51
|
Xiang K, Jendrossek V, Matschke J. Oncometabolites and the response to radiotherapy. Radiat Oncol 2020; 15:197. [PMID: 32799884 PMCID: PMC7429799 DOI: 10.1186/s13014-020-01638-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/06/2020] [Indexed: 12/18/2022] Open
Abstract
Radiotherapy (RT) is applied in 45-60% of all cancer patients either alone or in multimodal therapy concepts comprising surgery, RT and chemotherapy. However, despite technical innovations approximately only 50% are cured, highlight a high medical need for innovation in RT practice. RT is a multidisciplinary treatment involving medicine and physics, but has always been successful in integrating emerging novel concepts from cancer and radiation biology for improving therapy outcome. Currently, substantial improvements are expected from integration of precision medicine approaches into RT concepts.Altered metabolism is an important feature of cancer cells and a driving force for malignant progression. Proper metabolic processes are essential to maintain and drive all energy-demanding cellular processes, e.g. repair of DNA double-strand breaks (DSBs). Consequently, metabolic bottlenecks might allow therapeutic intervention in cancer patients.Increasing evidence now indicates that oncogenic activation of metabolic enzymes, oncogenic activities of mutated metabolic enzymes, or adverse conditions in the tumor microenvironment can result in abnormal production of metabolites promoting cancer progression, e.g. 2-hyroxyglutarate (2-HG), succinate and fumarate, respectively. Interestingly, these so-called "oncometabolites" not only modulate cell signaling but also impact the response of cancer cells to chemotherapy and RT, presumably by epigenetic modulation of DNA repair.Here we aimed to introduce the biological basis of oncometabolite production and of their actions on epigenetic regulation of DNA repair. Furthermore, the review will highlight innovative therapeutic opportunities arising from the interaction of oncometabolites with DNA repair regulation for specifically enhancing the therapeutic effects of genotoxic treatments including RT in cancer patients.
Collapse
Affiliation(s)
- Kexu Xiang
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Virchowstrasse 173, 45147, Essen, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Virchowstrasse 173, 45147, Essen, Germany
| | - Johann Matschke
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Virchowstrasse 173, 45147, Essen, Germany.
| |
Collapse
|
52
|
Zhang J, Si J, Gan L, Zhou R, Guo M, Zhang H. Harnessing the targeting potential of differential radiobiological effects of photon versus particle radiation for cancer treatment. J Cell Physiol 2020; 236:1695-1711. [PMID: 32691425 DOI: 10.1002/jcp.29960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/09/2020] [Indexed: 01/04/2023]
Abstract
Radiotherapy is one of the major modalities for malignancy treatment. High linear energy transfer (LET) charged-particle beams, like proton and carbon ions, exhibit favourable depth-dose distributions and radiobiological enhancement over conventional low-LET photon irradiation, thereby marking a new era in high precision medicine. Tumour cells have developed multicomponent signal transduction networks known as DNA damage responses (DDRs), which initiate cell-cycle checkpoints and induce double-strand break (DSB) repairs in the nucleus by nonhomologous end joining or homologous recombination pathways, to manage ionising radiation (IR)-induced DNA lesions. DNA damage induction and DSB repair pathways are reportedly dependent on the quality of radiation delivered. In this review, we summarise various types of DNA lesion and DSB repair mechanisms, upon irradiation with low and high-LET radiation, respectively. We also analyse factors influencing DNA repair efficiency. Inhibition of DNA damage repair pathways and dysfunctional cell-cycle checkpoint sensitises tumour cells to IR. Radio-sensitising agents, including DNA-PK inhibitors, Rad51 inhibitors, PARP inhibitors, ATM/ATR inhibitors, chk1 inhibitors, wee1 kinase inhibitors, Hsp90 inhibitors, and PI3K/AKT/mTOR inhibitors have been found to enhance cell killing by IR through interference with DDRs, cell-cycle arrest, or other cellular processes. The cotreatment of these inhibitors with IR may represent a promising therapeutic strategy for cancer.
