51
|
Zhao Y, Zhou C, Yu H, Zhang W, Cheng F, Yu H, Zhou D, Li B, Liu J, Dai J, Zhong J, Chen M, Huang T, Pan R, Duan S, Hu Z. Association between the methylation of six apoptosis‑associated genes with autism spectrum disorder. Mol Med Rep 2018; 18:4629-4634. [PMID: 30221723 DOI: 10.3892/mmr.2018.9473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 08/17/2018] [Indexed: 11/05/2022] Open
Abstract
Excessive apoptosis hinders the process of brain maturation and is regarded as one of the principal risk factors for the development of autism spectrum disorder (ASD). The aim of the present study was to investigate the association between the methylation of six apoptosis‑associated genes [transforming growth factor β 1 (TGFB1), BCL2 associated X, apoptosis regulator, insulin like growth factor binding protein 3, protein kinase C β 1, presenilin 2 and C‑C motif chemokine ligand 2] and ASD. Using quantitative methylation‑specific polymerase chain reaction technology, DNA methylation levels were detected in 42 autistic and 26 control subjects. The logistic regression analysis results demonstrated that of the six genes, only TGFB1 was significantly hypomethylated in peripheral blood samples from children with autism compared with control samples (mean percentage of methylated reference, 0.011% vs. 0.019%; age‑adjusted P=0.028). In addition, TGFB1 methylation was identified to be positively associated with the interaction ability score from the Autism Behavior Checklist (r=0.452; P=0.035). These data suggested that decreased TGFB1 methylation may contribute to the development of ASD.
Collapse
Affiliation(s)
- Yuanzhi Zhao
- Department of Child Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang 315211, P.R. China
| | - Cong Zhou
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Hang Yu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Wenwu Zhang
- Department of Child Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang 315211, P.R. China
| | - Fang Cheng
- Department of Child Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang 315211, P.R. China
| | - Haihang Yu
- Department of Child Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang 315211, P.R. China
| | - Dongsheng Zhou
- Department of Child Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang 315211, P.R. China
| | - Bin Li
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jing Liu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jie Dai
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jie Zhong
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Min Chen
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Tianyi Huang
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Ranran Pan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Shiwei Duan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Zhenyu Hu
- Department of Child Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
52
|
Dong D, Zielke HR, Yeh D, Yang P. Cellular stress and apoptosis contribute to the pathogenesis of autism spectrum disorder. Autism Res 2018; 11:1076-1090. [PMID: 29761862 DOI: 10.1002/aur.1966] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 03/26/2018] [Accepted: 04/02/2018] [Indexed: 02/06/2023]
Abstract
The molecular pathogenesis of autism spectrum disorder, a neurodevelopmental disorder, is still elusive. In this study, we investigated the possible roles of endoplasmic reticulum (ER) stress, oxidative stress, and apoptosis as molecular mechanisms underlying autism. This study compared the activation of ER stress signals (protein kinase R-like endoplasmic reticulum kinase [PERK], activating transcription factor 6 [ATF6], inositol-requiring enzyme 1 alpha [IRE1α]) in different brain regions (prefrontal cortex, hippocampus, cerebellum) in subjects with autism and in age-matched controls. Our data showed that the activation of three signals of ER stress varies in different regions of the autistic brain. IRE1α was activated in cerebellum and prefrontal cortex but ATF6 was activated in hippocampus. PERK was not activated in the three regions. Furthermore, the activation of ER stress was confirmed because the expression of C/EBP-homologous protein (CHOP), which is the common downstream indicators of ER stress signals, and most of ER chaperones were upregulated in the three regions. Consistent with the induction of ER stress, apoptosis was found in the three regions by detecting the cleavage of caspase 8 and poly(ADP-ribose) polymerase as well as using the transferase dUTP nick end labeling assay. Moreover, our data showed that oxidative stress was responsible for ER stress and apoptosis because the levels of 4-Hydroxynonenal and nitrotyrosine-modified proteins were significantly increased in the three regions. In conclusion, these data indicate that cellular stress and apoptosis may play important roles in the pathogenesis of autism. Autism Res 2018, 11: 1076-1090. © 2018 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY Autism results in significant morbidity and mortality in children. The functional and molecular changes in the autistic brains are unclear. The present study utilized autistic brain tissues from the National Institute of Child Health and Human Development's Brain Tissue Bank for the analysis of cellular and molecular changes in autistic brains. Three key brain regions, the hippocampus, the cerebellum, and the frontal cortex, in six cases of autistic brains and six cases of non-autistic brains from 6 to 16 years old deceased children, were analyzed. The current study investigated the possible roles of endoplasmic reticulum (ER) stress, oxidative stress, and apoptosis as molecular mechanisms underlying autism. The activation of three signals of ER stress (protein kinase R-like endoplasmic reticulum kinase, activating transcription factor 6, inositol-requiring enzyme 1 alpha) varies in different regions. The occurrence of ER stress leads to apoptosis in autistic brains. ER stress may result from oxidative stress because of elevated levels of the oxidative stress markers: 4-Hydroxynonenal and nitrotyrosine-modified proteins in autistic brains. These findings suggest that cellular stress and apoptosis may contribute to the autistic phenotype. Pharmaceuticals and/or dietary supplements, which can alleviate ER stress, oxidative stress and apoptosis, may be effective in ameliorating adverse phenotypes associated with autism.
