51
|
Liang D, Xiao W, Lakhdar S, Chen J. Construction of axially chiral compounds via catalytic asymmetric radical reaction. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
52
|
Cheng Q, Bai Z, Tewari S, Ritter T. Bifunctional sulfilimines enable synthesis of multiple N-heterocycles from alkenes. Nat Chem 2022; 14:898-904. [PMID: 35871706 PMCID: PMC9359915 DOI: 10.1038/s41557-022-00997-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 06/14/2022] [Indexed: 11/19/2022]
Abstract
Intramolecular cyclization of nitrogen-containing molecules onto pendant alkenes is an efficient strategy for the construction of N-heterocycles, which are of paramount importance in, for example, pharmaceuticals and materials. Similar intermolecular cyclization reactions, however, are scarcer for nitrogen building blocks, including N-centred radicals, and divergent and modular versions are not established. Here we report the use of sulfilimines as bifunctional N-radical precursors for cyclization reactions with alkenes to produce N-unprotected heterocycles in a single step through photoredox catalysis. Structurally diverse sulfilimines can be synthesized in a single step, and subsequently engage with alkenes to afford synthetically valuable five-, six- and seven-membered heterocycles. The broad and diverse scope is achievable by a radical-polar crossover annulation enabled by the bifunctional character of the reagents, which distinguishes itself from all other N-centred-radical-based reactions. The modular synthesis of the sulfilimines allows for larger structural diversity of N-heterocycle products than is currently achievable with other single cyclization methods.
Collapse
Affiliation(s)
- Qiang Cheng
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | - Zibo Bai
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | - Srija Tewari
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | - Tobias Ritter
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany.
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
53
|
Mu B, Zhang L, Lv G, Chen K, Wang T, Chen J, Huang T, Guo L, Yang Z, Wu Y. Access to Phosphine-Containing Quinazolinones Enabled by Photo-Induced Radical Phosphorylation/Cyclization of Unactivated Alkenes. J Org Chem 2022; 87:10146-10157. [PMID: 35830565 DOI: 10.1021/acs.joc.2c01092] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A mild and facile photo-induced cascade radical addition/cyclization of unactivated alkenes has been reported, through which a variety of biologically valuable phosphine-containing quinazolinones could be obtained in moderate to good yields. The protocol was characterized by mild conditions, broad substrate scope, and high atomic economy.
Collapse
Affiliation(s)
- Binsong Mu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Le Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guanghui Lv
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, No. 32 South Renmin Road, Shiyan, Huibei 442000, China
| | - Kang Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ting Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jian Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tianle Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Li Guo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhongzhen Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
54
|
Chen Z, Xue F, Zhang Y, Jin W, Wang B, Xia Y, Xie M, Abdukader A, Liu C. Visible-Light-Promoted [3 + 2] Cyclization of Chalcones with 2-Mercaptobenzimidazoles: A Protocol for the Synthesis of Imidazo[2,1- b]thiazoles. Org Lett 2022; 24:3149-3154. [PMID: 35451846 DOI: 10.1021/acs.orglett.2c00867] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A visible-light-promoted [3 + 2] cyclization between chalcones and 2-mercaptobenzoimidazoles for the construction of diverse imidazo[2,1-b]thiazoles via an electron-donor-acceptor (EDA) complex has been developed. This novel aminothiolation can be realized under only visible light irradiation without the aid of external photocatalysts, transition metals, and oxidants. Mechanistic investigations have revealed that the thiol anions and chalcones form EDA complexes, providing a novel strategy for the synthesis of imidazo[2,1-b]thiazoles.
Collapse
Affiliation(s)
- Ziren Chen
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, People's Republic of China
| | - Fei Xue
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, People's Republic of China
| | - Yonghong Zhang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, People's Republic of China
| | - Weiwei Jin
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, People's Republic of China
| | - Bin Wang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, People's Republic of China
| | - Yu Xia
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, People's Republic of China
| | - Mengwei Xie
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, People's Republic of China
| | - Ablimit Abdukader
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, People's Republic of China
| | - Chenjiang Liu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, People's Republic of China
| |
Collapse
|
55
|
Huang AX, Zhu HL, Zeng FL, Chen XL, Huang XQ, Qu LB, Yu B. 1-Acryloyl-2-cyanoindole: A Skeleton for Visible-Light-Induced Cascade Annulation. Org Lett 2022; 24:3014-3018. [PMID: 35420829 DOI: 10.1021/acs.orglett.2c00927] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
1-Acryloyl-2-cyanoindoles were found to be novel and efficient skeletons in visible-light-induced persulfate-promoted cascade cyclization reactions. With this transition-metal-free photocatalytic procedure, various sulfonated/thiocyanated pyrrolo[1,2-a]indolediones were synthesized from 1-acryloyl-2-cyanoindoles with sulfonyl hydrazides/NH4SCN at room temperature under mild reaction conditions.
Collapse
Affiliation(s)
- An-Xiang Huang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Hu-Lin Zhu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Fan-Lin Zeng
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xiao-Lan Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xian-Qiang Huang
- School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Ling-Bo Qu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Bing Yu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
56
|
Chen Y, Lv J, Pan X, Jin Z. An Unexpected Inactivation of N-Heterocyclic Carbene Organic Catalyst by 1-Methylcyclopropylcarbaldehyde and 2,2,2-Trifluoroacetophenone. Front Chem 2022; 10:875286. [PMID: 35402372 PMCID: PMC8988059 DOI: 10.3389/fchem.2022.875286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 12/01/2022] Open
Abstract
An unprecedented inactivation process of the indanol-derived NHC catalysts bearing N-C6F5 groups is reported. An unexpected multi-cyclic complex product is obtained from the 3-component reaction with the 1-methylcyclopropyl-carbaldehyde, the 2,2,2-trifluoroacetophenone and the NHC catalyst. The absolute structure of the inactivation product is unambiguously assigned via X-ray analysis on its single crystals. The formation of the structurally complex product is rationalized through a multi-step cascade cyclization process.
