51
|
Dermal flurbiprofen nanosuspensions: Optimization with design of experiment approach and in vitro evaluation. Eur J Pharm Sci 2018; 122:254-263. [DOI: 10.1016/j.ejps.2018.07.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 07/03/2018] [Accepted: 07/03/2018] [Indexed: 11/24/2022]
|
52
|
Nanocrystals of Poorly Soluble Drugs: Drug Bioavailability and Physicochemical Stability. Pharmaceutics 2018; 10:pharmaceutics10030134. [PMID: 30134537 PMCID: PMC6161002 DOI: 10.3390/pharmaceutics10030134] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/13/2018] [Accepted: 08/18/2018] [Indexed: 11/16/2022] Open
Abstract
Many approaches have been developed over time to overcome the bioavailability limitations of poorly soluble drugs. With the advances in nanotechnology in recent decades, science and industry have been approaching this issue through the formulation of drugs as nanocrystals, which consist of “pure drugs and a minimum of surface active agents required for stabilization”. They are defined as “carrier-free submicron colloidal drug delivery systems with a mean particle size in the nanometer range, typically between 10–800 nm”. The primary importance of these nanoparticles was the reduction of particle size to nanoscale dimensions, with an increase in the particle surface area in contact with the dissolution medium, and thus in bioavailability. This approach has been proven successful, as demonstrated by the number of such drug products on the market. Nonetheless, despite the definition that indicates nanocrystals as a “carrier-free” system, surface active agents are necessary to prevent colloidal particles aggregation and thus improve stability. In addition, in more recent years, nanocrystal properties and technologies have attracted the interest of researchers as a means to obtain colloidal particles with modified biological properties, and thus their interest is now also addressed to modify the drug delivery and targeting. The present work provides an overview of the achievements in improving the bioavailability of poorly soluble drugs according to their administration route, describes the methods developed to overcome physicochemical and stability-related problems, and in particular reviews different stabilizers and surface agents that are able to modify the drug delivery and targeting.
Collapse
|
53
|
Zhang D, Wang L, Zhang X, Bao D, Zhao Y. Polymeric micelles for pH-responsive lutein delivery. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.03.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
54
|
Pal S, Bhattacharjee P. Spray dried powder of lutein-rich supercritical carbon dioxide extract of gamma-irradiated marigold flowers: Process optimization, characterization and food application. POWDER TECHNOL 2018. [DOI: 10.1016/j.powtec.2017.12.085] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
55
|
Patel V, Sharma OP, Mehta T. Nanocrystal: a novel approach to overcome skin barriers for improved topical drug delivery. Expert Opin Drug Deliv 2018; 15:351-368. [PMID: 29465253 DOI: 10.1080/17425247.2018.1444025] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Skin is an important route of drug delivery for the treatment of various dermatological conditions. The advent of nanotechnology is paving the roadmaps for topical drug delivery by providing sustained release as well as maintaining a localized effect, outweighing the toxicity concern. AREAS COVERED This review highlighted the morphology of skin, its barrier nature as well as drug penetration pathways after topical application of formulations. The existing methods to improve topical drug delivery, by infringing or permeating the skin barriers, are discussed. This context concretes the foundation to accentuate the need for the development of nanocrystal-based topical formulation. The mechanism of drug release, immediate as well as sustained release, after topical administration of drug nanocrystals is also elaborated. The special emphasis is given on the breakthrough achieved, in topical drug delivery using drug nanocrystals, so far in the plethora of literature, patents, and products, under clinical trial as well as in the market. EXPERT OPINION The current research on nanocrystals for topical drug delivery is highlighting the breakthroughs achieved so far. The output of these research envisages that topical nanocrystals based formulations can be a novel strategy for the drugs which are facing solubility, bioavailability and toxicity concerns.
Collapse
Affiliation(s)
- Viral Patel
- a Department of Pharmaceutics and Pharmaceutical Technology, Institute of Pharmacy , Nirma University , Ahmedabad , India
| | - Om Prakash Sharma
- b Pharmaceutical Technology Centre , Cadila Healthcare Limited , Ahmedabad , India
| | - Tejal Mehta
- a Department of Pharmaceutics and Pharmaceutical Technology, Institute of Pharmacy , Nirma University , Ahmedabad , India
| |
Collapse
|
56
|
Cui B, Wang C, Zhao X, Yao J, Zeng Z, Wang Y, Sun C, Liu G, Cui H. Characterization and evaluation of avermectin solid nanodispersion prepared by microprecipitation and lyophilisation techniques. PLoS One 2018; 13:e0191742. [PMID: 29360866 PMCID: PMC5779682 DOI: 10.1371/journal.pone.0191742] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/10/2018] [Indexed: 02/03/2023] Open
Abstract
Poorly water-soluble and photosensitive pesticide compounds are difficult to formulate as solvent-free nanoformulations with high efficacy. A avermectin solid nanodispersion with a mean particle size of 188 nm was developed by microprecipitation and lyophilisation techniques. The suspensibility and wetting time of the solid nanodispersion in water were 99.8% and 13 s, respectively, superior to those of conventional water dispersible granules and wettable powders. The anti-photolysis performance of the nanoformulation was twice that of the technical material, and the biological activity against diamondback moths was more than 1.5 times that of the conventional solid formulations while taking LC 50 as the evaluation index. Moreover, the formulation composition substantially decreased the surfactant content and avoided organic solvents. Microprecipitation combined with lyophilisation is an easy and promising method to construct solid nanoformulations for pesticides with poor water solubility and environmental sensitivity. The application of the highly effective solid nanodispersion in crop production will have a great potential in reducing chemical residues and environmental pollution.
Collapse
Affiliation(s)
- Bo Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunxin Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiang Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junwei Yao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhanghua Zeng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changjiao Sun
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guoqiang Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haixin Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
57
|
Enhancing physicochemical properties of emulsions by heteroaggregation of oppositely charged lactoferrin coated lutein droplets and whey protein isolate coated DHA droplets. Food Chem 2018; 239:75-85. [DOI: 10.1016/j.foodchem.2017.06.078] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/19/2017] [Accepted: 06/12/2017] [Indexed: 11/22/2022]
|
58
|
Carocho M, Morales P, Ferreira IC. Antioxidants: Reviewing the chemistry, food applications, legislation and role as preservatives. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2017.11.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
59
|
Lei Y, Kong Y, Sui H, Feng J, Zhu R, Wang W. Enhanced oral bioavailability of glycyrrhetinic acid via nanocrystal formulation. Drug Deliv Transl Res 2018; 6:519-25. [PMID: 27206446 DOI: 10.1007/s13346-016-0300-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The purpose of this study was to prepare solid nanocrystals of glycyrrhetinic acid (GA) for improved oral bioavailability. The anti-solvent precipitation-ultrasonication method followed by freeze-drying was adopted for the preparation of GA nanocrystals. The physicochemical properties, drug dissolution and pharmacokinetic of the obtained nanocrystals were investigated. GA nanocrystals showed a mean particle size of 220 nm and shaped like short rods. The analysis results from differential scanning calorimetry and X-ray powder diffraction indicated that GA remained in crystalline state despite a huge size reduction. The equilibrium solubility and dissolution rate of GA nanocrystal were significantly improved in comparison with those of the coarse GA or the physical mixture. The bioavailability of GA nanocrystals in rats was 4.3-fold higher than that of the coarse GA after oral administration. With its rapid dissolution and absorption performance, the solid nanocrystal might be a more preferable formulation for oral administration of poorly soluble GA.