Collapse
Affiliation(s)
- Daoyin Dong
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Horst Ronald Zielke
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland
| | - David Yeh
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Peixin Yang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
53
|
A pathogenic role for germline PTEN variants which accumulate into the nucleus. Eur J Hum Genet 2018; 26:1180-1187. [PMID: 29706633 DOI: 10.1038/s41431-018-0155-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 03/27/2018] [Accepted: 03/30/2018] [Indexed: 11/08/2022] Open
Abstract
The PTEN gene encodes a master regulator protein that exerts essential functions both in the cytoplasm and in the nucleus. PTEN is mutated in the germline of both patients with heterogeneous tumor syndromic diseases, categorized as PTEN hamartoma tumor syndrome (PHTS), and a group affected with autism spectrum disorders (ASD). Previous studies have unveiled the functional heterogeneity of PTEN variants found in both patient cohorts, making functional studies necessary to provide mechanistic insights related to their pathogenicity. Here, we have functionally characterized a PTEN missense variant [c.49C>G; p.(Gln17Glu); Q17E] associated to both PHTS and ASD patients. The PTEN Q17E variant displayed partially reduced PIP3-catalytic activity and normal stability in cells, as shown using S. cerevisiae and mammalian cell experimental models. Remarkably, PTEN Q17E accumulated in the nucleus, in a process involving the PTEN N-terminal nuclear localization sequence. The analysis of additional germline-associated PTEN N-terminal variants illustrated the existence of a PTEN N-terminal region whose targeting in disease causes PTEN nuclear accumulation, in parallel with defects in PIP3-catalytic activity in cells. Our findings highlight the frequent occurrence of PTEN gene mutations targeting PTEN N-terminus whose pathogenicity may be related, at least in part, with the retention of PTEN in the nucleus. This could be important for the implementation of precision therapies for patients with alterations in the PTEN pathway.
Collapse
|
54
|
Frandsen JR, Narayanasamy P. Neuroprotection through flavonoid: Enhancement of the glyoxalase pathway. Redox Biol 2018; 14:465-473. [PMID: 29080525 PMCID: PMC5680520 DOI: 10.1016/j.redox.2017.10.015] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/11/2017] [Accepted: 10/17/2017] [Indexed: 12/21/2022] Open
Abstract
The glyoxalase pathway functions to detoxify reactive dicarbonyl compounds, most importantly methylglyoxal. The glyoxalase pathway is an antioxidant defense mechanism that is essential for neuroprotection. Excessive concentrations of methylglyoxal have deleterious effects on cells, leading to increased levels of inflammation and oxidative stress. Neurodegenerative diseases - including Alzheimer's, Parkinson's, Aging and Autism Spectrum Disorder - are often induced or exacerbated by accumulation of methylglyoxal. Antioxidant compounds possess several distinct mechanisms that enhance the glyoxalase pathway and function as neuroprotectants. Flavonoids are well-researched secondary plant metabolites that appear to be effective in reducing levels of oxidative stress and inflammation in neural cells. Novel flavonoids could be designed, synthesized and tested to protect against neurodegenerative diseases through regulating the glyoxalase pathway.