Collapse
Affiliation(s)
- Jinhua Zhang
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Si
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lu Gan
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Rong Zhou
- Research Center for Ecological Impacts and Environmental Health Effects of Toxic and Hazardous Chemicals, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, China
| | - Menghuan Guo
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Hong Zhang
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
53
|
Szymonowicz K, Krysztofiak A, van der Linden J, Kern A, Deycmar S, Oeck S, Squire A, Koska B, Hlouschek J, Vüllings M, Neander C, Siveke JT, Matschke J, Pruschy M, Timmermann B, Jendrossek V. Proton Irradiation Increases the Necessity for Homologous Recombination Repair Along with the Indispensability of Non-Homologous End Joining. Cells 2020; 9:E889. [PMID: 32260562 PMCID: PMC7226794 DOI: 10.3390/cells9040889] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022] Open
Abstract
Technical improvements in clinical radiotherapy for maximizing cytotoxicity to the tumor while limiting negative impact on co-irradiated healthy tissues include the increasing use of particle therapy (e.g., proton therapy) worldwide. Yet potential differences in the biology of DNA damage induction and repair between irradiation with X-ray photons and protons remain elusive. We compared the differences in DNA double strand break (DSB) repair and survival of cells compromised in non-homologous end joining (NHEJ), homologous recombination repair (HRR) or both, after irradiation with an equal dose of X-ray photons, entrance plateau (EP) protons, and mid spread-out Bragg peak (SOBP) protons. We used super-resolution microscopy to investigate potential differences in spatial distribution of DNA damage foci upon irradiation. While DNA damage foci were equally distributed throughout the nucleus after X-ray photon irradiation, we observed more clustered DNA damage foci upon proton irradiation. Furthermore, deficiency in essential NHEJ proteins delayed DNA repair kinetics and sensitized cells to both, X-ray photon and proton irradiation, whereas deficiency in HRR proteins sensitized cells only to proton irradiation. We assume that NHEJ is indispensable for processing DNA DSB independent of the irradiation source, whereas the importance of HRR rises with increasing energy of applied irradiation.
Collapse
Affiliation(s)
- Klaudia Szymonowicz
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (K.S.); (A.K.); (J.v.d.L.); (S.O.); (J.H.); (J.M.)
| | - Adam Krysztofiak
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (K.S.); (A.K.); (J.v.d.L.); (S.O.); (J.H.); (J.M.)
| | - Jansje van der Linden
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (K.S.); (A.K.); (J.v.d.L.); (S.O.); (J.H.); (J.M.)
| | - Ajvar Kern
- West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (A.K.); (B.K.); (M.V.); (B.T.)
| | - Simon Deycmar
- Department of Radiation Oncology, Laboratory for Applied Radiobiology, University Hospital Zurich, Zurich, Switzerland; (S.D.); (M.P.)
| | - Sebastian Oeck
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (K.S.); (A.K.); (J.v.d.L.); (S.O.); (J.H.); (J.M.)
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Anthony Squire
- Institute of Experimental Immunology and Imaging, Imaging Center Essen, University Hospital Essen, 45122 Essen, Germany;
| | - Benjamin Koska
- West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (A.K.); (B.K.); (M.V.); (B.T.)
| | - Julian Hlouschek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (K.S.); (A.K.); (J.v.d.L.); (S.O.); (J.H.); (J.M.)
| | - Melanie Vüllings
- West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (A.K.); (B.K.); (M.V.); (B.T.)
| | - Christian Neander
- Institute of Developmental Cancer Therapeutics, West German Cancer Center, University Hospital Essen, Essen, Germany; (C.N.); (J.T.S.)
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, 69120 Heidelberg, Germany
| | - Jens T. Siveke
- Institute of Developmental Cancer Therapeutics, West German Cancer Center, University Hospital Essen, Essen, Germany; (C.N.); (J.T.S.)
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, 69120 Heidelberg, Germany
| | - Johann Matschke
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (K.S.); (A.K.); (J.v.d.L.); (S.O.); (J.H.); (J.M.)
| | - Martin Pruschy
- Department of Radiation Oncology, Laboratory for Applied Radiobiology, University Hospital Zurich, Zurich, Switzerland; (S.D.); (M.P.)
| | - Beate Timmermann
- West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (A.K.); (B.K.); (M.V.); (B.T.)