Collapse
|
57
|
Pratley C, Fenner S, Murphy JA. Nitrogen-Centered Radicals in Functionalization of sp 2 Systems: Generation, Reactivity, and Applications in Synthesis. Chem Rev 2022; 122:8181-8260. [PMID: 35285636 DOI: 10.1021/acs.chemrev.1c00831] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The chemistry of nitrogen-centered radicals (NCRs) has plentiful applications in organic synthesis, and they continue to expand as our understanding of these reactive species increases. The utility of these reactive intermediates is demonstrated in the recent advances in C-H amination and the (di)amination of alkenes. Synthesis of previously challenging structures can be achieved by efficient functionalization of sp2 moieties without prefunctionalization, allowing for faster and more streamlined synthesis. This Review addresses the generation, reactivity, and application of NCRs, including, but not limited to, iminyl, aminyl, amidyl, and aminium species. Contributions from early discovery up to the most recent examples have been highlighted, covering radical initiation, thermolysis, photolysis, and, more recently, photoredox catalysis. Radical-mediated intermolecular amination of (hetero)arenes can occur with a variety of complex amine precursors, generating aniline derivatives, an important class of structures for drug discovery and development. Functionalization of olefins is achievable in high anti-Markovnikov regioselectivity and allows access to difunctionalized structures when the intermediate carbon radicals are trapped. Additionally, the reactivity of NCRs can be harnessed for the rapid construction of N-heterocycles such as pyrrolidines, phenanthridines, quinoxalines, and quinazolinones.
Collapse
Affiliation(s)
- Cassie Pratley
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom.,GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Herts SG1 2NY, United Kingdom
| | - Sabine Fenner
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Herts SG1 2NY, United Kingdom
| | - John A Murphy
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| |
Collapse
|
58
|
Ramani A, Desai B, Patel M, Naveen T. Recent advances in the functionalization of terminal and internal alkynes. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Arti Ramani
- Sardar Vallabhbhai National Institute of Technology Department of chemistry INDIA
| | - Bhargav Desai
- Sardar Vallabhbhai National Institute of Technology Department of chemistry INDIA
| | - Monak Patel
- Sardar Vallabhbhai National Institute of Technology Department of chemistry INDIA
| | - Togati Naveen
- SVNIT Surat: Sardar Vallabhbhai National Institute of Technology Applied Chemistry Room No: 115, Applied Chemistry DepartmentSVNIT Surat 395007 SURAT INDIA
| |
Collapse
|
59
|
Wang PZ, Xiao WJ, Chen JR. Recent advances in radical-mediated transformations of 1,3-dienes. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63919-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
60
|
Shee M, Singh NDP. Chemical versatility of azide radical: journey from a transient species to synthetic accessibility in organic transformations. Chem Soc Rev 2022; 51:2255-2312. [PMID: 35229836 DOI: 10.1039/d1cs00494h] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The generation of azide radical (N3˙) occurs from its precursors primarily via a single electron transfer (SET) process or homolytic cleavage by chemical methods or advanced photoredox/electrochemical methods. This in situ generated transient open-shell species has unique characteristic features that set its reactivity. In the past, the azide radical was widely used for various studies in radiation chemistry as a 1e- oxidant of biologically important molecules, but now it is being exploited for synthetic applications based on its addition and intermolecular hydrogen atom transfer (HAT) abilities. Due to the significant role of nitrogen-containing molecules in synthesis, drug discovery, biological, and material sciences, the direct addition onto unsaturated bonds for the simultaneous construction of C-N bond with other (C-X) bonds are indeed worth highlighting. Moreover, the ability to generate O- or C-centered radicals by N3˙ via electron transfer (ET) and intermolecular HAT processes is also well documented. The purpose of controlling the reactivity of this short-lived intermediate in organic transformations drives us to survey: (i) the history of azide radical and its structural properties (thermodynamic, spectroscopic, etc.), (ii) chemical reactivities and kinetics, (iii) methods to produce N3˙ from various precursors, (iv) several significant azide radical-mediated transformations in the field of functionalization with unsaturated bonds, C-H functionalization via HAT, tandem, and multicomponent reaction with a critical analysis of underlying mechanistic approaches and outcomes, (v) concept of taming the reactivity of azide radicals for potential opportunities, in this review.