Collapse
Affiliation(s)
- Joel R Frandsen
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA
| | - Prabagaran Narayanasamy
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA.
| |
Collapse
|
55
|
Cheon S, Dean M, Chahrour M. The ubiquitin proteasome pathway in neuropsychiatric disorders. Neurobiol Learn Mem 2018; 165:106791. [PMID: 29398581 DOI: 10.1016/j.nlm.2018.01.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/19/2018] [Accepted: 01/26/2018] [Indexed: 12/20/2022]
Abstract
The ubiquitin proteasome system (UPS) is a highly conserved pathway that tightly regulates protein turnover in cells. This process is integral to neuronal development, differentiation, and function. Several members of the UPS are disrupted in neuropsychiatric disorders, highlighting the importance of this pathway in brain development and function. In this review, we discuss some of these pathway members, the molecular processes they regulate, and the potential for targeting the UPS in an effort to develop therapeutic strategies in neuropsychiatric and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Solmi Cheon
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Milan Dean
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Maria Chahrour
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Departments of Neuroscience and Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
56
|
Decreased plasma agmatine levels in autistic subjects. J Neural Transm (Vienna) 2018; 125:735-740. [DOI: 10.1007/s00702-017-1836-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 12/27/2017] [Indexed: 10/18/2022]
|
57
|
Szkop KJ, Cooke PIC, Humphries JA, Kalna V, Moss DS, Schuster EF, Nobeli I. Dysregulation of Alternative Poly-adenylation as a Potential Player in Autism Spectrum Disorder. Front Mol Neurosci 2017; 10:279. [PMID: 28955198 PMCID: PMC5601403 DOI: 10.3389/fnmol.2017.00279] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/17/2017] [Indexed: 11/30/2022] Open
Abstract
We present here the hypothesis that alternative poly-adenylation (APA) is dysregulated in the brains of individuals affected by Autism Spectrum Disorder (ASD), due to disruptions in the calcium signaling networks. APA, the process of selecting different poly-adenylation sites on the same gene, yielding transcripts with different-length 3′ untranslated regions (UTRs), has been documented in different tissues, stages of development and pathologic conditions. Differential use of poly-adenylation sites has been shown to regulate the function, stability, localization and translation efficiency of target RNAs. However, the role of APA remains rather unexplored in neurodevelopmental conditions. In the human brain, where transcripts have the longest 3′ UTRs and are thus likely to be under more complex post-transcriptional regulation, erratic APA could be particularly detrimental. In the context of ASD, a condition that affects individuals in markedly different ways and whose symptoms exhibit a spectrum of severity, APA dysregulation could be amplified or dampened depending on the individual and the extent of the effect on specific genes would likely vary with genetic and environmental factors. If this hypothesis is correct, dysregulated APA events might be responsible for certain aspects of the phenotypes associated with ASD. Evidence supporting our hypothesis is derived from standard RNA-seq transcriptomic data but we suggest that future experiments should focus on techniques that probe the actual poly-adenylation site (3′ sequencing). To address issues arising from the use of post-mortem tissue and low numbers of heterogeneous samples affected by confounding factors (such as the age, gender and health of the individuals), carefully controlled in vitro systems will be required to model the effect of calcium signaling dysregulation in the ASD brain.
Collapse
Affiliation(s)
- Krzysztof J Szkop
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of LondonLondon, United Kingdom
| | - Peter I C Cooke
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of LondonLondon, United Kingdom
| | - Joanne A Humphries
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of LondonLondon, United Kingdom
| | - Viktoria Kalna
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of LondonLondon, United Kingdom
| | - David S Moss
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of LondonLondon, United Kingdom
| | | | - Irene Nobeli
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of LondonLondon, United Kingdom
| |
Collapse
|
58
|
Pfisterer U, Khodosevich K. Neuronal survival in the brain: neuron type-specific mechanisms. Cell Death Dis 2017; 8:e2643. [PMID: 28252642 PMCID: PMC5386560 DOI: 10.1038/cddis.2017.64] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/24/2017] [Accepted: 01/31/2017] [Indexed: 12/19/2022]
Abstract
Neurogenic regions of mammalian brain produce many more neurons that will eventually survive and reach a mature stage. Developmental cell death affects both embryonically produced immature neurons and those immature neurons that are generated in regions of adult neurogenesis. Removal of substantial numbers of neurons that are not yet completely integrated into the local circuits helps to ensure that maturation and homeostatic function of neuronal networks in the brain proceed correctly. External signals from brain microenvironment together with intrinsic signaling pathways determine whether a particular neuron will die. To accommodate this signaling, immature neurons in the brain express a number of transmembrane factors as well as intracellular signaling molecules that will regulate the cell survival/death decision, and many of these factors cease being expressed upon neuronal maturation. Furthermore, pro-survival factors and intracellular responses depend on the type of neuron and region of the brain. Thus, in addition to some common neuronal pro-survival signaling, different types of neurons possess a variety of 'neuron type-specific' pro-survival constituents that might help them to adapt for survival in a certain brain region. This review focuses on how immature neurons survive during normal and impaired brain development, both in the embryonic/neonatal brain and in brain regions associated with adult neurogenesis, and emphasizes neuron type-specific mechanisms that help to survive for various types of immature neurons. Importantly, we mainly focus on in vivo data to describe neuronal survival specifically in the brain, without extrapolating data obtained in the PNS or spinal cord, and thus emphasize the influence of the complex brain environment on neuronal survival during development.