Collapse
Affiliation(s)
- Yaya Lei
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Yindi Kong
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Hong Sui
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
- Ningxia Engineering and Technology Research Center for Modernization of Hui Medicine, Yinchuan, Ningxia, 750004, China
- Key Lab of Hui Ethnic Medicine Modernization, Ministry of Education, Yinchuan, Ningxia, 750004, China
| | - Jun Feng
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Rongyue Zhu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Wenping Wang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
- Ningxia Engineering and Technology Research Center for Modernization of Hui Medicine, Yinchuan, Ningxia, 750004, China.
- Key Lab of Hui Ethnic Medicine Modernization, Ministry of Education, Yinchuan, Ningxia, 750004, China.
| |
Collapse
|
60
|
Mora-Gutierrez A, Attaie R, Núñez de González MT, Jung Y, Woldesenbet S, Marquez SA. Complexes of lutein with bovine and caprine caseins and their impact on lutein chemical stability in emulsion systems: Effect of arabinogalactan. J Dairy Sci 2017; 101:18-27. [PMID: 29103708 DOI: 10.3168/jds.2017-13105] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/06/2017] [Indexed: 11/19/2022]
Abstract
Lutein is an important xanthophyll carotenoid with many benefits to human health. Factors affecting the application of lutein as a functional ingredient in low-fat dairy-like beverages (pH 6.0-7.0) are not well understood. The interactions of bovine and caprine caseins with hydrophobic lutein were studied using UV/visible spectroscopy as well as fluorescence. Our studies confirmed that the aqueous solubility of lutein is improved after binding with bovine and caprine caseins. The rates of lutein solubilization by the binding to bovine and caprine caseins were as follows: caprine αS1-II-casein 34%, caprine αS1-I-casein 10%, and bovine casein 7% at 100 μM lutein. Fluorescence of the protein was quenched on binding supporting complex formation. The fluorescence experiments showed that the binding involves tryptophan residues and some nonspecific interactions. Scatchard plots of lutein binding to the caseins demonstrated competitive binding between the caseins and their sites of interaction with lutein. Competition experiments suggest that caprine αS1-II casein will bind a larger number of lutein molecules with higher affinity than other caseins. The chemical stability of lutein was largely dependent on casein type and significant increases occurred in the chemical stability of lutein with the following pattern: caprine αS1-II-casein > caprine αS1-I-casein > bovine casein. Addition of arabinogalactan to lutein-enriched emulsions increases the chemical stability of lutein-casein complexes during storage under accelerated photo-oxidation conditions at 25°C. Therefore, caprine αS1-II-casein alone and in combination with arabinogalactan can have important applications in the beverage industry as carrier of this xanthophyll carotenoid (lutein).
Collapse
Affiliation(s)
- A Mora-Gutierrez
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446.
| | - R Attaie
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446
| | - M T Núñez de González
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446
| | - Y Jung
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446
| | - S Woldesenbet
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446
| | - S A Marquez
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446
| |
Collapse
|
61
|
Miao X, Yang W, Feng T, Lin J, Huang P. Drug nanocrystals for cancer therapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 10:e1499. [PMID: 29044971 DOI: 10.1002/wnan.1499] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/26/2017] [Accepted: 09/05/2017] [Indexed: 01/22/2023]
Abstract
Drug nanocrystals (NCs) with fascinating physicochemical properties have attracted great attention in drug delivery. High drug-loading efficiency, great structural stability, steady dissolution, and long circulation time are a few examples of these properties, which makes drug NCs an excellent formulation for efficient cancer therapy. In the last two decades, there are a lot of hydrophobic or lipophilic drugs, such as paclitaxel (PTX), camptothecin (CPT), thymectacin, busulfan, cyclosporin A, 2-devinyl-2-(1-hexyloxyethyl) pyropheophorbide (HPPH), and so on, which have been formulated into drug NCs for cancer therapy. In this review, we summarized the recent advances in drug NCs-based cancer treatment. So far, there are main three methods to synthesize drug NCs, including top-down, bottom-up, and combination methods. The characterization methods of drug NCs were also elaborated. Furthermore, the applications and mechanisms of drug NCs were introduced by their administration routes. At the end, we gave a brief conclusion and discussed the future perspectives of drug NCs in cancer therapy. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Xiaoqing Miao
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Wuwei Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Tao Feng
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Jing Lin
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Peng Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
62
|
Chang D, Ma Y, Cao G, Wang J, Zhang X, Feng J, Wang W. Improved oral bioavailability for lutein by nanocrystal technology: formulation development, in vitro and in vivo evaluation. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1018-1024. [DOI: 10.1080/21691401.2017.1358732] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Daoxiao Chang
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yanni Ma
- Institute of Clinical Pharmacology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Guoyu Cao
- Forestry Technology Extension Station of Yantai City, Yantai, Shandong, China
| | - Jianhuan Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xia Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jun Feng
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Wenping Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
- Ningxia Engineering and Technology Research Center for Modernization of Hui Medicine & Key Lab of Hui Ethnic Medicine Modernization, Ministry of Education, Yinchuan, Ningxia, China
| |
Collapse
|
63
|
Soukoulis C, Bohn T. A comprehensive overview on the micro- and nano-technological encapsulation advances for enhancing the chemical stability and bioavailability of carotenoids. Crit Rev Food Sci Nutr 2017; 58:1-36. [DOI: 10.1080/10408398.2014.971353] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Christos Soukoulis
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Torsten Bohn
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
- Department of Population Health, Luxembourg Institute of Health, Strassen, Luxembourg
| |
Collapse
|
64
|
Madaan T, Choudhary AN, Gyenwalee S, Thomas S, Mishra H, Tariq M, Vohora D, Talegaonkar S. Lutein, a versatile phyto-nutraceutical: An insight on pharmacology, therapeutic indications, challenges and recent advances in drug delivery. PHARMANUTRITION 2017; 5:64-75. [DOI: 10.1016/j.phanu.2017.02.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
65
|
Kassem MAA, ElMeshad AN, Fares AR. Enhanced Solubility and Dissolution Rate of Lacidipine Nanosuspension: Formulation Via Antisolvent Sonoprecipitation Technique and Optimization Using Box-Behnken Design. AAPS PharmSciTech 2017; 18:983-996. [PMID: 27506564 DOI: 10.1208/s12249-016-0604-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 07/26/2016] [Indexed: 11/30/2022] Open
Abstract
Lacidipine (LCDP) is a highly lipophilic calcium channel blocker of poor aqueous solubility leading to poor oral absorption. This study aims to prepare and optimize LCDP nanosuspensions using antisolvent sonoprecipitation technique to enhance the solubility and dissolution of LCDP. A three-factor, three-level Box-Behnken design was employed to optimize the formulation variables to obtain LCDP nanosuspension of small and uniform particle size. Formulation variables were as follows: stabilizer to drug ratio (A), sodium deoxycholate percentage (B), and sonication time (C). LCDP nanosuspensions were assessed for particle size, zeta potential, and polydispersity index. The formula with the highest desirability (0.969) was chosen as the optimized formula. The values of the formulation variables (A, B, and C) in the optimized nanosuspension were 1.5, 100%, and 8 min, respectively. Optimal LCDP nanosuspension had particle size (PS) of 273.21 nm, zeta potential (ZP) of -32.68 mV and polydispersity index (PDI) of 0.098. LCDP nanosuspension was characterized using x-ray powder diffraction, differential scanning calorimetry, and transmission electron microscopy. LCDP nanosuspension showed saturation solubility 70 times that of raw LCDP in addition to significantly enhanced dissolution rate due to particle size reduction and decreased crystallinity. These results suggest that the optimized LCDP nanosuspension could be promising to improve oral absorption of LCDP.