Collapse
Affiliation(s)
- Maniklal Shee
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| | - N D Pradeep Singh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
61
|
Chen S, Xia Y, Jin S, Lei H, You K, Deng GJ. A Mild Two-Step Synthesis of Structurally Valuable Indole-Fused Derivatives. J Org Chem 2022; 87:3212-3222. [DOI: 10.1021/acs.joc.1c02927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Shanping Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Yi Xia
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Shikai Jin
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Hanwen Lei
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Kuiyi You
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
62
|
Tang L, Hu Q, Yang K, Elsaid M, Liu C, Ge H. Recent advances in direct α-C(sp3)-H bond functionalization of thioethers. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
63
|
Kwon K, Simons RT, Nandakumar M, Roizen JL. Strategies to Generate Nitrogen-centered Radicals That May Rely on Photoredox Catalysis: Development in Reaction Methodology and Applications in Organic Synthesis. Chem Rev 2022; 122:2353-2428. [PMID: 34623809 PMCID: PMC8792374 DOI: 10.1021/acs.chemrev.1c00444] [Citation(s) in RCA: 156] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
For more than 70 years, nitrogen-centered radicals have been recognized as potent synthetic intermediates. This review is a survey designed for use by chemists engaged in target-oriented synthesis. This review summarizes the recent paradigm shift in access to and application of N-centered radicals enabled by visible-light photocatalysis. This shift broadens and streamlines approaches to many small molecules because visible-light photocatalysis conditions are mild. Explicit attention is paid to innovative advances in N-X bonds as radical precursors, where X = Cl, N, S, O, and H. For clarity, key mechanistic data is noted, where available. Synthetic applications and limitations are summarized to illuminate the tremendous utility of photocatalytically generated nitrogen-centered radicals.
Collapse
Affiliation(s)
- Kitae Kwon
- Duke University, Department of Chemistry, Box 90346, Durham, North Carolina 27708-0354, United States
| | - R Thomas Simons
- Duke University, Department of Chemistry, Box 90346, Durham, North Carolina 27708-0354, United States
| | - Meganathan Nandakumar
- Duke University, Department of Chemistry, Box 90346, Durham, North Carolina 27708-0354, United States
| | - Jennifer L Roizen
- Duke University, Department of Chemistry, Box 90346, Durham, North Carolina 27708-0354, United States
| |
Collapse
|
64
|
Lu B, Xiao WJ, Chen JR. Recent Advances in Visible-Light-Mediated Amide Synthesis. Molecules 2022; 27:517. [PMID: 35056829 PMCID: PMC8781888 DOI: 10.3390/molecules27020517] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/10/2022] Open
Abstract
Visible-light photoredox catalysis has attracted tremendous interest within the synthetic community. As such, the activation mode potentially provides a more sustainable and efficient platform for the activation of organic molecules, enabling the invention of many controlled radical-involved reactions under mild conditions. In this context, amide synthesis via the strategy of photoredox catalysis has received growing interest due to the ubiquitous presence of this structural motif in numerous natural products, pharmaceuticals and functionalized materials. Employing this strategy, a wide variety of amides can be prepared effectively from halides, arenes and even alkanes under irradiation of visible light. These methods provide a robust alternative to well-established strategies for amide synthesis that involve condensation between a carboxylic acid and amine mediated by a stoichiometric activating agent. In this review, the representative progresses made on the synthesis of amides through visible light-mediated radical reactions are summarized.
Collapse
Affiliation(s)
- Bin Lu
- Key Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China; (B.L.); (W.-J.X.)
| | - Wen-Jing Xiao
- Key Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China; (B.L.); (W.-J.X.)
| | - Jia-Rong Chen
- Key Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China; (B.L.); (W.-J.X.)
- School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang 453007, China
| |
Collapse
|
65
|
Patel B, Dahiya A, Das B, SAHOO ASHISHKUMAR. Visible‐Light‐Driven Isocyanide Insertion to o‐Alkenylanilines: A Route to Isoindolinone Synthesis. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Bubul Das
- Indian Institute of Technology Guwahati INDIA
| | | |
Collapse
|
66
|
Dai L, Zhu Q, Zeng J, Liu Y, Zhong G, Han X, Zeng X. Asymmetric synthesis of chiral imidazolidines by merging copper and visible light-induced photoredox catalysis. Org Chem Front 2022. [DOI: 10.1039/d2qo00303a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visible light induced copper catalyzed synthesis of decarboxylative radical coupling/cyclization reaction for the synthesis of chiral imidazolidines in high yields and enantioselectivities was reported.
Collapse
Affiliation(s)
- Linlong Dai
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Qiaohong Zhu
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jie Zeng
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Yuheng Liu
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Guofu Zhong
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaoyu Han
- Zhejiang Provincial Key Laboratory for Chemical & Biological Processing Technology of Farm Products, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Xiaofei Zeng
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
67
|
Wang D, Wang J, Ma C, Jiang Y, Yu B. C-3 Functionalization of 2-Aryl-2 H-indazoles under Photo/Electrocatalysis. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202208039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
68
|
Tang W, Yan DY, Liang KC, Su M, Liu F. Radical-mediated alkene carboamination/dearomatization of arylsulfonyl- o-allylanilines via photoredox catalysis. Org Chem Front 2022. [DOI: 10.1039/d2qo01221a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A mild and redox-neutral protocol is developed for the synthesis of 1,4-cyclohexadiene-containing indoline-fused heterocycles via photoredox catalysis.
Collapse
Affiliation(s)
- Wan Tang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Duan-Yang Yan
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Kai-Cheng Liang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Ma Su
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Feng Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
- Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| |
Collapse
|
69
|
Li X, Meng W, Xu X, Huang Y. Visible Light Induced Arylfluoroalkylation of Activated Alkenes. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202201011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
70
|
Bao L, Cheng JT, Wang ZX, Chen XY. Pyrylium salts acting as both energy transfer and electron transfer photocatalysts for E → Z isomerization of activated alkenes and cyclization of cinnamic or biaryl carboxylic acids. Org Chem Front 2022. [DOI: 10.1039/d1qo01623g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Here we report that 2,4,6-triarylpyrylium salts could perform both energy transfer and electron transfer photocatalysis modes for E → Z isomerization of activated alkenes and cyclization of cinnamic or biaryl carboxylic acids.