Collapse
Affiliation(s)
- Ulrich Pfisterer
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Konstantin Khodosevich
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
59
|
Heyer DB, Meredith RM. Environmental toxicology: Sensitive periods of development and neurodevelopmental disorders. Neurotoxicology 2017; 58:23-41. [DOI: 10.1016/j.neuro.2016.10.017] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/25/2016] [Accepted: 10/31/2016] [Indexed: 11/16/2022]
|
60
|
Zuko A, Oguro-Ando A, Post H, Taggenbrock RLRE, van Dijk RE, Altelaar AFM, Heck AJR, Petrenko AG, van der Zwaag B, Shimoda Y, Pasterkamp RJ, Burbach JPH. Association of Cell Adhesion Molecules Contactin-6 and Latrophilin-1 Regulates Neuronal Apoptosis. Front Mol Neurosci 2016; 9:143. [PMID: 28018171 PMCID: PMC5156884 DOI: 10.3389/fnmol.2016.00143] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/28/2016] [Indexed: 01/06/2023] Open
Abstract
In view of important neurobiological functions of the cell adhesion molecule contactin-6 (Cntn6) that have emerged from studies on null-mutant mice and autism spectrum disorders patients, we set out to examine pathways underlying functions of Cntn6 using a proteomics approach. We identified the cell adhesion GPCR latrophilin-1 (Lphn1, a.k.a. CIRL1/CL, ADGRL1) as a binding partner for Cntn6 forming together a heteromeric cis-complex. Lphn1 expression in cultured neurons caused reduction in neurite outgrowth and increase in apoptosis, which was rescued by coexpression of Cntn6. In cultured neurons derived from Cntn6-/- mice, Lphn1 knockdown reduced apoptosis, suggesting that the observed apoptosis was Lphn1-dependent. In line with these data, the number of apoptotic cells was increased in the cortex of Cntn6-/- mice compared to wild-type littermate controls. These results show that Cntn6 can modulate the activity of Lphn1 by direct binding and suggests that Cntn6 may prevent apoptosis thereby impinging on neurodevelopment.
Collapse
Affiliation(s)
- Amila Zuko
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - Asami Oguro-Ando
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - Harm Post
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht UniversityUtrecht, Netherlands; Netherlands Proteomics CentreUtrecht, Netherlands
| | - Renske L R E Taggenbrock
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - Roland E van Dijk
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - A F Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht UniversityUtrecht, Netherlands; Netherlands Proteomics CentreUtrecht, Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht UniversityUtrecht, Netherlands; Netherlands Proteomics CentreUtrecht, Netherlands
| | - Alexander G Petrenko
- Laboratory of Receptor Cell Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences Moscow, Russia
| | - Bert van der Zwaag
- Department of Genetics, University Medical Center Utrecht Utrecht, Netherlands
| | - Yasushi Shimoda
- Department of Bioengineering, Nagaoka University of Technology Nagaoka, Japan
| | - R J Pasterkamp
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - J P H Burbach
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| |
Collapse
|
61
|
Schuetze M, Park MTM, Cho IYK, MacMaster FP, Chakravarty MM, Bray SL. Morphological Alterations in the Thalamus, Striatum, and Pallidum in Autism Spectrum Disorder. Neuropsychopharmacology 2016; 41:2627-37. [PMID: 27125303 PMCID: PMC5026732 DOI: 10.1038/npp.2016.64] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/18/2016] [Accepted: 04/20/2016] [Indexed: 01/18/2023]
Abstract
Autism spectrum disorder (ASD) is a common neurodevelopmental disorder with cognitive, motor, and emotional symptoms. The thalamus and basal ganglia form circuits with the cortex supporting all three of these behavioral domains. Abnormalities in the structure of subcortical regions may suggest atypical development of these networks, with implications for understanding the neural basis of ASD symptoms. Findings from previous volumetric studies have been inconsistent. Here, using advanced surface-based methodology, we investigated localized differences in shape and surface area in the basal ganglia and thalamus in ASD, using T1-weighted anatomical images from the Autism Brain Imaging Data Exchange (373 male participants aged 7-35 years with ASD and 384 typically developing). We modeled effects of diagnosis, age, and their interaction on volume, shape, and surface area. In participants with ASD, we found expanded surface area in the right posterior thalamus corresponding to the pulvinar nucleus, and a more concave shape in the left mediodorsal nucleus. The shape of both caudal putamen and pallidum showed a relatively steeper increase in concavity with age in ASD. Within ASD participants, restricted, repetitive behaviors were positively associated with surface area in bilateral globus pallidus. We found no differences in overall volume, suggesting that surface-based approaches have greater sensitivity to detect localized differences in subcortical structure. This work adds to a growing body of literature implicating corticobasal ganglia-thalamic circuits in the pathophysiology of ASD. These circuits subserve a range of cognitive, emotional, and motor functions, and may have a broad role in the complex symptom profile in ASD.