Collapse
|
66
|
Zhang J, Zhang X, Wang X, Huang Y, Yang B, Pan X, Wu C. The Influence of Maltodextrin on the Physicochemical Properties and Stabilization of Beta-carotene Emulsions. AAPS PharmSciTech 2017; 18:821-828. [PMID: 27350275 DOI: 10.1208/s12249-016-0572-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/13/2016] [Indexed: 11/30/2022] Open
Abstract
Beta-carotene is important for fortification of nutritional products while its application is limited by instability. The influence of maltodextrin (MDX) on physicochemical properties and stability of beta-carotene emulsions stabilized by sodium caseinate (SC) was investigated. The emulsions were characterized by dynamic light scattering (DLS), laser diffraction (LD), transmission electron microscopy (TEM), rheometer, and turbiscan lab expert. The effects of pH, ionic strength, and freeze-thaw on stability of emulsions were observed. The emulsions could tolerate up to 2 mol/L NaCl or 10 mmol/L CaCl2 and showed Newtonian behavior. The droplet diameter, polydispersity index, and zeta-potential did not change obviously after 3 months storage at 4°C in dark conditions. The emulsions with MDX showed excellent freeze-thaw stability and gave favorite protection for beta-carotene. The retention ratio of beta-carotene in the emulsions with MDX was above 92.1% after 3 months storage while that in the one without MDX was only 62.7%. The study may provide a promising strategy to improve stability of sensitive nutraceuticals without adding synthetic antioxidants. The findings obtained could provide fundamental basis for rational design of emulsion delivery systems when freeze-thawing is required during manufacturing process or storage period.
Collapse
|
67
|
Sadeghi R, Rodriguez RJ, Yao Y, Kokini JL. Advances in Nanotechnology as They Pertain to Food and Agriculture: Benefits and Risks. Annu Rev Food Sci Technol 2017; 8:467-492. [PMID: 28125343 DOI: 10.1146/annurev-food-041715-033338] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nanotechnology is an emerging and rapidly developing toolbox that has novel and unique applications to food science and agriculture. Fast and impressive developments in nanotechnology for food and agriculture have led to new experimental prototype technologies and products. Developing various types of nanodelivery systems, detection tools, nanoscale modifications of bulk or surface properties, fabrication of wide-range bionanosensors, and biodegradable nanoplatforms can potentially improve consumer health and safety, product shelf life and stability, bioavailability, environmental sustainability, efficiency of processing and packaging, and real-time monitoring. Some recently developed nanotechnology techniques and potential product applications of nanotechnology are summarized in this review. Exposure to nanomaterials may be harmful to the consumer and the environment and might increase the potential of risk. For this reason, evaluation of the potential risks resulting from the interaction of nanomaterials with biological systems, humans, and the environment is also reviewed.
Collapse
Affiliation(s)
- Rohollah Sadeghi
- Department of Food Science, Purdue University, West Lafayette, Indiana 47907; , , ,
| | - Randol J Rodriguez
- Department of Food Science, Purdue University, West Lafayette, Indiana 47907; , , ,
| | - Yuan Yao
- Department of Food Science, Purdue University, West Lafayette, Indiana 47907; , , ,
| | - Jozef L Kokini
- Department of Food Science, Purdue University, West Lafayette, Indiana 47907; , , ,
| |
Collapse
|
68
|
Li X, Wang X, Xu D, Cao Y, Wang S, Wang B, Wang C, Sun B. Influence of calcium-induced droplet heteroaggregation on the physicochemical properties of oppositely charged lactoferrin coated lutein droplets and whey protein isolate-coated DHA droplets. Food Funct 2017; 8:2748-2759. [DOI: 10.1039/c7fo00657h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The influence of calcium-induced droplet heteroaggregation on the formation and physicochemical stability of mixed lutein and DHA emulsions was studied.