Collapse
Affiliation(s)
- Lei Bao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin-Tang Cheng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
71
|
Chen JY, Huang J, Sun K, He WM. Recent advances in transition-metal-free trifluoromethylation with Togni's reagents. Org Chem Front 2022. [DOI: 10.1039/d1qo01504d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transition-metal-free trifluoromethylations have attracted significant research interest driven by the increasing importance of CF3-containing compounds.
Collapse
Affiliation(s)
- Jin-Yang Chen
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Jing Huang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Kai Sun
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| | - Wei-Min He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
72
|
Gao X, Pan X, Wang P, Jin Z. Visible Light-induced Phosphine-Catalyzed Perfluoroalkylation of Indoles. Org Chem Front 2022. [DOI: 10.1039/d2qo01091g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photo-induced, catalytic phosphine-promoted perfluoroalkylation reaction of indole molecules is developed. Inexpensive and readily available PPh3 is used in a catalytic amount as the sole reaction initiator in this protocol....
Collapse
|
73
|
Chen Z, Zheng X, Zhou SF, Cui X. Visible Light-Promoted Selenylative Spirocyclization of Biaryl Ynones toward the Formation of Selenated Spiro[5.5]trienones. Org Biomol Chem 2022; 20:5779-5783. [DOI: 10.1039/d2ob01006b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visible-light induced dearomative cascade cyclization of biaryl ynones with diselenides under photocatalyst and external additive-free conditions has been explored, giving a series of selenated spiro[5.5]trienones in moderate to good...
Collapse
|
74
|
Chen Z, Zhang H, Zhou SF, Cui X. Photoredox-catalyzed synthesis of sulfonated oxazolines from N-allylamides through the insertion of sulfur dioxide. Org Chem Front 2022. [DOI: 10.1039/d1qo01540k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Photoredox-catalyzed generation of sulfonated oxazolines starting from N-allylamides, DABCO·(SO2)2, and aryldiazonium salts has been developed and a range of sulfonated oxazolines were obtained in moderate to good yields.
Collapse
Affiliation(s)
- Zhichao Chen
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Hong Zhang
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China
| | - Shu-Feng Zhou
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Xiuling Cui
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China
| |
Collapse
|
75
|
Li F, Wu Z, Wang J, Zhang S, Yu J, Yuan Z, Liu J, Shen R, Zhou Y, Liu L. Metal-free synthesis of N-sulfonylformamidines via skeletal reconstruction of sulfonyl oximonitriles. Org Chem Front 2022. [DOI: 10.1039/d1qo01665b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We firstly develop an unprecedented domino reaction of sulfonyl oximonitriles with secondary amines to streamline synthesis of N-sulfonylformamidines in decent to high yields under mild reaction conditions.
Collapse
Affiliation(s)
- Feng Li
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China
| | - Ziyan Wu
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China
| | - Jingjing Wang
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China
| | - Siyuan Zhang
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China
| | - Jiaxin Yu
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China
| | - Zhen Yuan
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China
| | - Jingya Liu
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China
| | - Renzeng Shen
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China
| | - Yao Zhou
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, Hubei, 435002, P. R. China
| | - Lantao Liu
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China
| |
Collapse
|
76
|
Gao PP, Xiao WJ, Chen JR. Recent Progresses in Visible-Light-Driven Alkene Synthesis. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202208044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
77
|
He FS, Su L, Yu F, Tang Z, Wu J. Construction of sulfonated spiro[5,5]trienones from sulfur dioxide via iron-catalyzed dearomative spirocyclization of biaryls. Org Chem Front 2022. [DOI: 10.1039/d2qo00120a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An iron-catalyzed dearomative spirocyclization of biaryl ynones with sodium metabisulfite and cycloketone oxime esters is developed. By using sodium metabisulfite as the source of sulfur dioxide, this approach enables the...
Collapse
|
78
|
Xu SH, Yan DM, Rao L, Jiang M, Wu YL, Xiao WJ, Chen JR. Photocatalytic selective 1,2-hydroxyacylmethylation of 1,3-dienes with sulfur ylides as source of alkyl radicals. Org Chem Front 2022. [DOI: 10.1039/d2qo00383j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exploration of the zwitterionic property of sulfur ylides has long been known as a flexible strategy in a wide range of chemical transformations for different ring-sized construction. By contrast, their...
Collapse
|
79
|
Jiang P, Shan Z, Chen S, Wang Q, Jiang S, Zheng H, Deng G. Metal‐Free
Synthesis of Benzo[
a
]phenanthridines from Aromatic Aldehydes, Cyclohexanones, and Aromatic Amines. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Pingyu Jiang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry Xiangtan University Xiangtan Hunan 411105 China
| | - Zhifei Shan
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry Xiangtan University Xiangtan Hunan 411105 China
| | - Shanping Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry Xiangtan University Xiangtan Hunan 411105 China
| | - Quanyuan Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry Xiangtan University Xiangtan Hunan 411105 China
| | - Shuxin Jiang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry Xiangtan University Xiangtan Hunan 411105 China
| | - Haolin Zheng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry Xiangtan University Xiangtan Hunan 411105 China
| | - Guo‐Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry Xiangtan University Xiangtan Hunan 411105 China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates (South China University of Technology), Guangzhou Guangdong 510640 China
| |
Collapse
|
80
|
Bai J, Li M, Zhou C, Sha Y, Cheng J, Sun J, Sun S. Visible-Light Photoredox-Catalyzed Dicarbofunctionalization of Styrenes with Oxime Esters and CO 2: Multicomponent Reactions toward Cyanocarboxylic Acids and γ-Keto Acids. Org Lett 2021; 23:9654-9658. [PMID: 34851115 DOI: 10.1021/acs.orglett.1c03938] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A photoredox-catalyzed dicarbofunctionalization of styrenes with oxime esters and CO2 has been achieved. Notably, a series of four-, five-, or six-membered cyclic ketone oximes worked well to furnish a wide range of ε-, ζ-, and η-cyanocarboxylic acids in good yields. Furthermore, a series of γ-keto acids also could be obtained by employing acyclic ketone oxime esters as the carbonyl radical precursor. It provides convergent access to diverse biologically important cyanocarboxylic and γ-keto acids.