Collapse
Affiliation(s)
- Manuela Schuetze
- Child and Adolescent Imaging Research (CAIR) Program, University of Calgary, Calgary, AB, Canada,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada,Department of Neuroscience, University of Calgary, c/o Glenda Maru, 4th Floor, C4-100-07, Alberta Children's Hospital, 2888 Shaganappi Trail NW, Calgary, AB, Canada T3B 6A8, Tel: +1 403 955 2966, Fax: +1 403 955 2772, E-mail:
| | - Min Tae M Park
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, QC, Canada,Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Ivy YK Cho
- Child and Adolescent Imaging Research (CAIR) Program, University of Calgary, Calgary, AB, Canada,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Frank P MacMaster
- Child and Adolescent Imaging Research (CAIR) Program, University of Calgary, Calgary, AB, Canada,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada,Departments of Psychiatry and Pediatrics, University of Calgary, Calgary, AB, Canada,Mathison Centre for Mental Health Research and Education, Hotchkiss Brain Institute, Calgary, AB, Canada,Strategic Clinical Network for Addictions and Mental Health, Alberta Health Services, Calgary, AB, Canada
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, QC, Canada,Departments of Psychiatry and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Signe L Bray
- Child and Adolescent Imaging Research (CAIR) Program, University of Calgary, Calgary, AB, Canada,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada,Departments of Pediatrics and Radiology, University of Calgary, AB, Canada
| |
Collapse
|
62
|
Zhang J, Zhang JX, Zhang QL. PI3K/AKT/mTOR-mediated autophagy in the development of autism spectrum disorder. Brain Res Bull 2016; 125:152-8. [PMID: 27320472 DOI: 10.1016/j.brainresbull.2016.06.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/14/2016] [Accepted: 06/16/2016] [Indexed: 11/17/2022]
Abstract
AIM To investigate the association between PI3K/AKT/mTOR-mediated autophagy and the pathogenesis of autism spectrum disorder (ASD). METHODS A sodium valproate (VPA)-induced baby rat model of ASD was built. Nine pregnant rats were randomly assigned into three groups, with three rats for each group: healthy control group, VPA group and mTOR inhibition group, receiving different drug administrations. Baby rats were grouped according to the maternal rats. Social interaction of baby rats (35days after birth) was observed and their bilateral hippocampes were sliced. We used electron microscope analysis for observation of autophagosome formation, double immunofluorescence staining for location of LC3 II, TUNEL assay for observation of cell apoptosis, Western Blot assay was used for measurement of LC3 II, P62, p53, Bcl-2, PI3K/AKT/mTOR-related proteins and p-S6. RESULTS VPA group had significantly lowered ability of social interaction than the control group and mTOR inhibition group (both P<0.05). The control group and the mTOTR inhibition group presented the visual of autophagosomes, while VPA group seldom had autophagosomes. By comparison with VPA group, mTOR group had a remarkable green fluorescence in the hippocampal CA1 (P<0.05). Western Blot assay revealved that mTOR inhibition group had a significantly higher LC3 II expression, higher LC3 II/LC3 I ratio, higher Bcl-2 expression and lower p53 than VPA group (all P<0.05). TUNEL assay showed that mTOR inhibition group had a significant smaller number of apoptotic cells in the hippocampal CA1. Besides, lowered expressions of p-PI3K, p-AKT and p-S6 were identified in the baby rats in mTOR inhibition group compared with VPA group (all P<0.05). CONCLUSION mTOR inhibition can increase PI3K/AKT/mTOR-mediated autophagic activity and improve social interaction in VPA-induced ASD, providing a novel target and direction for the treatment of ASD.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Children's Rehabilitation, Linyi People's Hospital, Linyi, 276000 Shandong Province, PR China
| | - Ji-Xiang Zhang
- Department of Clinical Psychology, Linyi People's Hospital, No. 27 Jiefang Road, Lanshan District, Linyi, 276000 Shandong Province, PR China.