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, 69120 Heidelberg, Germany
- Department of Particle Therapy, West German Proton Therapy Center Essen (WPE), West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (K.S.); (A.K.); (J.v.d.L.); (S.O.); (J.H.); (J.M.)
| |
Collapse
|
54
|
Burnet NG, Mackay RI, Smith E, Chadwick AL, Whitfield GA, Thomson DJ, Lowe M, Kirkby NF, Crellin AM, Kirkby KJ. Proton beam therapy: perspectives on the National Health Service England clinical service and research programme. Br J Radiol 2020; 93:20190873. [PMID: 31860337 PMCID: PMC7066938 DOI: 10.1259/bjr.20190873] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/05/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022] Open
Abstract
The UK has an important role in the evaluation of proton beam therapy (PBT) and takes its place on the world stage with the opening of the first National Health Service (NHS) PBT centre in Manchester in 2018, and the second in London coming in 2020. Systematic evaluation of the role of PBT is a key objective. By September 2019, 108 patients had started treatment, 60 paediatric, 19 teenagers and young adults and 29 adults. Obtaining robust outcome data is vital, if we are to understand the strengths and weaknesses of current treatment approaches. This is important in demonstrating when PBT will provide an advantage and when it will not, and in quantifying the magnitude of benefit.The UK also has an important part to play in translational PBT research, and building a research capability has always been the vision. We are perfectly placed to perform translational pre-clinical biological and physical experiments in the dedicated research room in Manchester. The nature of DNA damage from proton irradiation is considerably different from X-rays and this needs to be more fully explored. A better understanding is needed of the relative biological effectiveness (RBE) of protons, especially at the end of the Bragg peak, and of the effects on tumour and normal tissue of PBT combined with conventional chemotherapy, targeted drugs and immunomodulatory agents. These experiments can be enhanced by deterministic mathematical models of the molecular and cellular processes of DNA damage response. The fashion of ultra-high dose rate FLASH irradiation also needs to be explored.
Collapse
Affiliation(s)
| | | | - Ed Smith
- The Christie NHS Foundation Trust, Manchester, and University of Manchester, M20 4BX, UK
| | - Amy L Chadwick
- Division of Cancer Sciences, University of Manchester, Manchester Cancer Research Centre, Manchester Academic Health Science Centre, and The Christie NHS Foundation Trust, Manchester, M20 4BX, UK
| | - Gillian A Whitfield
- The Christie NHS Foundation Trust, Manchester, and University of Manchester, M20 4BX, UK
| | - David J Thomson
- The Christie NHS Foundation Trust, Manchester, and University of Manchester, M20 4BX, UK
| | | | - Norman F Kirkby
- Division of Cancer Sciences, University of Manchester, Manchester Cancer Research Centre, Manchester Academic Health Science Centre, and The Christie NHS Foundation Trust, Manchester, M20 4BX, UK
| | | | - Karen J Kirkby
- Division of Cancer Sciences, University of Manchester, Manchester Cancer Research Centre, Manchester Academic Health Science Centre, and The Christie NHS Foundation Trust, Manchester, M20 4BX, UK
| |
Collapse
|
55
|
Wang L, Yang L, Han S, Zhu J, Li Y, Wang Z, Fan YH, Lin E, Zhang R, Sahoo N, Li Y, Zhang X, Wang X, Li T, Zhu XR, Zhu H, Heymach JV, Myers JN, Frank SJ. Patterns of protein expression in human head and neck cancer cell lines differ after proton vs photon radiotherapy. Head Neck 2020; 42:289-301. [PMID: 31710172 DOI: 10.1002/hed.26005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/26/2019] [Accepted: 10/18/2019] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Proton radiotherapy (PRT) may be a less toxic alternative to photon radiotherapy (XRT) for patients with head and neck squamous cell carcinoma (HNSCC). However, the molecular responses of HNSCC cells to PRT vs XRT are unclear. METHODS Proteomics analyses of protein expression profiles by reverse-phase protein arrays were done for two human papillomavirus [HPV]-negative and two HPV+ cell lines. Expression patterns of 175 proteins involved in several signaling pathways were tested. RESULTS Compared with PRT, XRT tended to induce lower expression of DNA damage repair-and cell cycle arrest-related proteins and higher expression of cell survival- and proliferation-related proteins. CONCLUSIONS Under these experimental conditions, PRT and XRT induced different protein expression and activation profiles. Further preclinical verification is needed, as are studies of tumor pathway mutations as biomarkers for choice of treatment or as radiosensitization targets to improve the response of HNSCC to PRT or XRT.
