commonalities as well as differences exist in defense strategies employed by roots and foliar tissues during pathogen attack. Importantly, in addition to pathogens, plant roots interact with a plethora of non-pathogenic and symbiotic microorganisms. Therefore, a good understanding of how plant roots interact with the microbiome would be particularly important to engineer resistance to root pathogens without negatively altering root-beneficial microbe interactions.
Collapse
Affiliation(s)
- Barbara De Coninck
- Centre of Microbial and Plant Genetics, Katholieke Universiteit (KU) Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium; Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Technologiepark 927, 9052 Gent, Belgium
| | - Pieter Timmermans
- Centre of Microbial and Plant Genetics, Katholieke Universiteit (KU) Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| | - Christine Vos
- Centre of Microbial and Plant Genetics, Katholieke Universiteit (KU) Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium; Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Technologiepark 927, 9052 Gent, Belgium
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics, Katholieke Universiteit (KU) Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium; Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Technologiepark 927, 9052 Gent, Belgium.
| | - Kemal Kazan
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Queensland Bioscience Precinct, Brisbane, Queensland, 4067, Australia; Queensland Alliance for Agriculture & Food Innovation (QAAFI), The University of Queensland, St Lucia, Brisbane, Queensland 4067, Australia
| |
Collapse
|
83
|
Li X, Zhang H, Tian L, Huang L, Liu S, Li D, Song F. Tomato SlRbohB, a member of the NADPH oxidase family, is required for disease resistance against Botrytis cinerea and tolerance to drought stress. FRONTIERS IN PLANT SCIENCE 2015; 235:14-24. [PMID: 26157450 DOI: 10.1016/j.plantsci.2015.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/21/2015] [Accepted: 02/21/2015] [Indexed: 05/13/2023]
Abstract
NADPH oxidases (also known as respiratory burst oxidase homologs, Rbohs) are key enzymes that catalyze the generation of reactive oxygen species (ROS) in plants. In the present study, eight SlRboh genes were identified in tomato and their possible involvement in resistance to Botrytis cinerea and drought tolerance was examined. Expression of SlRbohs was induced by B. cinerea and Pseudomonas syringae pv. tomato but displayed distinct patterns. Virus-induced gene silencing based silencing of SlRbohB resulted in reduced resistance to B. cinerea but silencing of other SlRbohs did not affect the resistance. Compared to non-silenced plants, the SlRbohB-silenced plants accumulated more ROS and displayed attenuated expression of defense genes after infection with B. cinerea. Silencing of SlRbohB also suppressed flg22-induced ROS burst and the expression of SlLrr22, a marker gene related to PAMP-triggered immunity (PTI). Transient expression of SlRbohB in Nicotiana benthamiana led to enhanced resistance to B. cinerea. Furthermore, silencing of SlRbohB resulted in decreased drought tolerance, accelerated water loss in leaves and the altered expression of drought-responsive genes. Our data demonstrate that SlRbohB positively regulates the resistance to B. cinerea, flg22-induced PTI, and drought tolerance in tomato.
Collapse
Affiliation(s)
- Xiaohui Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou China
| | - Huijuan Zhang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou China
| | - Limei Tian
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou China
| | - Lei Huang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou China
| | - Shixia Liu
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou China
| | - Dayong Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou China
| | - Fengming Song
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou China
| |
Collapse
|
84
|
Li X, Zhang H, Tian L, Huang L, Liu S, Li D, Song F. Tomato SlRbohB, a member of the NADPH oxidase family, is required for disease resistance against Botrytis cinerea and tolerance to drought stress. FRONTIERS IN PLANT SCIENCE 2015; 6:463. [PMID: 26157450 PMCID: PMC4477072 DOI: 10.3389/fpls.2015.00463] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/11/2015] [Indexed: 05/19/2023]
Abstract
NADPH oxidases (also known as respiratory burst oxidase homologs, Rbohs) are key enzymes that catalyze the generation of reactive oxygen species (ROS) in plants. In the present study, eight SlRboh genes were identified in tomato and their possible involvement in resistance to Botrytis cinerea and drought tolerance was examined. Expression of SlRbohs was induced by B. cinerea and Pseudomonas syringae pv. tomato but displayed distinct patterns. Virus-induced gene silencing based silencing of SlRbohB resulted in reduced resistance to B. cinerea but silencing of other SlRbohs did not affect the resistance. Compared to non-silenced plants, the SlRbohB-silenced plants accumulated more ROS and displayed attenuated expression of defense genes after infection with B. cinerea. Silencing of SlRbohB also suppressed flg22-induced ROS burst and the expression of SlLrr22, a marker gene related to PAMP-triggered immunity (PTI). Transient expression of SlRbohB in Nicotiana benthamiana led to enhanced resistance to B. cinerea. Furthermore, silencing of SlRbohB resulted in decreased drought tolerance, accelerated water loss in leaves and the altered expression of drought-responsive genes. Our data demonstrate that SlRbohB positively regulates the resistance to B. cinerea, flg22-induced PTI, and drought tolerance in tomato.