Collapse
Affiliation(s)
- Junxue Bai
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Miao Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Cong Zhou
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yu Sha
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jiang Cheng
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jianwei Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.,Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong SAR, China
| | - Song Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
81
|
Abstract
Classical amination methods involve the reaction of a nitrogen nucleophile with an electrophilic carbon center; however, in recent years, umpoled strategies have gained traction where the nitrogen source acts as an electrophile. A wide range of electrophilic aminating agents are now available, and these underpin a range of powerful C-N bond-forming processes. In this Review, we highlight the strategic use of electrophilic aminating agents in total synthesis.
Collapse
Affiliation(s)
- Lauren G. O'Neil
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - John F. Bower
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| |
Collapse
|
82
|
Affiliation(s)
- Lauren G. O'Neil
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
- Department of Chemistry University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - John F. Bower
- Department of Chemistry University of Liverpool Crown Street Liverpool L69 7ZD UK
| |
Collapse
|
83
|
Zhang Y, Jiang W, Bao X, Qiu Y, Yuan Y, Yang C, Huo C. Photocatalyzed Reverse Polarity Oxidative Povarov Reaction of Glycine Derivatives with Maleimides. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yongxin Zhang
- Gansu International Scientific and Technological Cooperation Base of Water‐Retention Chemical Functional Materials; Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education; College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - Wei Jiang
- Gansu International Scientific and Technological Cooperation Base of Water‐Retention Chemical Functional Materials; Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education; College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - Xiazhen Bao
- Gansu International Scientific and Technological Cooperation Base of Water‐Retention Chemical Functional Materials; Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education; College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - Yifeng Qiu
- Gansu International Scientific and Technological Cooperation Base of Water‐Retention Chemical Functional Materials; Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education; College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - Yong Yuan
- Gansu International Scientific and Technological Cooperation Base of Water‐Retention Chemical Functional Materials; Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education; College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - Caixia Yang
- Gansu International Scientific and Technological Cooperation Base of Water‐Retention Chemical Functional Materials; Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education; College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - Congde Huo
- Gansu International Scientific and Technological Cooperation Base of Water‐Retention Chemical Functional Materials; Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education; College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| |
Collapse
|
84
|
Li N, Gui Y, Chu M, You M, Qiu X, Liu H, Wang S, Deng M, Ji B. Cobalt-Catalyzed Deprotection of Allyl Carboxylic Esters Induced by Hydrogen Atom Transfer. Org Lett 2021; 23:8460-8464. [PMID: 34670095 DOI: 10.1021/acs.orglett.1c03185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A brief, efficient method has been developed for the removal of the allyl protecting group from allyl carboxylic esters using a Co(II)/TBHP/(Me2SiH)2O catalytic system. This facile strategy displays excellent chemoselectivity, functional group tolerance, and high yields. This transformation probably occurs through the hydrogen atom transfer process, and a Co(III)-six-membered cyclic intermediate is recommended.
Collapse
Affiliation(s)
- Nan Li
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, Henan 471934, People's Republic of China
| | - Yizhen Gui
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, Henan 471934, People's Republic of China
| | - Mengqi Chu
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, Henan 471934, People's Republic of China
| | - Mengdi You
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, Henan 471934, People's Republic of China
| | - Xiaohan Qiu
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, Henan 471934, People's Republic of China
| | - Hejia Liu
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, Henan 471934, People's Republic of China
| | - Shiang Wang
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, Henan 471934, People's Republic of China
| | - Meng Deng
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, Henan 471934, People's Republic of China
| | - Baoming Ji
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, Henan 471934, People's Republic of China
| |
Collapse
|
85
|
Wang HZ, Li JZ, Guo Z, Zheng H, Wei WT. Visible-Light-Catalyzed N-Radical-Enabled Cyclization of Alkenes for the Synthesis of Five-Membered N-Heterocycles. CHEMSUSCHEM 2021; 14:4658-4670. [PMID: 34402206 DOI: 10.1002/cssc.202101586] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Five-membered N-heterocycles play an important role in organic synthesis and material chemistry, as they are widespread through pharmaceutical molecules and natural products. Chemists have developed many synthetic strategies for constructing five-membered N-heterocycles from N-centered radicals, but the availability of mild and green methods for these transformations is still limited. The cyclization of visible-light-generated N-centered radicals with alkenes has emerged as a powerful tool to enable these chemical transformations in recent years. Through chosen representative examples, the significant developments in this promising field were outlined, including the selection of catalysts, substrate scope, mechanistic understanding (especially density functional theory calculations), and applications. The contents of this Minireview are categorized by intramolecular cyclization and intermolecular N-centered radical addition/cyclization reactions.