Collapse
Affiliation(s)
- Xin Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU)
- School of Food & Chemical Engineering
- Beijing Engineering and Technology Research Center of Food Additives
- Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients
- Beijing Key Laboratory of Flavor Chemistry
| | - Xu Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU)
- School of Food & Chemical Engineering
- Beijing Engineering and Technology Research Center of Food Additives
- Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients
- Beijing Key Laboratory of Flavor Chemistry
| | - Duoxia Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU)
- School of Food & Chemical Engineering
- Beijing Engineering and Technology Research Center of Food Additives
- Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients
- Beijing Key Laboratory of Flavor Chemistry
| | - Yanping Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU)
- School of Food & Chemical Engineering
- Beijing Engineering and Technology Research Center of Food Additives
- Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients
- Beijing Key Laboratory of Flavor Chemistry
| | - Shaojia Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU)
- School of Food & Chemical Engineering
- Beijing Engineering and Technology Research Center of Food Additives
- Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients
- Beijing Key Laboratory of Flavor Chemistry
| | - Bei Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU)
- School of Food & Chemical Engineering
- Beijing Engineering and Technology Research Center of Food Additives
- Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients
- Beijing Key Laboratory of Flavor Chemistry
| | - Chengtao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU)
- School of Food & Chemical Engineering
- Beijing Engineering and Technology Research Center of Food Additives
- Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients
- Beijing Key Laboratory of Flavor Chemistry
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU)
- School of Food & Chemical Engineering
- Beijing Engineering and Technology Research Center of Food Additives
- Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients
- Beijing Key Laboratory of Flavor Chemistry
| |
Collapse
|
69
|
Cui B, Feng L, Wang C, Yang D, Yu M, Zeng Z, Wang Y, Sun C, Zhao X, Cui H. Stability and Biological Activity Evaluation of Chlorantraniliprole Solid Nanodispersions Prepared by High Pressure Homogenization. PLoS One 2016; 11:e0160877. [PMID: 27500828 PMCID: PMC4976933 DOI: 10.1371/journal.pone.0160877] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/26/2016] [Indexed: 11/19/2022] Open
Abstract
Poorly water-soluble compounds are difficult to develop as pesticide products and face great challenges in water-based and environmentally friendly formulation development. In this study, high pressure homogenization combined with lyophilization was adopted to prepare the solid nanodispersions of chlorantraniliprole with poor solubility and high melting point. The mean particle sizes of the solid nanodispersions with different pesticide contents were all less than 75 nm, even when the content was up to 91.5%. For the 2.5% chlorantraniliprole solid nanodispersion with the mean particle size of 29 nm, the suspensibility and wetting time in water were 97.32% and 13 s, respectively. The re-dispersibility and wettability were superior to those of conventional water dispersible granules. The retention on the rice leaf of 18.7 mg/cm2 was 1.5 and 3 times that of commercial aqueous suspension concentrate and pure water. The bioassay result to diamondback moths indicated that the toxicity of the solid nanodispersion was 3.3 and 2.8 times that of technical and aqueous suspension concentrate, respectively. Moreover, the solid nanodispersion has the advantages of total avoidance of organic solvents, significant reduction of surfactants and feasibility of obtaining high concentration nanoformulations. The solid nanodispersion is an attractive candidate for improving pesticide solubility and efficacy, and its application in crop production will reduce both residues in food and environmental pollution of pesticide.
Collapse
Affiliation(s)
- Bo Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Feng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunxin Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dongsheng Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Manli Yu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhanghua Zeng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changjiao Sun
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiang Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haixin Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
70
|
Stability and controlled release of lutein loaded in zein nanoparticles with and without lecithin and pluronic F127 surfactants. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.04.038] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
71
|
Xu D, Aihemaiti Z, Cao Y, Teng C, Li X. Physicochemical stability, microrheological properties and microstructure of lutein emulsions stabilized by multilayer membranes consisting of whey protein isolate, flaxseed gum and chitosan. Food Chem 2016; 202:156-64. [DOI: 10.1016/j.foodchem.2016.01.052] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 12/02/2015] [Accepted: 01/12/2016] [Indexed: 10/01/2022]
|
72
|
Isa T, Zakaria ZAB, Rukayadi Y, Mohd Hezmee MN, Jaji AZ, Imam MU, Hammadi NI, Mahmood SK. Antibacterial Activity of Ciprofloxacin-Encapsulated Cockle Shells Calcium Carbonate (Aragonite) Nanoparticles and Its Biocompatability in Macrophage J774A.1. Int J Mol Sci 2016; 17:E713. [PMID: 27213349 PMCID: PMC4881535 DOI: 10.3390/ijms17050713] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/16/2016] [Accepted: 04/19/2016] [Indexed: 11/21/2022] Open
Abstract
The use of nanoparticle delivery systems to enhance intracellular penetration of antibiotics and their retention time is becoming popular. The challenge, however, is that the interaction of nanoparticles with biological systems at the cellular level must be established prior to biomedical applications. Ciprofloxacin-cockle shells-derived calcium carbonate (aragonite) nanoparticles (C-CSCCAN) were developed and characterized. Antibacterial activity was determined using a modified disc diffusion protocol on Salmonella Typhimurium (S. Typhimurium). Biocompatibilittes with macrophage were evaluated using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and 5-Bromo-2'-deoxyuridine (BrdU) assays. Transcriptional regulation of interleukin 1 beta (IL-1β) was determined using reverse transcriptase-polymerase chain reaction (RT-PCR). C-CSCCAN were spherical in shape, with particle sizes ranging from 11.93 to 22.12 nm. Encapsulation efficiency (EE) and loading content (LC) were 99.5% and 5.9%, respectively, with negative ζ potential. X-ray diffraction patterns revealed strong crystallizations and purity in the formulations. The mean diameter of inhibition zone was 18.6 ± 0.5 mm, which was better than ciprofloxacin alone (11.7 ± 0.9 mm). Study of biocompatability established the cytocompatability of the delivery system without upregulation of IL-1β. The results indicated that ciprofloxacin-nanoparticles enhanced the antibacterial efficacy of the antibiotic, and could act as a suitable delivery system against intracellular infections.
Collapse
Affiliation(s)
- Tijani Isa
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
- Faculty of Food Science and Technology and Laboratory of Natural Product, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
| | - Zuki Abu Bakar Zakaria
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
| | - Yaya Rukayadi
- Faculty of Food Science and Technology and Laboratory of Natural Product, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
| | - Mohd Noor Mohd Hezmee
- Laboratory of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
| | - Alhaji Zubair Jaji
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
| | - Mustapha Umar Imam
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
| | - Nahidah Ibrahim Hammadi
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
| | - Saffanah Khuder Mahmood
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
| |
Collapse
|
73
|
Mujica Ascencio S, Choe C, Meinke MC, Müller RH, Maksimov GV, Wigger-Alberti W, Lademann J, Darvin ME. Confocal Raman microscopy and multivariate statistical analysis for determination of different penetration abilities of caffeine and propylene glycol applied simultaneously in a mixture on porcine skin ex vivo. Eur J Pharm Biopharm 2016; 104:51-8. [PMID: 27108784 DOI: 10.1016/j.ejpb.2016.04.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/05/2016] [Accepted: 04/20/2016] [Indexed: 01/07/2023]
Abstract
Propylene glycol is one of the known substances added in cosmetic formulations as a penetration enhancer. Recently, nanocrystals have been employed also to increase the skin penetration of active components. Caffeine is a component with many applications and its penetration into the epidermis is controversially discussed in the literature. In the present study, the penetration ability of two components - caffeine nanocrystals and propylene glycol, applied topically on porcine ear skin in the form of a gel, was investigated ex vivo using two confocal Raman microscopes operated at different excitation wavelengths (785nm and 633nm). Several depth profiles were acquired in the fingerprint region and different spectral ranges, i.e., 526-600cm(-1) and 810-880cm(-1) were chosen for independent analysis of caffeine and propylene glycol penetration into the skin, respectively. Multivariate statistical methods such as principal component analysis (PCA) and linear discriminant analysis (LDA) combined with Student's t-test were employed to calculate the maximum penetration depths of each substance (caffeine and propylene glycol). The results show that propylene glycol penetrates significantly deeper than caffeine (20.7-22.0μm versus 12.3-13.0μm) without any penetration enhancement effect on caffeine. The results confirm that different substances, even if applied onto the skin as a mixture, can penetrate differently. The penetration depths of caffeine and propylene glycol obtained using two different confocal Raman microscopes are comparable showing that both types of microscopes are well suited for such investigations and that multivariate statistical PCA-LDA methods combined with Student's t-test are very useful for analyzing the penetration of different substances into the skin.