Collapse
Affiliation(s)
| | | | | | | | | | - Dayong Li
- *Correspondence: Dayong Li, National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China,
| | | |
Collapse
|
85
|
Le TN, Schumann U, Smith NA, Tiwari S, Au PCK, Zhu QH, Taylor JM, Kazan K, Llewellyn DJ, Zhang R, Dennis ES, Wang MB. DNA demethylases target promoter transposable elements to positively regulate stress responsive genes in Arabidopsis. Genome Biol 2014; 15:458. [PMID: 25228471 PMCID: PMC4189188 DOI: 10.1186/s13059-014-0458-3] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 09/01/2014] [Indexed: 11/12/2022] Open
Abstract
Background DNA demethylases regulate DNA methylation levels in eukaryotes. Arabidopsis encodes four DNA demethylases, DEMETER (DME), REPRESSOR OF SILENCING 1 (ROS1), DEMETER-LIKE 2 (DML2), and DML3. While DME is involved in maternal specific gene expression during seed development, the biological function of the remaining DNA demethylases remains unclear. Results We show that ROS1, DML2, and DML3 play a role in fungal disease resistance in Arabidopsis. A triple DNA demethylase mutant, rdd (ros1 dml2 dml3), shows increased susceptibility to the fungal pathogen Fusarium oxysporum. We identify 348 genes differentially expressed in rdd relative to wild type, and a significant proportion of these genes are downregulated in rdd and have functions in stress response, suggesting that DNA demethylases maintain or positively regulate the expression of stress response genes required for F. oxysporum resistance. The rdd-downregulated stress response genes are enriched for short transposable element sequences in their promoters. Many of these transposable elements and their surrounding sequences show localized DNA methylation changes in rdd, and a general reduction in CHH methylation, suggesting that RNA-directed DNA methylation (RdDM), responsible for CHH methylation, may participate in DNA demethylase-mediated regulation of stress response genes. Many of the rdd-downregulated stress response genes are downregulated in the RdDM mutants nrpd1 and nrpe1, and the RdDM mutants nrpe1 and ago4 show enhanced susceptibility to F. oxysporum infection. Conclusions Our results suggest that a primary function of DNA demethylases in plants is to regulate the expression of stress response genes by targeting promoter transposable element sequences. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0458-3) contains supplementary material, which is available to authorized users.