Collapse
Affiliation(s)
- Hui-Zhi Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, P. R. China
| | - Jiao-Zhe Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, P. R. China
| | - Zhiyong Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, P. R. China
| | - Hongxing Zheng
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Wen-Ting Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, P. R. China
| |
Collapse
|
86
|
Visible light-promoted enantioselective aerobic oxidation of pyrazolones by phase transfer catalysis. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
87
|
Aerobic oxidation of C-H bonds to carboxylic acids enabled by decatungstate photocatalysis. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
88
|
Chalotra N, Kumar J, Naqvi T, Shah BA. Photocatalytic functionalizations of alkynes. Chem Commun (Camb) 2021; 57:11285-11300. [PMID: 34617556 DOI: 10.1039/d1cc04014f] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Visible light mediated functionalizations have significantly expanded the scope of alkynes by unraveling new mechanistic pathways and enabling their transformation to diverse structural entities. The photoredox reactions on alkynes rely on their innate capability to generate myriad carbon-centred radicals via single electron transfer (SET), thereby, allowing the introduction of new radical precursors. Moreover, an array of methods have been developed facilitating transformations such as vicinal or gem-difunctionalization, annulation, cycloaddition and oxidative reactions to construct numerous key building blocks of natural and pharmaceutically important molecules. In addition, the introduction of photoredox chemistry has successfully been used to deal with the challenges associated with alkyne functionalization such as stereoselective and regioselective control. This article accounts for several visible light mediated functionalization reactions of alkynes, wherein they have been transformed into α-oxo compounds, β-keto sulfoxides, substituted olefins, N-heterocycles, internal alkynes and sulfur containing compounds. The article has been primarily categorized into various sections based on the reaction type with particular attention being paid to mechanistic details, advancement and future applications.
Collapse
Affiliation(s)
- Neha Chalotra
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India.,Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| | - Jaswant Kumar
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India.,Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| | - Tahira Naqvi
- Govt. College for Women, MA Road, Srinagar 190001, India
| | - Bhahwal Ali Shah
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India.,Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| |
Collapse
|
89
|
Abramov A, Bonardd S, Pérez‐Ruiz R, Díaz Díaz D. Recyclable, Immobilized Transition‐Metal Photocatalysts. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Alex Abramov
- Institute of Organic Chemistry University of Regensburg Universitätstr. 31 Regensburg 93053 Germany
| | - Sebastián Bonardd
- Departamento de Química Orgánica Universidad de La Laguna Avda. Astrofísico Francisco Sánchez 3 38206 La Laguna Tenerife Spain
- Instituto de Bio-Orgánica Antonio González Universidad de La Laguna Avda. Astrofísico Francisco Sánchez 2 38206 La Laguna Tenerife Spain
| | - Raúl Pérez‐Ruiz
- Departamento de Química Universitat Politècnica de València (UPV) Camino de Vera S/N 46022 Valencia Spain
| | - David Díaz Díaz
- Institute of Organic Chemistry University of Regensburg Universitätstr. 31 Regensburg 93053 Germany
- Departamento de Química Orgánica Universidad de La Laguna Avda. Astrofísico Francisco Sánchez 3 38206 La Laguna Tenerife Spain
- Instituto de Bio-Orgánica Antonio González Universidad de La Laguna Avda. Astrofísico Francisco Sánchez 2 38206 La Laguna Tenerife Spain
| |
Collapse
|
90
|
Gao PP, Yan DM, Bi MH, Jiang M, Xiao WJ, Chen JR. Alkene Synthesis by Photo-Wolff-Kischner Reaction of Sulfur Ylides and N-Tosylhydrazones. Chemistry 2021; 27:14195-14201. [PMID: 34374474 DOI: 10.1002/chem.202102671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Indexed: 12/17/2022]
Abstract
A visible-light-driven and room temperature photo-Wolff-Kischner reaction of sulfur ylides and N-tosylhydrazones has been developed for the first time to provide modular access to alkene synthesis. The high functional group tolerance and broad substrate scope were demonstrated by more than 60 examples. Both E- and Z-olefinic stereochemistry in the products could be controlled with excellent stereoselectivity. A series of mechanistic studies support that the reaction should proceed through a radical-carbanion crossover pathway, specifically involving addition of photo-generated sulfur ylide radical cations to N-tosylhydrazones to form carbanions and subsequent Wolff-Kischner process.
Collapse
Affiliation(s)
- Pan-Pan Gao
- CCNU-uOttawa Joint Research Centre, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. China
| | - Dong-Mei Yan
- CCNU-uOttawa Joint Research Centre, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. China
| | - Ming-Hang Bi
- CCNU-uOttawa Joint Research Centre, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. China
| | - Min Jiang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, 310036, P. R. China
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. China
| | - Jia-Rong Chen
- CCNU-uOttawa Joint Research Centre, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| |
Collapse
|
91
|
Affiliation(s)
- Ya‐Feng Si
- School of Biology Zhengzhou University Zhengzhou 450001 People's Republic of China
- Green Catalysis Center, College of Chemistry Zhengzhou University Zhengzhou 450001 People's Republic of China
| | - Qi‐Yan Lv
- School of Biology Zhengzhou University Zhengzhou 450001 People's Republic of China
- Green Catalysis Center, College of Chemistry Zhengzhou University Zhengzhou 450001 People's Republic of China
| | - Bing Yu
- Green Catalysis Center, College of Chemistry Zhengzhou University Zhengzhou 450001 People's Republic of China
| |
Collapse
|
92
|
Qian H, Chen J, Zhang B, Cheng Y, Xiao WJ, Chen JR. Visible-Light-Driven Photoredox-Catalyzed Three-Component Radical Cyanoalkylfluorination of Alkenes with Oxime Esters and a Fluoride Ion. Org Lett 2021; 23:6987-6992. [PMID: 34432474 DOI: 10.1021/acs.orglett.1c02686] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A metal-free, photoredox-catalyzed three-component cyanoalkylfluorination of alkenes under mild and redox-neutral conditions is reported. This protocol features use of readily available alkenes, oxime esters, and cost-effective nucleophilic fluoride reagents, giving diverse cyanoalkylfluorinated products with generally good yields. Excellent functional group tolerance and mild reaction conditions also render this protocol suitable for cyanoalkylfluorination of pharmaceutically relevant molecule-derived alkene.