| | - Qin-Liang Zhang
- Department of Children's Rehabilitation, Linyi People's Hospital, Linyi, 276000 Shandong Province, PR China
| |
Collapse
|
63
|
Lee JH, Espinera AR, Chen D, Choi KE, Caslin AY, Won S, Pecoraro V, Xu GY, Wei L, Yu SP. Neonatal inflammatory pain and systemic inflammatory responses as possible environmental factors in the development of autism spectrum disorder of juvenile rats. J Neuroinflammation 2016; 13:109. [PMID: 27184741 PMCID: PMC4867541 DOI: 10.1186/s12974-016-0575-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/06/2016] [Indexed: 02/28/2023] Open
Abstract
Background Autism spectrum disorder (ASD) affects many children and juveniles. The pathogenesis of ASD is not well understood. Environmental factors may play important roles in the development of ASD. We examined a possible relationship of inflammatory pain in neonates and the development of ASD in juveniles. Methods Acute inflammation pain was induced by 5 % formalin (5 μl/day) subcutaneous injection into two hindpaws of postnatal day 3 to 5 (P3–P5) rat pups. Western blot, immunohistochemical, and behavioral examinations were performed at different time points after the insult. Results Formalin injection caused acute and chronic inflammatory responses including transient local edema, increased levels of inflammatory cytokines, TNF-α, and IL-1β in the blood as well as in the brain, and increased microglia in the brain. One day after the pain insult, there was significant cell death in the cortex and hippocampus. Two weeks later, although the hindpaw local reaction subsided, impaired axonal growth and demyelization were seen in the brain of P21 juvenile rats. The number of bromodeoxyuridine (BrdU) and doublecortin (DCX) double-positive cells in the hippocampal dentate gyrus of P21 rats was significantly lower than that in controls, indicating reduced neurogenesis. In the P21 rat’s brain of the formalin group, the expression of autism-related gene neurexin 1 (NRXN1), fragile X mental retardation 1 (FMR1), and oxytocin was significantly downregulated, consistent with the gene alteration in ASD. Juvenile rats in the formalin group showed hyperalgesia, repetitive behaviors, abnormal locomotion, sleep disorder, and distinct deficits in social memory and social activities. These alterations in neuroinflammatory reactions, gene expression, and behaviors were more evident in male than in female rats. Importantly, an anti-inflammation treatment using indomethacin (10 mg/kg, i.p.) at the time of formalin injections suppressed inflammatory responses and neuronal cell death and prevented alterations in ASD-related genes and the development of abnormal behaviors. Conclusions These novel observations indicate that severe inflammatory pain in neonates and persistent inflammatory reactions may predispose premature infants to development delays and psychiatric disorders including ASD. The prevention of pain stimuli and prompt treatments of inflammation during development appear vitally important in disrupting possible evolution of ASD syndromes. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0575-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jin Hwan Lee
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Alyssa R Espinera
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Dongdong Chen
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA.,The Laboratory of Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Ko-Eun Choi
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Asha Yoshiko Caslin
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Soonmi Won
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Valentina Pecoraro
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Guang-Yin Xu
- The Laboratory of Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA. .,Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Atlanta, GA, 30033, USA. .,Emory University School of Medicine, 101 Woodruff Circle, WMB Suite 620, Atlanta, GA, 30322, USA.
| |
Collapse
|
64
|
McCammon JM, Sive H. Challenges in understanding psychiatric disorders and developing therapeutics: a role for zebrafish. Dis Model Mech 2016; 8:647-56. [PMID: 26092527 PMCID: PMC4486859 DOI: 10.1242/dmm.019620] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The treatment of psychiatric disorders presents three major challenges to the research and clinical community: defining a genotype associated with a disorder, characterizing the molecular pathology of each disorder and developing new therapies. This Review addresses how cellular and animal systems can help to meet these challenges, with an emphasis on the role of the zebrafish. Genetic changes account for a large proportion of psychiatric disorders and, as gene variants that predispose to psychiatric disease are beginning to be identified in patients, these are tractable for study in cellular and animal systems. Defining cellular and molecular criteria associated with each disorder will help to uncover causal physiological changes in patients and will lead to more objective diagnostic criteria. These criteria should also define co-morbid pathologies within the nervous system or in other organ systems. The definition of genotypes and of any associated pathophysiology is integral to the development of new therapies. Cell culture-based approaches can address these challenges by identifying cellular pathology and by high-throughput screening of gene variants and potential therapeutics. Whole-animal systems can define the broadest function of disorder-associated gene variants and the organismal impact of candidate medications. Given its evolutionary conservation with humans and its experimental tractability, the zebrafish offers several advantages to psychiatric disorder research. These include assays ranging from molecular to behavioural, and capability for chemical screening. There is optimism that the multiple approaches discussed here will link together effectively to provide new diagnostics and treatments for psychiatric patients. Summary: In this review, we discuss strengths and limitations of prevalent laboratory models that are used for understanding psychiatric disorders and developing therapeutics, with emphasis on the zebrafish.