Collapse
|
86
|
Lanubile A, Ferrarini A, Maschietto V, Delledonne M, Marocco A, Bellin D. Functional genomic analysis of constitutive and inducible defense responses to Fusarium verticillioides infection in maize genotypes with contrasting ear rot resistance. BMC Genomics 2014; 15:710. [PMID: 25155950 PMCID: PMC4153945 DOI: 10.1186/1471-2164-15-710] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 08/04/2014] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Fusarium verticillioides causes ear rot in maize (Zea mays L.) and accumulation of mycotoxins, that affect human and animal health. Currently, chemical and agronomic measures to control Fusarium ear rot are not very effective and selection of more resistant genotypes is a desirable strategy to reduce contaminations. A deeper knowledge of molecular events and genetic basis underlying Fusarium ear rot is necessary to speed up progress in breeding for resistance. RESULTS A next-generation RNA-sequencing approach was used for the first time to study transcriptional changes associated with F. verticillioides inoculation in resistant CO441 and susceptible CO354 maize genotypes at 72 hours post inoculation. More than 100 million sequence reads were generated for inoculated and uninoculated control plants and analyzed to measure gene expression levels. Comparison of expression levels between inoculated vs. uninoculated and resistant vs. susceptible transcriptomes revealed a total number of 6,951 differentially expressed genes. Differences in basal gene expression were observed in the uninoculated samples. CO441 genotype showed a higher level of expression of genes distributed over all functional classes, in particular those related to secondary metabolism category. After F. verticillioides inoculation, a similar response was observed in both genotypes, although the magnitude of induction was much greater in the resistant genotype. This response included higher activation of genes involved in pathogen perception, signaling and defense, including WRKY transcription factors and jasmonate/ethylene mediated defense responses. Interestingly, strong differences in expression between the two genotypes were observed in secondary metabolism category: pathways related to shikimate, lignin, flavonoid and terpenoid biosynthesis were strongly represented and induced in the CO441 genotype, indicating that selection to enhance these traits is an additional strategy for improving resistance against F. verticillioides infection. CONCLUSIONS The work demonstrates that the global transcriptional analysis provided an exhaustive view of genes involved in pathogen recognition and signaling, and controlling activities of different TFs, phytohormones and secondary metabolites, that contribute to host resistance against F. verticillioides. This work provides an important source of markers for development of disease resistance maize genotypes and may have relevance to study other pathosystems involving mycotoxin-producing fungi.
Collapse
Affiliation(s)
| | | | | | | | - Adriano Marocco
- Istituto di Agronomia, Genetica e Coltivazioni erbacee, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | | |
Collapse
|
87
|
Root defense analysis against Fusarium oxysporum reveals new regulators to confer resistance. Sci Rep 2014; 4:5584. [PMID: 24998294 PMCID: PMC4083284 DOI: 10.1038/srep05584] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 06/05/2014] [Indexed: 12/21/2022] Open
Abstract
Fusarium oxysporum is a root-infecting fungal pathogen that causes wilt disease on a broad range of plant species, including Arabidopsis thaliana. Investigation of the defense response against this pathogen had primarily been conducted using leaf tissue and little was known about the root defense response. In this study, we profiled the expression of root genes after infection with F. oxysporum by microarray analysis. In contrast to the leaf response, root tissue did not show a strong induction of defense-associated gene expression and instead showed a greater proportion of repressed genes. Screening insertion mutants from differentially expressed genes in the microarray uncovered a role for the transcription factor ETHYLENE RESPONSE FACTOR72 (ERF72) in susceptibility to F. oxysporum. Due to the role of ERF72 in suppressing programmed cell death and detoxifying reactive oxygen species (ROS), we examined the pub22/pub23/pub24 U-box type E3 ubiquitin ligase triple mutant which is known to possess enhanced ROS production in response to pathogen challenge. We found that the pub22/23/24 mutant is more resistant to F. oxysporum infection, suggesting that a heightened innate immune response provides protection against F. oxysporum. We conclude that root-mediated defenses against soil-borne pathogens can be provided at multiple levels.
