51
|
Moradi M, Kousheh SA, Razavi R, Rasouli Y, Ghorbani M, Divsalar E, Tajik H, Guimarães JT, Ibrahim SA. Review of microbiological methods for testing protein and carbohydrate-based antimicrobial food packaging. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
52
|
Emulsions Incorporated in Polysaccharide-Based Active Coatings for Fresh and Minimally Processed Vegetables. Foods 2021; 10:foods10030665. [PMID: 33804642 PMCID: PMC8003668 DOI: 10.3390/foods10030665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
The consumption of minimally processed fresh vegetables has increased by the consumer's demand of natural products without synthetic preservatives and colorants. These new consumption behaviors have prompted research on the combination of emulsion techniques and coatings that have traditionally been used by the food industries. This combination brings great potential for improving the quality of fresh-cut fruits and vegetables by allowing the incorporation of natural and multifunctional additives directly into food formulations. These antioxidant, antibacterial, and/or antifungal additives are usually encapsulated at the nano- or micro-scale for their stabilization and protection to make them available by food through the coating. These nano- or micro-emulsions are responsible for the release of the active agents to bring them into direct contact with food to protect it from possible organoleptic degradation. Keeping in mind the widespread applications of micro and nanoemulsions for preserving the quality and safety of fresh vegetables, this review reports the latest works based on emulsion techniques and polysaccharide-based coatings as carriers of active compounds. The technical challenges of micro and nanoemulsion techniques, the potential benefits and drawbacks of their use, the development of polysaccharide-based coatings with natural active additives are considered, since these systems can be used as alternatives to conventional coatings in food formulations.
Collapse
|
53
|
McClements DJ, Das AK, Dhar P, Nanda PK, Chatterjee N. Nanoemulsion-Based Technologies for Delivering Natural Plant-Based Antimicrobials in Foods. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.643208] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
There is increasing interest in the use of natural preservatives (rather than synthetic ones) for maintaining the quality and safety of foods due to their perceived environmental and health benefits. In particular, plant-based antimicrobials are being employed to protect against microbial spoilage, thereby improving food safety, quality, and shelf-life. However, many natural antimicrobials cannot be utilized in their free form due to their chemical instability, poor dispersibility in food matrices, or unacceptable flavor profiles. For these reasons, encapsulation technologies, such as nanoemulsions, are being developed to overcome these hurdles. Indeed, encapsulation of plant-based preservatives can improve their handling and ease of use, as well as enhance their potency. This review highlights the various kinds of plant-based preservatives that are available for use in food applications. It then describes the methods available for forming nanoemulsions and shows how they can be used to encapsulate and deliver plant-based preservatives. Finally, potential applications of nano-emulsified plant-based preservatives for improving food quality and safety are demonstrated in the meat, fish, dairy, and fresh produce areas.
Collapse
|
54
|
Shuaib M, Ullah N, Hafeez A, Khan NU, Alhidary IA, Abelrahman MM, Albadani H, Khan RU. Dietary fortification of crushed seeds of Bonium persicum on growth performance, apparent ileal digestibility and blood metabolites in broiler chicks during the starter phase. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2020.1861555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Muhammad Shuaib
- Department of Poultry Science, Faculty of Animal Husbandry & Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Nasr Ullah
- Department of Poultry Science, Faculty of Animal Husbandry & Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Abdul Hafeez
- Department of Poultry Science, Faculty of Animal Husbandry & Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Najeeb Ullah Khan
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan
| | - Ibrahim A. Alhidary
- Department of Animal Production, College of Agriculture and Food Sciences, King Saud University, Riadh, Saudi Arabia
| | - Mutassim M. Abelrahman
- Department of Animal Production, College of Agriculture and Food Sciences, King Saud University, Riadh, Saudi Arabia
| | - Hani Albadani
- Department of Animal Production, College of Agriculture and Food Sciences, King Saud University, Riadh, Saudi Arabia
| | - Rifat Ullah Khan
- College of Veterinary Sciences, Faculty of Animal Husbandry & Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| |
Collapse
|
55
|
Yousefi M, Khorshidian N, Hosseini H. Potential Application of Essential Oils for Mitigation of Listeria monocytogenes in Meat and Poultry Products. Front Nutr 2020; 7:577287. [PMID: 33330578 PMCID: PMC7732451 DOI: 10.3389/fnut.2020.577287] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/21/2020] [Indexed: 01/23/2023] Open
Abstract