Collapse
Affiliation(s)
- Jasmine M McCammon
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
| | - Hazel Sive
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
65
|
Inoue E, Watanabe Y, Xing J, Kushima I, Egawa J, Okuda S, Hoya S, Okada T, Uno Y, Ishizuka K, Sugimoto A, Igeta H, Nunokawa A, Sugiyama T, Ozaki N, Someya T. Resequencing and Association Analysis of CLN8 with Autism Spectrum Disorder in a Japanese Population. PLoS One 2015; 10:e0144624. [PMID: 26657971 PMCID: PMC4682829 DOI: 10.1371/journal.pone.0144624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 10/16/2015] [Indexed: 12/27/2022] Open
Abstract
Rare variations contribute substantially to autism spectrum disorder (ASD) liability. We recently performed whole-exome sequencing in two families with affected siblings and then carried out a follow-up study and identified ceroid-lipofuscinosis neuronal 8 (epilepsy, progressive with mental retardation) (CLN8) as a potential genetic risk factor for ASD. To further investigate the role of CLN8 in the genetic etiology of ASD, we performed resequencing and association analysis of CLN8 with ASD in a Japanese population. Resequencing the CLN8 coding region in 256 ASD patients identified five rare missense variations: g.1719291G>A (R24H), rs201670636 (F39L), rs116605307 (R97H), rs143701028 (T108M) and rs138581191 (N152S). These variations were genotyped in 568 patients (including the resequenced 256 patients) and 1017 controls. However, no significant association between these variations and ASD was identified. This study does not support a contribution of rare missense CLN8 variations to ASD susceptibility in the Japanese population.
Collapse
Affiliation(s)
- Emiko Inoue
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yuichiro Watanabe
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Jingrui Xing
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Jun Egawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shujiro Okuda
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Satoshi Hoya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takashi Okada
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yota Uno
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kanako Ishizuka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Atsunori Sugimoto
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hirofumi Igeta
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ayako Nunokawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Oojima Hospital, Sanjo, Niigata, Japan
| | - Toshiro Sugiyama
- Department of Child and Adolescent Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Toshiyuki Someya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
66
|
Phenotypic and molecular convergence of 2q23.1 deletion syndrome with other neurodevelopmental syndromes associated with autism spectrum disorder. Int J Mol Sci 2015; 16:7627-43. [PMID: 25853262 PMCID: PMC4425039 DOI: 10.3390/ijms16047627] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/19/2015] [Accepted: 03/19/2015] [Indexed: 12/21/2022] Open
Abstract
Roughly 20% of autism spectrum disorders (ASD) are syndromic with a well-established genetic cause. Studying the genes involved can provide insight into the molecular and cellular mechanisms of ASD. 2q23.1 deletion syndrome (causative gene, MBD5) is a recently identified genetic neurodevelopmental disorder associated with ASD. Mutations in MBD5 have been found in ASD cohorts. In this study, we provide a phenotypic update on the prevalent features of 2q23.1 deletion syndrome, which include severe intellectual disability, seizures, significant speech impairment, sleep disturbance, and autistic-like behavioral problems. Next, we examined the phenotypic, molecular, and network/pathway relationships between nine neurodevelopmental disorders associated with ASD: 2q23.1 deletion Rett, Angelman, Pitt-Hopkins, 2q23.1 duplication, 5q14.3 deletion, Kleefstra, Kabuki make-up, and Smith-Magenis syndromes. We show phenotypic overlaps consisting of intellectual disability, speech delay, seizures, sleep disturbance, hypotonia, and autistic-like behaviors. Molecularly, MBD5 possibly regulates the expression of UBE3A, TCF4, MEF2C, EHMT1 and RAI1. Network analysis reveals that there could be indirect protein interactions, further implicating function for these genes in common pathways. Further, we show that when MBD5 and RAI1 are haploinsufficient, they perturb several common pathways that are linked to neuronal and behavioral development. These findings support further investigations into the molecular and pathway relationships among genes linked to neurodevelopmental disorders and ASD, which will hopefully lead to common points of regulation that may be targeted toward therapeutic intervention.