Collapse
Affiliation(s)
- Saul Mujica Ascencio
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Centro de Investigación e Innovación Tecnológica (CIITEC) del Instituto Politécnico Nacional (IPN), Cerrada de Cecati S/N, Col. Santa Catarina Azcapotzalco, México D.F. CP: 02250, Mexico
| | - ChunSik Choe
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Kim Il Sung University, Ryongnam-Dong, Taesong District, Pyongyang, Democratic People's Republic of Korea
| | - Martina C Meinke
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Rainer H Müller
- Institute of Pharmacy, Department of Pharmaceutics, Biopharmaceutics & NutriCosmetics, Freie Universität Berlin, Kelchstraße 31, 12169 Berlin, Germany
| | - George V Maksimov
- M.V. Lomonosov Moscow State University, Department of Biophysics, Faculty of Biology, Leninskie Gory, 1-12, 119991 Moscow, Russia
| | | | - Juergen Lademann
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Maxim E Darvin
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
74
|
Influence of Extraction Solvents on Cosmos caudatus Leaf Antioxidant Properties. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, TRANSACTIONS A: SCIENCE 2016. [DOI: 10.1007/s40995-016-0007-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
75
|
Shah DA, Murdande SB, Dave RH. A Review: Pharmaceutical and Pharmacokinetic Aspect of Nanocrystalline Suspensions. J Pharm Sci 2016; 105:10-24. [PMID: 26580860 DOI: 10.1002/jps.24694] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/23/2015] [Accepted: 09/25/2015] [Indexed: 11/11/2022]
Abstract
Nanocrystals have emerged as a potential formulation strategy to eliminate the bioavailability-related problems by enhancing the initial dissolution rate and moderately super-saturating the thermodynamic solubility. This review contains an in-depth knowledge of, the processing method for formulation, an accurate quantitative assessment of the solubility and dissolution rates and their correlation to observe pharmacokinetic data. Poor aqueous solubility is considered the major hurdle in the development of pharmaceutical compounds. Because of a lack of understanding with regard to the change in the thermodynamic and kinetic properties (i.e., solubility and dissolution rate) upon nanosizing, we critically reviewed the literatures for solubility determination to understand the significance and accuracy of the implemented analytical method. In the latter part, we reviewed reports that have quantitatively studied the effect of the particle size and the surface area change on the initial dissolution rate enhancement using alternative approaches besides the sink condition dissolution. The lack of an apparent relationship between the dissolution rate enhancement and the observed bioavailability are discussed by reviewing the reported in vivo data on animal models along with the particle size and food effect. The review will provide comprehensive information to the pharmaceutical scientist in the area of nanoparticulate drug delivery.
Collapse
|
76
|
Cui B, Feng L, Pan Z, Yu M, Zeng Z, Sun C, Zhao X, Wang Y, Cui H. Evaluation of Stability and Biological Activity of Solid Nanodispersion of Lambda-Cyhalothrin. PLoS One 2015; 10:e0135953. [PMID: 26281043 PMCID: PMC4539193 DOI: 10.1371/journal.pone.0135953] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 07/28/2015] [Indexed: 11/19/2022] Open
Abstract
Pesticides are essential agrochemicals used to protect plants from diseases, pests and weeds. However, the formulation defects of conventional pesticides cause food toxicity and ecological environmental problems. In this study, a novel, efficient and environmentally friendly formulation of lambda-cyhalothrin, a solid nanodispersion, was successfully developed based on melt-emulsification and high-speed shearing methods. The solid nanodispersion presented excellent advantages over conventional pesticide formulations in such formulation functions as dispersibility, stability and bioavailability. The formulation is free of organic solvents, and the use of surfactant is reduced. Therefore, the application of the solid nanodispersion in crop production will improve efficacy and reduce the occurrence of both pesticide residues in food and environmental pollution from pesticides.
Collapse
Affiliation(s)
- Bo Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Feng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenzhong Pan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Natural Resources and Environment, College of Plant Science, Jilin University, Changchun, China
| | - Manli Yu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhanghua Zeng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changjiao Sun
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiang Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haixin Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
77
|
Loh ZH, Samanta AK, Sia Heng PW. Overview of milling techniques for improving the solubility of poorly water-soluble drugs. Asian J Pharm Sci 2015. [DOI: 10.1016/j.ajps.2014.12.006] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
78
|
Yi Y, Tu L, Hu K, Wu W, Feng J. The construction of puerarin nanocrystals and its pharmacokinetic and in vivo-in vitro correlation (IVIVC) studies on beagle dog. Colloids Surf B Biointerfaces 2015; 133:164-70. [PMID: 26099971 DOI: 10.1016/j.colsurfb.2015.04.054] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 04/23/2015] [Accepted: 04/26/2015] [Indexed: 11/19/2022]
Abstract
Puerarin is widely used in clinics in China as a therapeutic agent for cardiovascular diseases by intravenous administration. Adverse drug reactions caused by cosolvents often increase the patients' treatment burden (high drug costs and low compliance). The development of oral formulation is urgently needed and nanocrystal technique has become a preferred way to develop oral dosage form, nowadays. In this study, high pressure homogenization (HPH) was employed to prepare puerarin nanocrystals by employing SDS as the stabilizer, and redispersibility of the nanocrystals powder was also studied. The nanocrystals prepared was characterized using DLS, DSC, XRD and SEM. A preferred in vivo-in vitro correlation was also established in this study. Pharmacokinetic studies on beagle dog showed that comparing to raw puerarin powder, both of the Cmax and AUC of puerarin nanocrystals were enhanced. From the above results, we can conclude that nanocrystal technique is an efficient technology to improve the oral bioavailability of puerarin.