One of the most important challenges in the food industry is to provide healthy and safe food. Therefore, it is not possible to achieve this without different processes and the use of various additives. In order to improve safety and extend the shelf life of food products, various synthetic preservatives have been widely utilized by the food industry to prevent growth of spoilage and pathogenic microorganisms. On the other hand, consumers' preference to consume food products with natural additives induced food industries to use natural-based preservatives in their production. It has been observed that herbal extracts and their essential oils could be potentially considered as a replacement for chemical antimicrobials. Antimicrobial properties of plant essential oils are derived from some main bioactive components such as phenolic acids, terpenes, aldehydes, and flavonoids that are present in essential oils. Various mechanisms such as changing the fatty acid profile and structure of cell membranes and increasing the cell permeability as well as affecting membrane proteins and inhibition of functional properties of the cell wall are effective in antimicrobial activity of essential oils. Therefore, our objective is to revise the effect of various essential oils and their bioactive components against Listeria monocytogenes in meat and poultry products.
Collapse
Affiliation(s)
- Mojtaba Yousefi
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Nasim Khorshidian
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
56
|
Das S, Singh VK, Dwivedy AK, Chaudhari AK, Deepika, Dubey NK. Eugenol loaded chitosan nanoemulsion for food protection and inhibition of Aflatoxin B 1 synthesizing genes based on molecular docking. Carbohydr Polym 2020; 255:117339. [PMID: 33436182 DOI: 10.1016/j.carbpol.2020.117339] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/02/2020] [Accepted: 10/27/2020] [Indexed: 10/23/2022]
Abstract
The present investigation entails the fabrication and characterization of nanometric emulsion of eugenol (Nm-eugenol) encompassed into chitosan for assessing bio-efficacy in terms of in vitro antifungal actions, antiaflatoxigenic potential, and in situ preservative efficacy against Aspergillus flavus infestation and aflatoxin B1 (AFB1) mediated loss of dietary minerals, lipid triglycerides and alterations in composition of important macronutrients in stored rice. Nm-eugenol characterized by SEM, XRD, and FTIR exhibited biphasic burst release of eugenol. Reduction in ergosterol and methylglyoxal (AFB1-inducer) content after Nm-eugenol fumigation depicted biochemical mechanism of antifungal and antiaflatoxigenic activities. In silico 3D homology docking of eugenol with Ver-1 gene validated molecular mechanism of AFB1 inhibition. Further, significant protection of rice seeds from fungi, AFB1 contamination and preservation against loss of rice minerals, macronutrients and lipids during storage suggested deployment of chitosan as a biocompatible wall material for eugenol encapsulation and application as novel green preservative for food protection.
Collapse
Affiliation(s)
- Somenath Das
- Centre of Advanced Studies in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vipin Kumar Singh
- Centre of Advanced Studies in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Abhishek Kumar Dwivedy
- Centre of Advanced Studies in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anand Kumar Chaudhari
- Centre of Advanced Studies in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Deepika
- Centre of Advanced Studies in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Nawal Kishore Dubey
- Centre of Advanced Studies in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
57
|
Dini H, Fallah AA, Bonyadian M, Abbasvali M, Soleimani M. Effect of edible composite film based on chitosan and cumin essential oil-loaded nanoemulsion combined with low-dose gamma irradiation on microbiological safety and quality of beef loins during refrigerated storage. Int J Biol Macromol 2020; 164:1501-1509. [PMID: 32750471 DOI: 10.1016/j.ijbiomac.2020.07.215] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/21/2020] [Accepted: 07/26/2020] [Indexed: 11/15/2022]
Abstract
This research was conducted to assess the combined effect of chitosan (Ch) film containing cumin essential oil nanoemulsion (CNE) and low-dose gamma irradiation (GI) at 2.5 kGy on microbiological safety and quality of beef loins during 21 days of chilled storage. The growth of mesophilic and psychrophilic bacteria, Enterobacteriaceae, and lactic acid bacteria were retarded in all treated groups (Ch, GI, Ch + CNE, Ch + GI, and Ch + CNE + GI groups) compared to control group during storage time. The treatments also slowed down the increasing level of total volatile basic nitrogen and pH during storage, while irradiation increased the levels of thiobarbituric acid reactive substances and protein carbonyls in beef loins. All treatments except Ch were effective to control the growth of inoculated pathogenic bacteria, including Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella typhimurium, in loin samples. The combination of Ch + CNE + GI was the most effective treatment to control the population of microbial flora and inoculated pathogens, slow down some physicochemical changes, and enhance the storage life of beef loins. As a result, the combination of active chitosan film and low-dose gamma irradiation can ensure microbiological safety and is suggested for long time preservation of beef during chilled storage.