Collapse
Affiliation(s)
- Li Wang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Liuqing Yang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shichao Han
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jinming Zhu
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yuting Li
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zeming Wang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - You-Hong Fan
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Eric Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ruiping Zhang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Narayan Sahoo
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yupeng Li
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiaodong Zhang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiaochun Wang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tengfei Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiaorong R Zhu
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hongtu Zhu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John V Heymach
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey N Myers
- Department of Head & Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Steven J Frank
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
56
|
McNamara A, Willers H, Paganetti H. Modelling variable proton relative biological effectiveness for treatment planning. Br J Radiol 2019; 93:20190334. [PMID: 31738081 DOI: 10.1259/bjr.20190334] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Dose in proton radiotherapy is generally prescribed by scaling the physical proton dose by a constant value of 1.1. Relative biological effectiveness (RBE) is defined as the ratio of doses required by two radiation modalities to cause the same level of biological effect. The adoption of an RBE of 1.1. assumes that the biological efficacy of protons is similar to photons, allowing decades of clinical dose prescriptions from photon treatments and protocols to be utilized in proton therapy. There is, however, emerging experimental evidence that indicates that proton RBE varies based on technical, tissue and patient factors. The notion that a single scaling factor may be used to equate the effects of photons and protons across all biological endpoints and doses is too simplistic and raises concern for treatment planning decisions. Here, we review the models that have been developed to better predict RBE variations in tissue based on experimental data as well as using a mechanistic approach.
Collapse
Affiliation(s)
- Aimee McNamara
- Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
57
|
Deycmar S, Faccin E, Kazimova T, Knobel PA, Telarovic I, Tschanz F, Waller V, Winkler R, Yong C, Zingariello D, Pruschy M. The relative biological effectiveness of proton irradiation in dependence of DNA damage repair. Br J Radiol 2019; 93:20190494. [PMID: 31687835 DOI: 10.1259/bjr.20190494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Clinical parameters and empirical evidence are the primary determinants for current treatment planning in radiation oncology. Personalized medicine in radiation oncology is only at the very beginning to take the genetic background of a tumor entity into consideration to define an individual treatment regimen, the total dose or the combination with a specific anticancer agent. Likewise, stratification of patients towards proton radiotherapy is linked to its physical advantageous energy deposition at the tumor site with minimal healthy tissue being co-irradiated distal to the target volume. Hence, the fact that photon and proton irradiation also induce different qualities of DNA damages, which require differential DNA damage repair mechanisms has been completely neglected so far. These subtle differences could be efficiently exploited in a personalized treatment approach and could be integrated into personalized treatment planning. A differential requirement of the two major DNA double-strand break repair pathways, homologous recombination and non-homologous end joining, was recently identified in response to proton and photon irradiation, respectively, and subsequently influence the mode of ionizing radiation-induced cell death and susceptibility of tumor cells with defects in DNA repair machineries to either quality of ionizing radiation.This review focuses on the differential DNA-damage responses and subsequent biological processes induced by photon and proton irradiation in dependence of the genetic background and discusses their impact on the unicellular level and in the tumor microenvironment and their implications for combined treatment modalities.
Collapse
Affiliation(s)
- Simon Deycmar
- Laboratory for Applied Radiobiology Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Iliakis G, Mladenov E, Mladenova V. Necessities in the Processing of DNA Double Strand Breaks and Their Effects on Genomic Instability and Cancer. Cancers (Basel) 2019; 11:cancers11111671. [PMID: 31661831 PMCID: PMC6896103 DOI: 10.3390/cancers11111671] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 12/03/2022] Open
Abstract
Double strand breaks (DSBs) are induced in the DNA following exposure of cells to ionizing radiation (IR) and are highly consequential for genome integrity, requiring highly specialized modes of processing. Erroneous processing of DSBs is a cause of cell death or its transformation to a cancer cell. Four mechanistically distinct pathways have evolved in cells of higher eukaryotes to process DSBs, providing thus multiple options for the damaged cells. The homologous recombination repair (HRR) dependent subway of gene conversion (GC) removes IR-induced DSBs from the genome in an error-free manner. Classical non-homologous end joining (c-NHEJ) removes DSBs with very high speed but is unable to restore the sequence at the generated junction and can catalyze the formation of translocations. Alternative end-joining (alt-EJ) operates on similar principles as c-NHEJ but is slower and more error-prone regarding both sequence preservation and translocation formation. Finally, single strand annealing (SSA) is associated with large deletions and may also form translocations. Thus, the four pathways available for the processing of DSBs are not alternative options producing equivalent outcomes. We discuss the rationale for the evolution of pathways with such divergent properties and fidelities and outline the logic and necessities that govern their engagement. We reason that cells are not free to choose one specific pathway for the processing of a DSB but rather that they engage a pathway by applying the logic of highest fidelity selection, adapted to necessities imposed by the character of the DSB being processed. We introduce DSB clusters as a particularly consequential form of chromatin breakage and review findings suggesting that this form of damage underpins the increased efficacy of high linear energy transfer (LET) radiation modalities. The concepts developed have implications for the protection of humans from radon-induced cancer, as well as the treatment of cancer with radiations of high LET.