Collapse
|
88
|
Liang H, Staton M, Xu Y, Xu T, Leboldus J. Comparative expression analysis of resistant and susceptible Populus clones inoculated with Septoria musiva. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 223:69-78. [PMID: 24767117 DOI: 10.1016/j.plantsci.2014.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 02/24/2014] [Accepted: 03/01/2014] [Indexed: 05/24/2023]
Abstract
Septoria musiva is a major pathogen of Populus and can cause leaf spots and stem cankers in susceptible clones. In order to investigate defense mechanisms of Populus in response to S. musiva, differential gene expression in leaf tissues of two resistant (DN34, P. deltoides×nigra; NM6, P. nigra×maximowiczii) and two susceptible clones (DN164, P. deltoides×nigra; NC11505, P. maximowiczii×trichocarpa) was analyzed by RNA-Seq. Of the 511 million reads obtained, 78% and 0.01% were successfully aligned to the genomes of P. trichocarpa and S. musiva, respectively. Functional annotation of differentially expressed genes based on comparisons between resistant and susceptible clones revealed that there were significant differences in the expression of genes involved in disease/stress resistance and oxidation-reduction in mock-inoculated leaves. Four days post inoculation with S. musiva, 36 differentially expressed genes were found to be regulated in the same direction in both resistant clones. The 22 up-regulated loci in resistant clones included genes involved in protein fate, cell wall structure, and responsiveness to various biotic and abiotic stresses. In particular, Potri.008G187100 locus encodes a putative multi antimicrobial extrusion protein and Potri.006G272600 encodes a family1 glycosyltransferase required for pathogen resistance. The differentially expressed loci with increased expression in the susceptible clones corresponded to NB-ARC domain-containing disease resistance protein, phospholipase A 2A, MutT/nudix family protein, and an elicitor-activated gene 3-1 product. The results from this study indicate that strong defense mechanisms involved in oxidation-reduction, protein fate, secondary metabolism, and accumulation of defense-related gene products may contribute to Septoria resistance in DN34 and NM6, while increased expression of hypersensitive response-loci, particularly those encoding NB-ARC domain-containing disease resistance proteins, may contribute to the susceptibility of DN164 and NC11505 through interaction with pathogen effectors.
Collapse
Affiliation(s)
- Haiying Liang
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA.
| | - Margaret Staton
- Clemson University Genomics Institute, Clemson, SC 29634, USA
| | - Yi Xu
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Tao Xu
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Jared Leboldus
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108-6050, USA
| |
Collapse
|
89
|
Ghosh Dasgupta M, George BS, Bhatia A, Sidhu OP. Characterization of Withania somnifera leaf transcriptome and expression analysis of pathogenesis-related genes during salicylic acid signaling. PLoS One 2014; 9:e94803. [PMID: 24739900 PMCID: PMC3989240 DOI: 10.1371/journal.pone.0094803] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/19/2014] [Indexed: 12/20/2022] Open
Abstract
Withania somnifera (L.) Dunal is a valued medicinal plant with pharmaceutical applications. The present study was undertaken to analyze the salicylic acid induced leaf transcriptome of W. somnifera. A total of 45.6 million reads were generated and the de novo assembly yielded 73,523 transcript contig with average transcript contig length of 1620 bp. A total of 71,062 transcripts were annotated and 53,424 of them were assigned GO terms. Mapping of transcript contigs to biological pathways revealed presence of 182 pathways. Seventeen genes representing 12 pathogenesis-related (PR) families were mined from the transcriptome data and their pattern of expression post 17 and 36 hours of salicylic acid treatment was documented. The analysis revealed significant up-regulation of all families of PR genes by 36 hours post treatment except WsPR10. The relative fold expression of transcripts ranged from 1 fold to 6,532 fold. The two families of peroxidases including the lignin-forming anionic peroxidase (WsL-PRX) and suberization-associated anionic peroxidase (WsS-PRX) recorded maximum expression of 377 fold and 6532 fold respectively, while the expression of WsPR10 was down-regulated by 14 fold. Additionally, the most stable reference gene for normalization of qRT-PCR data was also identified. The effect of SA on the accumulation of major secondary metabolites of W. somnifera including withanoside V, withaferin A and withanolide A was also analyzed and an increase in content of all the three metabolites were detected. This is the first report on expression patterns of PR genes during salicylic acid signaling in W. somnifera.