Collapse
|
67
|
Egawa J, Watanabe Y, Wang C, Inoue E, Sugimoto A, Sugiyama T, Igeta H, Nunokawa A, Shibuya M, Kushima I, Orime N, Hayashi T, Okada T, Uno Y, Ozaki N, Someya T. Novel rare missense variations and risk of autism spectrum disorder: whole-exome sequencing in two families with affected siblings and a two-stage follow-up study in a Japanese population. PLoS One 2015; 10:e0119413. [PMID: 25806950 PMCID: PMC4373693 DOI: 10.1371/journal.pone.0119413] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/13/2015] [Indexed: 01/08/2023] Open
Abstract
Rare inherited variations in multiplex families with autism spectrum disorder (ASD) are suggested to play a major role in the genetic etiology of ASD. To further investigate the role of rare inherited variations, we performed whole-exome sequencing (WES) in two families, each with three affected siblings. We also performed a two-stage follow-up case-control study in a Japanese population. WES of the six affected siblings identified six novel rare missense variations. Among these variations, CLN8 R24H was inherited in one family by three affected siblings from an affected father and thus co-segregated with ASD. In the first stage of the follow-up study, we genotyped the six novel rare missense variations identified by WES in 241 patients and 667 controls (the Niigata sample). Only CLN8 R24H had higher mutant allele frequencies in patients (1/482) compared with controls (1/1334). In the second stage, this variation was further genotyped, yet was not detected in a sample of 309 patients and 350 controls (the Nagoya sample). In the combined Niigata and Nagoya samples, there was no significant association (odds ratio = 1.8, 95% confidence interval = 0.1–29.6). These results suggest that CLN8 R24H plays a role in the genetic etiology of ASD, at least in a subset of ASD patients.
Collapse
Affiliation(s)
- Jun Egawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Department of Pediatric Psychiatry, Center for Transdisciplinary Research, Niigata University, Niigata, Japan
| | - Yuichiro Watanabe
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Division of Medical Education, Comprehensive Medical Education Center, School of Medicine, Faculty of Medicine, Niigata University, Niigata, Japan
- * E-mail: (YW)
| | - Chenyao Wang
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Emiko Inoue
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Atsunori Sugimoto
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Toshiro Sugiyama
- Department of Child and Adolescent Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Hirofumi Igeta
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ayako Nunokawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Oojima Hospital, Sanjo, Niigata, Japan
| | - Masako Shibuya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Health Administration Center, Headquarters for Health Administration, Niigata University, Niigata, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Naoki Orime
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Taketsugu Hayashi
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takashi Okada
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yota Uno
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Toshiyuki Someya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
68
|
Neurotrophin blood-based gene expression and social cognition analysis in patients with autism spectrum disorder. Neurogenetics 2014; 16:123-31. [PMID: 25535174 DOI: 10.1007/s10048-014-0434-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/10/2014] [Indexed: 12/23/2022]
Abstract
Autism spectrum disorders (ASD) comprise neurodevelopmental disorders with clinical onset during the first years of life. The identification of peripheral biomarkers could significantly impact diagnosis and an individualized, early treatment. Although the aetiology of ASD remains poorly understood, there is increasing evidence that neurotrophins and their receptors represent a group of candidate genes for ASD pathophysiology and biomarker research. Total messenger RNA (mRNA) from whole blood was obtained from adolescents and adults diagnosed as ASD (n = 21) according to DSM-IV criteria and confirmed by the Autism Diagnostic Observation Schedule (ADOS) and Autism Diagnostic Interview-Revised (ADI-R) algorithms, as well as healthy controls (n = 10). The mRNA expression of neurotrophins (BDNF, NT3 and NT4) and their receptors (TrkA, TrkB and p75 (NTR) ) was determined by quantitative real-time polymerase chain reaction (qRT-PCR). Moreover, social cognition abilities of ASD patients and controls were determined according to three Theory of Mind (ToM) tests (Reading the Mind in the Eyes, Faux pas, and Happé stories). The NT3 and NT4 mRNA expression in the whole blood was significantly lower in ASD compared to healthy controls, while p75(NTR) was higher (P < 0.005). In addition, lower scores in three of the ToM tests were observed in ASD subjects compared to controls. A significant (P < 0.005) ToM impairment in Happé stories test was demonstrated in ASD. Nevertheless, no correlations were observed between neurotrophins and their receptors expressions and measures of ToM. Given their potential as peripheral blood-based biomarkers, NT3, NT4 and p75 (NTR) mRNA expression patterns may be useful tools for a more personalized diagnostics and therapy in ASD. Further investigations with larger numbers of samples are needed to verify these results.
Collapse
|