Collapse
Affiliation(s)
- George Iliakis
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122 Essen, Germany.
| | - Emil Mladenov
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122 Essen, Germany.
| | - Veronika Mladenova
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122 Essen, Germany.
| |
Collapse
|
59
|
Dünker N, Jendrossek V. Implementation of the Chick Chorioallantoic Membrane (CAM) Model in Radiation Biology and Experimental Radiation Oncology Research. Cancers (Basel) 2019; 11:cancers11101499. [PMID: 31591362 PMCID: PMC6826367 DOI: 10.3390/cancers11101499] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy (RT) is part of standard cancer treatment. Innovations in treatment planning and increased precision in dose delivery have significantly improved the therapeutic gain of radiotherapy but are reaching their limits due to biologic constraints. Thus, a better understanding of the complex local and systemic responses to RT and of the biological mechanisms causing treatment success or failure is required if we aim to define novel targets for biological therapy optimization. Moreover, optimal treatment schedules and prognostic biomarkers have to be defined for assigning patients to the best treatment option. The complexity of the tumor environment and of the radiation response requires extensive in vivo experiments for the validation of such treatments. So far in vivo investigations have mostly been performed in time- and cost-intensive murine models. Here we propose the implementation of the chick chorioallantoic membrane (CAM) model as a fast, cost-efficient model for semi high-throughput preclinical in vivo screening of the modulation of the radiation effects by molecularly targeted drugs. This review provides a comprehensive overview on the application spectrum, advantages and limitations of the CAM assay and summarizes current knowledge of its applicability for cancer research with special focus on research in radiation biology and experimental radiation oncology.
Collapse
Affiliation(s)
- Nicole Dünker
- Institute for Anatomy II, Department of Neuroanatomy, University of Duisburg-Essen, University Medicine Essen, 45122 Essen, Germany.
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Medicine Essen, 45122 Essen, Germany.
| |
Collapse
|
60
|
Bright SJ, Flint DB, Chakraborty S, McFadden CH, Yoon DS, Bronk L, Titt U, Mohan R, Grosshans DR, Sumazin P, Shaitelman SF, Asaithamby A, Sawakuchi GO. Nonhomologous End Joining Is More Important Than Proton Linear Energy Transfer in Dictating Cell Death. Int J Radiat Oncol Biol Phys 2019; 105:1119-1125. [PMID: 31425731 DOI: 10.1016/j.ijrobp.2019.08.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/03/2019] [Accepted: 08/08/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE This study seeks to identify biological factors that may yield a therapeutic advantage of proton therapy versus photon therapy. Specifically, we address the role of nonhomologous end-joining (NHEJ) and homologous recombination (HR) in the survival of cells in response to clinical photon and proton beams. METHODS AND MATERIALS We irradiated HT1080, M059K (DNA-PKcs+/+), and HCC1937 human cancer cell lines and their isogenic counterparts HT1080-shDNA-PKcs, HT1080-shRAD51IND, M059J (DNA-PKcs-/-), and HCC1937-BRCA1 (BRCA1 complemented) to assess cell clonogenic survival and γ-H2AX radiation-induced foci. Cells were irradiated with either clinically relevant photons or 1 of 3 proton linear energy transfer (LET) values. RESULTS Our results indicate that NHEJ deficiency is more important in dictating cell survival than proton LET. Cells with disrupted HR through BRCA1 mutation showed increased radiosensitivity only for high-LET protons whereas RAD51 depletion showed increased radiosensitivity for both photons and protons. DNA double strand breaks, assessed by γ-H2AX radiation-induced foci, showed greater numbers after 24 hours in cells exposed to higher LET protons. We also observed that NHEJ-deficient cells were unable to repair the vast majority of double strand breaks after 24 hours. CONCLUSIONS BRCA1 mutation significantly sensitizes cells to protons, but not photons. Loss of NHEJ renders cells hypersensitive to radiation, whereas the relative importance of HR increases with LET across several cell lines. This may be attributable to the more clustered damage induced by higher LET protons, which are harder to repair through NHEJ. This highlights the importance of tumor biology in dictating treatment modality and suggests BRCA1 as a potential biomarker for proton therapy response. Our data also support the use of pharmacologic inhibitors of DNA repair to enhance the sensitivity to different radiation types, although this raises issues for normal tissue toxicity.