Collapse
Affiliation(s)
- Yueneng Yi
- School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Liangxing Tu
- Murad Research Center for Modernized Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | - Kaili Hu
- Murad Research Center for Modernized Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | - Wei Wu
- School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China.
| | - Jianfang Feng
- Murad Research Center for Modernized Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China.
| |
Collapse
|
79
|
Manayi A, Abdollahi M, Raman T, Nabavi SF, Habtemariam S, Daglia M, Nabavi SM. Lutein and cataract: from bench to bedside. Crit Rev Biotechnol 2015; 36:829-39. [DOI: 10.3109/07388551.2015.1049510] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Azadeh Manayi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran,
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran,
| | - Thiagarajan Raman
- Department of Bioengineering, School of Chemical & Biotechnology, SASTRA University, Thanjavur, India,
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran,
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories, Medway School of Science, University of Greenwich, Chatham-Maritime, Kent, UK, and
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Pavia, Italy
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran,
| |
Collapse
|
80
|
Murdande SB, Shah DA, Dave RH. Impact of nanosizing on solubility and dissolution rate of poorly soluble pharmaceuticals. J Pharm Sci 2015; 104:2094-2102. [PMID: 25821105 DOI: 10.1002/jps.24426] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 02/02/2015] [Accepted: 02/26/2015] [Indexed: 11/10/2022]
Abstract
The quantitative determination of solubility and the initial dissolution rate enhancement of crystalline nanoparticles were critically investigated using a separation-based approach (ultracentrifugation and filtration). Four poorly soluble model compounds (griseofulvin, celecoxib, compound-X, and fenofibrate) were used in this investigation. The effect of the stabilizer concentration on the solubility of the unmilled compound was determined first to quantify its impact on the solubility and used for comparing solubility enhancement upon nanosizing. Methodologies were established for ultracentrifugation, ensuring satisfactory separation of crystalline nanoparticles. The data obtained using separation-based methodologies proved to be accurate, reproducible, and were in fair agreement with what would be predicted from the Ostwald-Freundlich equation. The dissolution studies under sink conditions were proved to be less efficient in quantifying the initial dissolution rate of crystalline nanoparticles. Nonsink dissolution experiments were able to reduce the high-dissolution velocity of nanoparticles and generated the best discriminative dissolution profile. The enhancement in initial dissolution rate was significantly less than that expected from the Noyes-Whitney equation based on surface area change. This discriminatory dissolution method can potentially be used further in the modeling of crystalline nanoparticles during drug development.
Collapse
Affiliation(s)
- Sharad B Murdande
- Drug Product Design, Pfizer Worldwide R&D, Groton, Connecticut 06340.
| | - Dhaval A Shah
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, New York 11201
| | - Rutesh H Dave
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, New York 11201
| |
Collapse
|
81
|
|
82
|
Chin WWL, Parmentier J, Widzinski M, Tan EH, Gokhale R. A brief literature and patent review of nanosuspensions to a final drug product. J Pharm Sci 2014; 103:2980-99. [PMID: 25099918 DOI: 10.1002/jps.24098] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 06/20/2014] [Accepted: 07/03/2014] [Indexed: 11/07/2022]
Abstract
Particle size reduction can be used for enhancing the dissolution of poorly water-soluble drugs in order to enhance bioavailability. In nanosuspensions, the particle size of the drug is reduced to nanometer size. Nanosuspensions after downstream processing into drug products have successfully shown its impact on formulation design, the augmentation of product life cycle, patent life, and therapeutic efficacy. Formulation considerations for the nanosuspension formulation, its processing into a solid form, and aspects of material characterization are discussed. Technology assessments and feasibility of upstream processes for nanoparticle creation, and subsequently transformation into a drug product via the downstream processes have been reviewed. This paper aims to bridge formulation and process considerations along with patent reviews and may provide further insight into understanding the science and the white space. An analysis of current patent outlook and future trends is described to fully understand the limitations and opportunities in intellectual property generation.
Collapse
Affiliation(s)
- William Wei Lim Chin
- AbbVie Pte Ltd., Global Pharmaceutical Research and Development, 11 Biopolis Way, Helios #05-06, 138667, Singapore
| | | | | | | | | |
Collapse
|
83
|
Zhao C, Cheng H, Jiang P, Yao Y, Han J. Preparation of lutein-loaded particles for improving solubility and stability by Polyvinylpyrrolidone (PVP) as an emulsion-stabilizer. Food Chem 2014; 156:123-8. [DOI: 10.1016/j.foodchem.2014.01.086] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 01/05/2014] [Accepted: 01/23/2014] [Indexed: 12/18/2022]
|
84
|
Shen CY, Xu PH, Shen BD, Min HY, Li XR, Han J, Yuan HL. Nanogel for dermal application of the triterpenoids isolated fromGanoderma lucidum(GLT) for frostbite treatment. Drug Deliv 2014; 23:610-8. [DOI: 10.3109/10717544.2014.929756] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
85
|
Raghava Srivalli KM, Mishra B. Drug nanocrystals: A way toward scale-up. Saudi Pharm J 2014; 24:386-404. [PMID: 27330370 PMCID: PMC4908054 DOI: 10.1016/j.jsps.2014.04.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 04/26/2014] [Indexed: 12/14/2022] Open
Abstract
Drug nanocrystals comprise unique drug delivery platforms playing a significantly important and distinctive role in drug delivery and as such, the industry and academia are spending a lot of their time and money in developing the nanocrystal products. The current research works in this field depict a vivid shift from lab scale optimization studies to scale up focused studies. In this emerging scenario of nanocrystal technology, a review on some exemplary and progressing research studies with either scalability as their objective or upscaling as their future scope may smoothen the future upscaling attempts in this field. Hence, this paper reviews the efforts of such research works as case studies since an analysis of such research studies may input certain beneficial knowledge to carry out more scale up based research works on nanocrystals.
Collapse
Affiliation(s)
- Kale Mohana Raghava Srivalli
- Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Brahmeshwar Mishra
- Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
86
|
Pawar VK, Singh Y, Meher JG, Gupta S, Chourasia MK. Engineered nanocrystal technology: in-vivo fate, targeting and applications in drug delivery. J Control Release 2014; 183:51-66. [PMID: 24667572 DOI: 10.1016/j.jconrel.2014.03.030] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/17/2014] [Indexed: 12/17/2022]
Abstract
Formulation of nanocrystals is a robust approach which can improve delivery of poorly water soluble drugs, a challenge pharmaceutical industry has been facing since long. Large scale production of nanocrystals is done by techniques like precipitation, media milling and, high pressure homogenization. Application of appropriate stabilizers along with drying accords long term stability and commercial viability to nanocrystals. These can be administered through oral, parenteral, pulmonary, dermal and ocular routes showing their high therapeutic applicability. They serve to target drug molecules in specific regions through size manipulation and surface modification. This review dwells upon the in-vivo fate and varying applications in addition to the facets of drug nanocrystals stated above.