Collapse
Affiliation(s)
- Hossein Dini
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord 34141, Iran
| | - Aziz A Fallah
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord 34141, Iran.
| | - Mojtaba Bonyadian
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord 34141, Iran
| | - Maryam Abbasvali
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord 34141, Iran
| | - Mohammad Soleimani
- Department of Microbiology, Faculty of Medicine and Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
58
|
Das AK, Nanda PK, Bandyopadhyay S, Banerjee R, Biswas S, McClements DJ. Application of nanoemulsion-based approaches for improving the quality and safety of muscle foods: A comprehensive review. Compr Rev Food Sci Food Saf 2020; 19:2677-2700. [PMID: 33336977 DOI: 10.1111/1541-4337.12604] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022]
Abstract
Recently, there has been growing interest in implementing innovative nanoscience-based technologies to improve the health, safety, and quality of food products. A major thrust in this area has been to use nanoemulsions because they can easily be formulated with existing food ingredients and technologies. In particular, oil-in-water nanoemulsions, which consist of small oil droplets (<200 nm) dispersed in water, are being utilized as delivery systems for various hydrophobic substances in foods, including nutrients, nutraceuticals, antioxidants, antimicrobials, colors, and flavors. In this article, we focus on the application of nanoemulsion-based delivery systems for improving the quality, safety, nutritional profile, and sensory attributes of muscle foods, such as meat and fish. The article also critically reviews the formulation and fabrication of food-grade nanoemulsions, their potential benefits and limitations in muscle food systems.
Collapse
Affiliation(s)
- Arun K Das
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata, West Bengal, 700 037, India
| | - Pramod Kumar Nanda
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata, West Bengal, 700 037, India
| | - Samiran Bandyopadhyay
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata, West Bengal, 700 037, India
| | - Rituparna Banerjee
- Department of Livestock Products Technology, West Bengal University of Animal & Fishery Sciences, 37 & 68 K B Sarani, Kolkata, West Bengal, 700 037, India
| | - Subhasish Biswas
- Department of Livestock Products Technology, West Bengal University of Animal & Fishery Sciences, 37 & 68 K B Sarani, Kolkata, West Bengal, 700 037, India
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, 102 Holdsworth Way, Amherst, Massachusetts, MA 01003, USA
| |
Collapse
|
59
|
Abstract
In recent years, food packaging has evolved from an inert and polluting waste that remains after using the product toward an active item that can be consumed along with the food it contains. Edible films and coatings represent a healthy alternative to classic food packaging. Therefore, a significant number of studies have focused on the development of biodegradable enveloping materials based on biopolymers. Animal and vegetal proteins, starch, and chitosan from different sources have been used to prepare adequate packaging for perishable food. Moreover, these edible layers have the ability to carry different active substances such as essential oils—plant extracts containing polyphenols—which bring them considerable antioxidant and antimicrobial activity. This review presents the latest updates on the use of edible films/coatings with different compositions with a focus on natural compounds from plants, and it also includes an assessment of their mechanical and physicochemical features. The plant compounds are essential in many cases for considerable improvement of the organoleptic qualities of embedded food, since they protect the food from different aggressive pathogens. Moreover, some of these useful compounds can be extracted from waste such as pomace, peels etc., which contributes to the sustainable development of this industry.
Collapse
|