Collapse
Affiliation(s)
- Modhumita Ghosh Dasgupta
- Division of Plant Biotechnology, Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, Tamil Nadu, India
- * E-mail:
| | - Blessan Santhosh George
- Division of Plant Biotechnology, Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, Tamil Nadu, India
| | - Anil Bhatia
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, India
| | - Om Prakash Sidhu
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, India
| |
Collapse
|
90
|
Swarupa V, Ravishankar KV, Rekha A. Plant defense response against Fusarium oxysporum and strategies to develop tolerant genotypes in banana. PLANTA 2014; 239:735-51. [PMID: 24420701 DOI: 10.1007/s00425-013-2024-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 12/30/2013] [Indexed: 05/23/2023]
Abstract
Soil-borne fungal pathogen, Fusarium oxysporum causes major economic losses by inducing necrosis and wilting symptoms in many crop plants. Management of fusarium wilt is achieved mainly by the use of chemical fungicides which affect the soil health and their efficiency is often limited by pathogenic variability. Hence understanding the nature of interaction between pathogen and host may help to select and improve better cultivars. Current research evidences highlight the role of oxidative burst and antioxidant enzymes indicating that ROS act as an important signaling molecule in banana defense response against Fusarium oxysporum f.sp. cubense. The role of jasmonic acid signaling in plant defense against necrotrophic pathogens is well recognized. But recent studies show that the role of salicylic acid is complex and ambiguous against necrotrophic pathogens like Fusarium oxysporum, leading to many intriguing questions about its relationship between other signaling compounds. In case of banana, a major challenge is to identify specific receptors for effector proteins like SIX proteins and also the components of various signal transduction pathways. Significant progress has been made to uncover the role of defense genes but is limited to only model plants such as Arabidopsis and tomato. Keeping this in view, we review the host response, pathogen diversity, current understanding of biochemical and molecular changes that occur during host and pathogen interaction. Developing resistant cultivars through mutation, breeding, transgenic and cisgenic approaches have been discussed. This would help us to understand host defenses against Fusarium oxysporum and to formulate strategies to develop tolerant cultivars.
Collapse
Affiliation(s)
- V Swarupa
- Division of Biotechnology, Indian Institute of Horticultural Research, Hesaraghatta Lake Post, Bengaluru, 560089, India
| | | | | |
Collapse
|
91
|
Gupta KJ, Mur LAJ, Brotman Y. Trichoderma asperelloides suppresses nitric oxide generation elicited by Fusarium oxysporum in Arabidopsis roots. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:307-314. [PMID: 24283937 DOI: 10.1094/mpmi-06-13-0160-r] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Inoculations with saprophytic fungus Trichoderma spp. are now extensively used both to promote plant growth and to suppress disease development. The underlying mechanisms for both roles have yet to be fully described so that the use of Trichoderma spp. could be optimized. Here, we show that Trichoderma asperelloides effects include the manipulation of host nitric oxide (NO) production. NO was rapidly formed in Arabidopsis roots in response to the soil-borne necrotrophic pathogen Fusarium oxysporum and persisted for about 1 h but is only transiently produced (approximately 10 min) when roots interact with T. asperelloides (T203). However, inoculation of F. oxysporum-infected roots with T. asperelloides suppressed F. oxysporum-initiated NO production. A transcriptional study of 78 NO-modulated genes indicated most genes were suppressed by single and combinational challenge with F. oxysporum or T. asperelloides. Only two F. oxysporum-induced genes were suppressed by T. asperelloides inoculation undertaken either 10 min prior to or after pathogen infection: a concanavlin A-like lectin protein kinase (At4g28350) and the receptor-like protein RLP30. Thus, T. asperelloides can actively suppress NO production elicited by F. oxysporum and impacts on the expression of some genes reported to be NO-responsive. Of particular interest was the reduced expression of receptor-like genes that may be required for F. oxysporum-dependent necrotrophic disease development.