Collapse
Affiliation(s)
- Vivek K Pawar
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Yuvraj Singh
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Jaya Gopal Meher
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Siddharth Gupta
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Manish K Chourasia
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, UP, India.
| |
Collapse
|
87
|
Borel T, Sabliov C. Nanodelivery of Bioactive Components for Food Applications: Types of Delivery Systems, Properties, and Their Effect on ADME Profiles and Toxicity of Nanoparticles. Annu Rev Food Sci Technol 2014; 5:197-213. [DOI: 10.1146/annurev-food-030713-092354] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- T. Borel
- Department of Biological and Agricultural Engineering, LSU Agricultural Center, Louisiana State University, Baton Rouge, Louisiana 70803;
| | - C.M. Sabliov
- Department of Biological and Agricultural Engineering, LSU Agricultural Center, Louisiana State University, Baton Rouge, Louisiana 70803;
| |
Collapse
|
88
|
Nutraceutical-based therapeutics and formulation strategies augmenting their efficiency to complement modern medicine: An overview. J Funct Foods 2014. [DOI: 10.1016/j.jff.2013.09.022] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
89
|
Lai F, Pireddu R, Corrias F, Fadda AM, Valenti D, Pini E, Sinico C. Nanosuspension improves tretinoin photostability and delivery to the skin. Int J Pharm 2013; 458:104-9. [DOI: 10.1016/j.ijpharm.2013.10.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/01/2013] [Accepted: 10/05/2013] [Indexed: 02/03/2023]
|
90
|
Jain S, Sharma JM, Jain AK, Mahajan RR. Surface-stabilized lopinavir nanoparticles enhance oral bioavailability without coadministration of ritonavir. Nanomedicine (Lond) 2013; 8:1639-55. [DOI: 10.2217/nnm.12.181] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The aim of the present study was to prepare surface-stabilized nanoparticles (NPs) for oral bioavailability enhancement of lopinavir (LPN), a Biopharmaceutics Classification System class II antiretroviral drug that possesses low oral bioavailability due to its poor aqueous solubility and extensive metabolism by liver microsomal enzymes. Materials & methods: Surfactant-stabilized LPN-NPs were prepared by combination of antisolvent precipitation and high-pressure homogenization techniques using polyvinyl alcohol as a suitable stabilizer. LPN-NPs were freeze dried by a universal stepwise freeze-drying cycle using mannitol as the cryoprotectant. Pharmacokinetics after oral administration of LPN-NPs were evaluated in male Sprague–Dawley rats and were compared with free LPN coadministered with ritonavir (conventional formulation). Results & conclusion: Freeze-dried stabilized LPN-NPs possessed particle sizes of approximately 320 nm and a narrow particle size distribution (polydispersity index <0.2). The surface-stabilized LPN-NPs (without ritonavir) demonstrated a 3.11-fold enhancement in bioavailability in comparison to free LPN with ritonavir (conventional formulation). Original submitted 26 March 2012; Revised submitted 14 September 2012; Published online 25 January 2013
Collapse
Affiliation(s)
- Sanyog Jain
- Center for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, SAS Nagar (Mohali), Punjab 160062, India
| | - Jagadish M Sharma
- Center for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, SAS Nagar (Mohali), Punjab 160062, India
| | - Amit K Jain
- Center for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, SAS Nagar (Mohali), Punjab 160062, India
| | - Rahul R Mahajan
- Center for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, SAS Nagar (Mohali), Punjab 160062, India
| |
Collapse
|
91
|
Yoo J, Baskaran R, Yoo BK. Self-nanoemulsifying drug delivery system of lutein: physicochemical properties and effect on bioavailability of warfarin. Biomol Ther (Seoul) 2013; 21:173-9. [PMID: 24009877 PMCID: PMC3762317 DOI: 10.4062/biomolther.2013.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 02/25/2013] [Accepted: 02/27/2013] [Indexed: 11/20/2022] Open
Abstract
Objective of present study was to prepare and characterize self-nanoemulsifying drug delivery system (SNEDDS) of lutein and to evaluate its effect on bioavailability of warfarin. The SNEDDS was prepared using an oil, a surfactant, and co-surfactants with optimal composition based on pseudo-ternary phase diagram. Effect of the SNEDDS on the bioavailability of warfarin was performed using Sprague Dawley rats. Lutein was successfully formulated as SNEDDS for immediate self-emulsification and dissolution by using combination of Peceol as oil, Labrasol as surfactant, and Transcutol-HP or Lutrol-E400 as co-surfactant. Almost complete dissolution was achieved after 15 min while lutein was not detectable from the lutein powder or intra-capsule content of a commercial formulation. SNEDDS formulation of lutein affected bioavailability of warfarin, showing about 10% increase in Cmax and AUC of the drug in rats while lutein as non-SNEDDS did not alter these parameters. Although exact mechanism is not yet elucidated, it appears that surfactant and co-surfactant used for SNEDDS formulation caused disturbance in the anatomy of small intestinal microvilli, leading to permeability change of the mucosal membrane. Based on this finding, it is suggested that drugs with narrow therapeutic range such as warfarin be administered with caution to avoid undesirable drug interaction due to large amount of surfactants contained in SNEDDS.
Collapse
Affiliation(s)
- Juno Yoo
- Department of Diagnostics, MediFuture, Seoul 150-835, Republic of Korea
| | | | | |
Collapse
|
92
|
Ghosh I, Michniak-Kohn B. Influence of critical parameters of nanosuspension formulation on the permeability of a poorly soluble drug through the skin--a case study. AAPS PharmSciTech 2013; 14:1108-17. [PMID: 23824877 DOI: 10.1208/s12249-013-9995-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 06/13/2013] [Indexed: 11/30/2022] Open
Abstract
In transdermal drug delivery systems, it is always a challenge to achieve stable and prolonged high permeation rates across the skin since the concentrations of the drug dissolved in the matrix have to be high in order to maintain zero order release kinetics. Several attempts have been reported to improve the permeability of poorly soluble drug compounds using supersaturated systems. However, due to thermodynamic challenges, there was a high tendency for the drug to nucleate immediately after formulating or even during storage. The present study focuses on the efficiency of nanoparticles and influence of different concentrations of solubilizer such as vitamin E TPGS (D-a-tocopheryl polyethylene glycol 1000 succinate) to improve the permeation rate through the skin. Effects of several formulation factors were studied on the nanosuspension systems using ibuprofen as a model drug. The overall permeation enhancement process through the skin was influenced mostly by the solubilizer and also by the size of nanoparticles. The gel formulation developed with vitamin E TPGS + HPMC nanosuspension, consequently represent a promising approach aiming to improve the permeability performance of a poorly water soluble drug candidate.