Collapse
Affiliation(s)
- Hao Qian
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Jun Chen
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Bin Zhang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Ying Cheng
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Jia-Rong Chen
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
93
|
Wu D, Cui SS, Bian F, Yu W. Visible Light Driven and Copper-Catalyzed C(sp 3)-H Functionalization of O-Pentafluorobenzoyl Ketone Oximes. Org Lett 2021; 23:6057-6061. [PMID: 34279963 DOI: 10.1021/acs.orglett.1c02133] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The C(sp3)-H functionalization of O-pentafluorobenzoyl ketone oximes was implemented under visible light irradiation with copper complexes as catalysts. The reactions involve iminyl-radical-mediated intramolecular hydrogen atom transfer as the key step, with the iminyl radicals being generated via copper-effected N-O cleavage. The reaction afforded 3,4-dihydro-2H-pyrroles under the conditions of [Cu(DPEphos)(bcp)]PF6 and DABCO, while γ-pentafluorobenzoyloxy ketones were produced predominantly when [Cu(dpp)2]PF6 and InCl3·4H2O were used as catalysts.
Collapse
Affiliation(s)
- Danhua Wu
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Shuang-Shuang Cui
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Fengling Bian
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Wei Yu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou, Gansu 73000, China
| |
Collapse
|
94
|
Ma N, Guo L, Qi D, Gao F, Yang C, Xia W. Visible-Light-Induced Multicomponent Synthesis of γ-Amino Esters with Diazo Compounds. Org Lett 2021; 23:6278-6282. [PMID: 34351163 DOI: 10.1021/acs.orglett.1c02071] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A visible-light-induced multicomponent reaction of ethyl diazoacetate, diarylamines, and styrene-type alkenes is described. This novel 1,2-difunctionalization of alkenes can be readily achieved under a simple operation and mild conditions, affording γ-amino esters as major products. The reaction proceeds through the generation of carbon-centered radicals from diazo compounds by a visible-light-promoted proton-coupled electron transfer (PCET) process. The carbon radicals then add to diverse alkenes, delivering new carbon radical species, and the final products are formed with N-centered radicals via a radical-radical coupling.
Collapse
Affiliation(s)
- Na Ma
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Lin Guo
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Dan Qi
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Fei Gao
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Chao Yang
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
95
|
Luo C, Zhou T, Wang W, Han P, Jing L. An Efficient Approach to Access 2,2‐Diarylanilines via Visible‐Light‐Promoted Decarboxylative Cross‐Coupling Reactions. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Cong Luo
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province China West Normal University No.1 Shi Da Road Nanchong 637009 P. R. China
| | - Tongyao Zhou
- Pharmaceutical Research Institute Wuhan Institute of Technology No.206, Guanggu 1st road Wuhan 430205 P. R. China
| | - Wei Wang
- Pharmaceutical Research Institute Wuhan Institute of Technology No.206, Guanggu 1st road Wuhan 430205 P. R. China
| | - Pan Han
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province China West Normal University No.1 Shi Da Road Nanchong 637009 P. R. China
| | - Linhai Jing
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province China West Normal University No.1 Shi Da Road Nanchong 637009 P. R. China
| |
Collapse
|
96
|
Qi Z, Zhang Z, Yang L, Zhang D, Lu J, Wei J, Wei S, Fu Q, Du X, Yi D. Nitrogen‐Radical‐Triggered Trifunctionalizing
ipso
‐Spirocyclization of Unactivated Alkenes with Vinyl Azides: A Modular Access to Spiroaminal Frameworks. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zhongyu Qi
- Department of Medicinal Chemistry, School of Pharmacy Southwest Medical University Luzhou 646000 People's Republic of China
| | - Zhijie Zhang
- Department of Medicinal Chemistry, School of Pharmacy Southwest Medical University Luzhou 646000 People's Republic of China
| | - Li Yang
- Department of Medicinal Chemistry, School of Pharmacy Southwest Medical University Luzhou 646000 People's Republic of China
| | - Di Zhang
- Department of Medicinal Chemistry, School of Pharmacy Southwest Medical University Luzhou 646000 People's Republic of China
| | - Ji Lu
- Department of Medicinal Chemistry, School of Pharmacy Southwest Medical University Luzhou 646000 People's Republic of China
| | - Jun Wei
- Department of Medicinal Chemistry, School of Pharmacy Southwest Medical University Luzhou 646000 People's Republic of China
| | - Siping Wei
- Department of Medicinal Chemistry, School of Pharmacy Southwest Medical University Luzhou 646000 People's Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province Luzhou 646000 People's Republic of China
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Guangxi Normal University) Guilin 541004 People's Republic of China
| | - Qiang Fu
- Department of Medicinal Chemistry, School of Pharmacy Southwest Medical University Luzhou 646000 People's Republic of China
| | - Xi Du
- Department of Chemistry, School of Basic Medical Science Southwest Medical University Luzhou 646000 People's Republic of China
| | - Dong Yi
- Department of Medicinal Chemistry, School of Pharmacy Southwest Medical University Luzhou 646000 People's Republic of China
- Department of Pharmacy, Affiliated Hospital Southwest Medical University Luzhou 646000 People's Republic of China
| |
Collapse
|
97
|
Gao QS, Niu Z, Chen Y, Sun J, Han WY, Wang JY, Yu M, Zhou MD. Photoredox Generation of N-Centered Hydrazonyl Radicals Enables the Construction of Dihydropyrazole-Fused gem-Difluoroalkenes. Org Lett 2021; 23:6153-6157. [PMID: 34269587 DOI: 10.1021/acs.orglett.1c02275] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient visible-light-promoted N-radical-mediated tandem radical cyclization/defluorinated alkylation of β,γ-unsaturated hydrazones, and α-trifluoromethyl alkenes is described. This protocol provides a general and effective route to synthesize various dihydropyrazole-fused gem-difluoroalkenes at moderate to excellent yields under redox-neutral, metal-free, and mild conditions.