Collapse
|
92
|
Chao J, Jin J, Wang D, Han R, Zhu R, Zhu Y, Li S. Cytological and transcriptional dynamics analysis of host plant revealed stage-specific biological processes related to compatible rice-Ustilaginoidea virens interaction. PLoS One 2014; 9:e91391. [PMID: 24646527 PMCID: PMC3960121 DOI: 10.1371/journal.pone.0091391] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 02/09/2014] [Indexed: 01/22/2023] Open
Abstract
Rice false smut, a fungal disease caused by Ustilaginoidea virens is becoming a severe detriment to rice production worldwide. However, little is known about the molecular response of rice to attacks by the smut pathogen. In this article, we define the initial infection process as having three stages: initial colonization on the pistil (stage 1, S1), amplification on the anther (stage 2, S2) and sporulation in the anther chambers (stage 3, S3). Based on the transcriptome of rice hosts in response to U. virens in two separate years, we identified 126, 204, and 580 specific regulated genes in their respective stages S1, S2, and S3, respectively, by excluding common expression patterns in other openly biotic/abiotic databases using bioinformatics. As the disease progresses, several stage-specific biological processes (BP) terms were distinctively enriched: "Phosphorylation" in stage S1, "PCD" in S2, and "Cell wall biogenesis" in S3, implying a concise signal cascade indicative of the tactics that smut pathogens use to control host rice cells during infection. 113 regulated genes were coexpressed among the three stages. They shared highly conserved promoter cis-element in the promoters in response to the regulation of WRKY and Myb for up-regulation, and ABA and Ca2+ for down regulation, indicating their potentially critical roles in signal transduction during rice-U. virens interaction. We further analyzed seven highly regulated unique genes; four were specific to pollen development, implying that pollen-related genes play critical roles in the establishment of rice susceptibility to U. virens. To my knowledge, this is the first report about probing of molecular response of rice to smut pathogen infection, which will greatly expand our understanding of the molecular events surrounding infection by rice false smut.
Collapse
Affiliation(s)
- Jinquan Chao
- State Key Laboratory for Hybrid Rice, College of Life Science, Wuhan University, Wuhan, China
| | - Jie Jin
- State Key Laboratory for Hybrid Rice, College of Life Science, Wuhan University, Wuhan, China
| | - Dong Wang
- Department of Statistics, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Ran Han
- State Key Laboratory for Hybrid Rice, College of Life Science, Wuhan University, Wuhan, China
| | - Renshan Zhu
- State Key Laboratory for Hybrid Rice, College of Life Science, Wuhan University, Wuhan, China
| | - Yingguo Zhu
- State Key Laboratory for Hybrid Rice, College of Life Science, Wuhan University, Wuhan, China
| | - Shaoqing Li
- State Key Laboratory for Hybrid Rice, College of Life Science, Wuhan University, Wuhan, China
| |
Collapse
|
93
|
Zhu QH, Stephen S, Taylor J, Helliwell CA, Wang MB. Long noncoding RNAs responsive to Fusarium oxysporum infection in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2014; 201:574-584. [PMID: 24117540 DOI: 10.1111/nph.12537] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 08/28/2013] [Indexed: 05/20/2023]
Abstract
Short noncoding RNAs have been demonstrated to play important roles in regulation of gene expression and stress responses, but the repertoire and functions of long noncoding RNAs (lncRNAs) remain largely unexplored, particularly in plants. To explore the role of lncRNAs in disease resistance, we used a strand-specific RNA-sequencing approach to identify lncRNAs responsive to Fusarium oxysporum infection in Arabidopsis thaliana. Antisense transcription was found in c. 20% of the annotated A. thaliana genes. Several noncoding natural antisense transcripts responsive to F. oxysporum infection were found in genes implicated in disease defense. While the majority of the novel transcriptionally active regions (TARs) were adjacent to annotated genes and could be an extension of the annotated transcripts, 159 novel intergenic TARs, including 20 F. oxysporum-responsive lncTARs, were identified. Ten F. oxysporum-induced lncTARs were functionally characterized using T-DNA insertion or RNA-interference knockdown lines, and five were demonstrated to be related to disease development. Promoter analysis suggests that some of the F. oxysporum-induced lncTARs are direct targets of transcription factor(s) responsive to pathogen attack. Our results demonstrated that strand-specific RNA sequencing is a powerful tool for uncovering hidden levels of transcriptome and that IncRNAs are important components of the antifungal networks in A. thaliana.
Collapse
Affiliation(s)
- Qian-Hao Zhu
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT, 2601, Australia
| | - Stuart Stephen
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT, 2601, Australia
| | - Jennifer Taylor
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT, 2601, Australia
| | | | - Ming-Bo Wang
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT, 2601, Australia
| |
Collapse
|