Collapse
|
93
|
Boonnoun P, Nerome H, Machmudah S, Goto M, Shotipruk A. Supercritical anti-solvent micronization of chromatography purified marigold lutein using hexane and ethyl acetate solvent mixture. J Supercrit Fluids 2013. [DOI: 10.1016/j.supflu.2013.03.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
94
|
Martena V, Shegokar R, Di Martino P, Müller RH. Effect of four different size reduction methods on the particle size, solubility enhancement and physical stability of nicergoline nanocrystals. Drug Dev Ind Pharm 2013; 40:1199-205. [PMID: 23815299 DOI: 10.3109/03639045.2013.810635] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nicergoline, a poorly soluble active pharmaceutical ingredient, possesses vaso-active properties which causes peripheral and central vasodilatation. In this study, nanocrystals of nicergoline were prepared in an aqueous solution of polysorbate 80 (nanosuspension) by using four different laboratory scale size reduction techniques: high pressure homogenization (HPH), bead milling (BM) and combination techniques (high pressure homogenization followed by bead milling HPH + BM, and bead milling followed by high pressure homogenization BM + HPH). Nanocrystals were investigated regarding to their mean particles size, zeta potential and particle dissolution. A short term physical stability study on nanocrystals stored at three different temperatures (4, 20 and 40 °C) was performed to evaluate the tendency to change in particle size, aggregation and zeta potential. The size reduction technique and the process parameters like milling time, number of homogenization cycles and pressure greatly affected the size of nanocrystals. Among the techniques used, the combination techniques showed superior and consistent particle size reduction compared to the other two methods, HPH + BM and BM + HPH giving nanocrystals of a mean particle size of 260 and 353 nm, respectively. The particle dissolution was increased for any nanocrystals samples, but it was particularly increased by HPH and combination techniques. Independently to the production method, nicergoline nanocrystals showed slight increase in particle size over the time, but remained below 500 nm at 20 °C and refrigeration conditions.
Collapse
Affiliation(s)
- Valentina Martena
- University of Camerino, School of Pharmacy , Via S. Agostino, 62032 Camerino , Italy
| | | | | | | |
Collapse
|
95
|
Supercritical anti-solvent micronization of marigold-derived lutein dissolved in dichloromethane and ethanol. J Supercrit Fluids 2013. [DOI: 10.1016/j.supflu.2013.02.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
96
|
Sigfridsson K, Lundqvist A, Strimfors M. Evaluation of exposure properties after injection of nanosuspensions and microsuspenions into the intraperitoneal space in rats. Drug Dev Ind Pharm 2012; 39:1832-9. [PMID: 23240709 DOI: 10.3109/03639045.2012.738684] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In the present paper, BA99 and AC88 were used as model compounds for intraperitoneal (i.p.) administration to Sprague-Dawley rats. A major problem for the compounds, like many others newly developed pharmaceutical drugs, is the poor solubility in water. To solve solubility related problems, development of nanosuspensions is an attractive alternative. Both compounds are suitable for nanosuspensions, using the milling approach. After 2 weeks in freezer, the nanoparticles aggregated to form particles in the 400-2000 nm interval. However, following a 20 s ultrasonication step, the original particle sizes (about 200 nm) were obtained. Adding 5% mannitol before the samples were frozen abolished aggregation. It is also possible to freeze-dry the nanosuspension in the presence of 5% mannitol and re-disperse the formulation in water. Nanosuspensions of both compounds were injected i.p. to rats at 5 and 500 µmoL/kg. At the low dose, also a microsuspension was administered. I.p. administration resulted in overall improved C(max) for both AC88 and BA99 compared to s.c. and oral administration. I.p. is the preferred route of administration of tolerable drugs when a fast onset of action is desired and when a significant first passage metabolism occurs. The net charge of the active molecule appeared to affect the absorption kinetics. In the present work, the neutral molecule was favored over the negatively charged one.
Collapse
Affiliation(s)
- Kalle Sigfridsson
- Pharmaceutical Development, AstraZeneca R&D Mölndal , Mölndal , Sweden
| | | | | |
Collapse
|
97
|
Sun B, Yeo Y. Nanocrystals for the parenteral delivery of poorly water-soluble drugs. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE 2012; 16:295-301. [PMID: 23645994 PMCID: PMC3640575 DOI: 10.1016/j.cossms.2012.10.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Nanocrystals have drawn increasing interest in pharmaceutical industry because of the ability to improve dissolution of poorly water-soluble drugs. Nanocrystals can be produced by top-down and bottom-up technologies and have been explored for a variety of therapeutic applications. Here we review the methods of nanocrystal production and parenteral applications of nanocrystals. We also discuss remaining challenges in the development of nanocrystal products.
Collapse
Affiliation(s)
- Bo Sun
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
- Corresponding author: Yoon Yeo, Ph.D., Phone: 1.765.496.9608, Fax: 1.765.494.6545,
| |
Collapse
|
98
|
Gao L, Liu G, Ma J, Wang X, Zhou L, Li X, Wang F. Application of drug nanocrystal technologies on oral drug delivery of poorly soluble drugs. Pharm Res 2012; 30:307-24. [PMID: 23073665 DOI: 10.1007/s11095-012-0889-z] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 09/12/2012] [Indexed: 12/31/2022]
Abstract
The limited solubility and dissolution rate exhibited by poorly soluble drugs is major challenges in the pharmaceutical process. Following oral administration, the poorly soluble drugs generally show a low and erratic bioavailability which may lead to therapeutic failure. Pure drug nanocrystals, generated by "bottom up" or "top down" technologies, facilitate a significant improvement on dissolution behavior of poorly soluble drugs due to their enormous surface area, which in turn lead to substantial improvement in oral absorption. This is the most distinguished achievement of drug nanocrystals among their performances in various administration routes, reflected by the fact that most of the marketed products based on the nanocrystals technology are for oral application. After detailed investigations on various technologies associated with production of drug nanocrystals and their in vitro physicochemical properties, during the last decade more attentions have been paid into their in vivo behaviors. This review mainly describes the in vivo performances of oral drug nanocrystals exhibited in animals related to the pharmacokinetic, efficacy and safety characteristics. The technologies and evaluation associated with the solidification process of the drug nanocrystals suspensions were also discussed in detail.
Collapse
Affiliation(s)
- Lei Gao
- Department of Pharmacy, The First Affiliated Hospital of General Hospital of PLA, No. 51 Fucheng Road, Beijing, 100048, China.
| | | | | | | | | | | | | |
Collapse
|
99
|
Shegokar R, Singh KK. Nevirapine nanosuspensions: stability, plasma compatibility and sterilization. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2012. [DOI: 10.1007/s40005-012-0039-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
100
|
Shegokar R, Mitri K. Carotenoid lutein: a promising candidate for pharmaceutical and nutraceutical applications. J Diet Suppl 2012; 9:183-210. [PMID: 22889143 DOI: 10.3109/19390211.2012.708716] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Carotenoids play a major role in scavenging singlet oxygen and peroxyl radicals in human. Several studies have shown that lutein and zeaxanthin help to protect the skin and eyes from photodamage and offer several other health benefits. The potential benefits of using lutein as nutritional or cosmetic ingredient are reviewed in this paper. Recent advances in health and cosmetic care provided by lutein are also discussed. This review also mentions various drug carrier systems that have been studied for the delivery of lutein.
Collapse
Affiliation(s)
- Ranjita Shegokar
- Freie Universität Berlin, Institute of Pharmacy, Department of Pharmaceutics, Biopharmaceutics and NutriCosmetics, Kelchstrasse, Berlin, Germany.
| | | |
Collapse
|