Collapse
Affiliation(s)
- Qi-Sheng Gao
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Zhuo Niu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Shenyang 110001, China
| | - Yang Chen
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Jing Sun
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Wei-Ying Han
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Shenyang 110001, China
| | - Jing-Yun Wang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Miao Yu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Shenyang 110001, China
| | - Ming-Dong Zhou
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| |
Collapse
|
98
|
Latrache M, Hoffmann N. Photochemical radical cyclization reactions with imines, hydrazones, oximes and related compounds. Chem Soc Rev 2021; 50:7418-7435. [PMID: 34047736 DOI: 10.1039/d1cs00196e] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Photochemical reactions are a key method to generate radical intermediates. Often under these conditions no toxic reagents are necessary. During recent years, photo-redox catalytic reactions considerably push this research domain. These reaction conditions are particularly mild and safe which enables the transformation of poly-functional substrates into complex products. The synthesis of heterocyclic compounds is particularly important since they play an important role in the research of biologically active products. In this review, photochemical radical cyclization reactions of imines and related compounds such as oximes, hydrazones and chloroimines are presented. Reaction mechanisms are discussed and the structural diversity and complexity of the products are presented. Radical intermediates are mainly generated in two ways: (1) electronic excitation is achieved by light absorption of the substrates. (2) The application of photoredox catalysis is now systematically studied for these reactions. Recently, also excitation of charge transfer complexes has been studied in this context from many perspectives.
Collapse
Affiliation(s)
- Mohammed Latrache
- CNRS, Université de Reims Champagne-Ardenne, ICMR, Equipe de Photochimie, UFR Sciences, B.P. 1039, 51687 Reims, France.
| | - Norbert Hoffmann
- CNRS, Université de Reims Champagne-Ardenne, ICMR, Equipe de Photochimie, UFR Sciences, B.P. 1039, 51687 Reims, France.
| |
Collapse
|
99
|
Xu Q, Zhou X, Zhang S, Pan L, Liu Q, Li Y. Visible-Light-Induced Sulfur-Alkenylation of Alkenes. Org Lett 2021; 23:4870-4875. [PMID: 34109797 DOI: 10.1021/acs.orglett.1c01596] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A visible-light-induced intermolecular sulfur-alkenylation of alkenes, including both activated and unactivated alkenes, is described. This sulfur-alkenylation reaction proceed in a highly regio- and stereospecific manner involving the visible-light-induced conversion of a ketene dithioacetal to the thiavinyl 1,3-dipole intermediate, followed by a formal [3 + 2] cycloaddition and C-S bond cleavage. Furthermore, it is also an efficient approach for the late-stage functionalization of natural products and complex molecules, even being induced by sunlight under ambient conditions.
Collapse
Affiliation(s)
- Qi Xu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xiaoxuan Zhou
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Si Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Ling Pan
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Qun Liu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yifei Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
100
|
Liu X, Zhou J, Lin J, Zhang Z, Wu S, He Q, Cao H. Controllable Site-Selective Construction of 2- and 4-Substituted Pyrimido[1,2- b]indazole from 3-Aminoindazoles and Ynals. J Org Chem 2021; 86:9107-9116. [PMID: 34132097 DOI: 10.1021/acs.joc.1c01094] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A straightforward and novel controllable site-selective construction of 2- and 4-substituted pyrimido[1,2-b]indazole from 3-aminoindazoles and ynals has been developed. The high regioselectivity of this reaction could be easily switched by converting different catalytic systems. In this way, a series of 2- and 4-substituted pyrimido[1,2-b]indazole derivatives were obtained in moderate to good yields. In addition, the photophysical properties of compound 3a prepared by the present method were discussed.
Collapse
Affiliation(s)
- Xiang Liu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, P.R. China
| | - Jinlei Zhou
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, P.R. China
| | - Jiatong Lin
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, P.R. China
| | - Zemin Zhang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, P.R. China
| | - Suying Wu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, P.R. China
| | - Qiuxing He
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, P.R. China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, P.R. China
| |
Collapse
|