Collapse
Affiliation(s)
- Scott J Bright
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David B Flint
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas; Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sharmistha Chakraborty
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Conor H McFadden
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David S Yoon
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lawrence Bronk
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Uwe Titt
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Radhe Mohan
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David R Grosshans
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pavel Sumazin
- Texas Children's Cancer Center and Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Simona F Shaitelman
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Aroumougame Asaithamby
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Gabriel O Sawakuchi
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas; Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
61
|
Hartfiel S, Häfner M, Perez RL, Rühle A, Trinh T, Debus J, Huber PE, Nicolay NH. Differential response of esophageal cancer cells to particle irradiation. Radiat Oncol 2019; 14:119. [PMID: 31286978 PMCID: PMC6615091 DOI: 10.1186/s13014-019-1326-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/26/2019] [Indexed: 02/07/2023] Open
Abstract
Background Radiation therapy is a mainstay in the treatment of esophageal cancer (EC) patients, and photon radiotherapy has proved beneficial both in the neoadjuvant and the definitive setting. However, regarding the still poor prognosis of many EC patients, particle radiation employing a higher biological effectiveness may help to further improve patient outcomes. However, the influence of clinically available particle radiation on EC cells remains largely unknown. Methods Patient-derived esophageal adenocarcinoma and squamous cell cancer lines were treated with photon and particle irradiation using clinically available proton (1H), carbon (12C) or oxygen (16O) beams at the Heidelberg Ion Therapy Center. Histology-dependent clonogenic survival was calculated for increasing physical radiation doses, and resulting relative biological effectiveness (RBE) was calculated for each radiation modality. Cell cycle effects caused by photon and particle radiation were assessed, and radiation-induced apoptosis was measured in adenocarcinoma and squamous cell EC samples by activated caspase-3 and sub-G1 populations. Repair kinetics of DNA double strand breaks induced by photon and particle radiation were investigated. Results While both adenocarcinoma EC cell lines demonstrated increasing sensitivities for 1H, 12C and 16O radiation, the two squamous cell carcinoma lines exhibited a more heterogeneous response to photon and particle treatment; average RBE values were calculated as 1.15 for 1H, 2.3 for 12C and 2.5 for 16O irradiation. After particle irradiation, squamous cell EC samples reacted with an increased and prolonged block in G2 phase of the cell cycle compared to adenocarcinoma cells. Particle radiation resulted in an incomplete repair of radiation-induced DNA double strand breaks in both adenocarcinoma and squamous cell carcinoma samples, with the levels of initial strand break induction correlating well with the individual cellular survival after photon and particle radiation. Similarly, EC samples demonstrated heterogeneous levels of radiation-induced apoptosis that also corresponded to the observed cellular survival of individual cell lines. Conclusions Esophageal cancer cells exhibit differential responses to irradiation with photons and 1H, 12C and 16O particles that were independent of tumor histology. Therefore, yet unknown molecular markers beyond histology may help to establish which esophageal cancer patients benefit from the biological effects of particle treatment. Electronic supplementary material The online version of this article (10.1186/s13014-019-1326-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarah Hartfiel
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Department of Molecular Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heavy Ion Therapy Center (HIT), Heidelberg University Hospital, Im Neuenheimer Feld 450, 69120, Heidelberg, Germany
| | - Matthias Häfner
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heavy Ion Therapy Center (HIT), Heidelberg University Hospital, Im Neuenheimer Feld 450, 69120, Heidelberg, Germany
| | - Ramon Lopez Perez
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Department of Molecular Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alexander Rühle
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Department of Molecular Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heavy Ion Therapy Center (HIT), Heidelberg University Hospital, Im Neuenheimer Feld 450, 69120, Heidelberg, Germany
| | - Thuy Trinh
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Department of Molecular Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heavy Ion Therapy Center (HIT), Heidelberg University Hospital, Im Neuenheimer Feld 450, 69120, Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heavy Ion Therapy Center (HIT), Heidelberg University Hospital, Im Neuenheimer Feld 450, 69120, Heidelberg, Germany
| | - Peter E Huber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Department of Molecular Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heavy Ion Therapy Center (HIT), Heidelberg University Hospital, Im Neuenheimer Feld 450, 69120, Heidelberg, Germany
| | - Nils H Nicolay
- Department of Molecular Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Department of Radiation Oncology, University Medical Center Freiburg, University of Freiburg, Robert-Koch-Straße 3, 79106, Freiburg, Germany. .,German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
62
|
Qi Tan H, Yang Calvin Koh W, Kuan Rui Tan L, Hao Phua J, Wei Ang K, Yong Park S, Siang Lew W, Cheow Lei Lee J. Dependence of LET on material and its impact on current RBE model. ACTA ACUST UNITED AC 2019; 64:135022. [DOI: 10.1088/1361-6560/ab1c90] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
63
|
Vitti ET, Parsons JL. The Radiobiological Effects of Proton Beam Therapy: Impact on DNA Damage and Repair. Cancers (Basel) 2019; 11:cancers11070946. [PMID: 31284432 PMCID: PMC6679138 DOI: 10.3390/cancers11070946] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/11/2019] [Accepted: 07/02/2019] [Indexed: 01/31/2023] Open
Abstract
Proton beam therapy (PBT) offers significant benefit over conventional (photon) radiotherapy for the treatment of a number of different human cancers, largely due to the physical characteristics. In particular, the low entrance dose and maximum energy deposition in depth at a well-defined region, the Bragg peak, can spare irradiation of proximal healthy tissues and organs at risk when compared to conventional radiotherapy using high-energy photons. However, there are still biological uncertainties reflected in the relative biological effectiveness that varies along the track of the proton beam as a consequence of the increases in linear energy transfer (LET). Furthermore, the spectrum of DNA damage induced by protons, particularly the generation of complex DNA damage (CDD) at high-LET regions of the distal edge of the Bragg peak, and the specific DNA repair pathways dependent on their repair are not entirely understood. This knowledge is essential in understanding the biological impact of protons on tumor cells, and ultimately in devising optimal therapeutic strategies employing PBT for greater clinical impact and patient benefit. Here, we provide an up-to-date review on the radiobiological effects of PBT versus photon radiotherapy in cells, particularly in the context of DNA damage. We also review the DNA repair pathways that are essential in the cellular response to PBT, with a specific focus on the signaling and processing of CDD induced by high-LET protons.
Collapse
Affiliation(s)
- Eirini Terpsi Vitti
- Cancer Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L3 9TA, UK
| | - Jason L Parsons
- Cancer Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L3 9TA, UK.
| |
Collapse
|
64
|
Carrier F, Liao Y, Mendenhall N, Guerrieri P, Todor D, Ahmad A, Dominello M, Joiner MC, Burmeister J. Three Discipline Collaborative Radiation Therapy (3DCRT) Special Debate: I would treat prostate cancer with proton therapy. J Appl Clin Med Phys 2019; 20:7-14. [PMID: 31166085 PMCID: PMC6612688 DOI: 10.1002/acm2.12621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- France Carrier
- Department of Radiation OncologyUniversity of MarylandBaltimoreMDUSA
| | - Yixiang Liao
- Department of Radiation OncologyRush University Medical CenterChicagoILUSA
| | | | | | - Dorin Todor
- Department of Radiation OncologyVirginia Commonwealth UniversityRichmondVAUSA
| | - Anis Ahmad
- Department of Radiation OncologyUniversity of Miami, Sylvester Comprehensive Cancer Center, Miller School of MedicineMiamiFLUSA
| | - Michael Dominello
- Department of OncologyWayne State University School of MedicineDetroitMIUSA
| | - Michael C. Joiner
- Department of OncologyWayne State University School of MedicineDetroitMIUSA
| | - Jay Burmeister
- Department of OncologyWayne State University School of MedicineDetroitMIUSA
- Gershenson Radiation Oncology CenterBarbara Ann Karmanos Cancer InstituteDetroitMIUSA
| |
Collapse
|
65
|
Mechanistic modelling supports entwined rather than exclusively competitive DNA double-strand break repair pathway. Sci Rep 2019; 9:6359. [PMID: 31015540 PMCID: PMC6478946 DOI: 10.1038/s41598-019-42901-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 04/04/2019] [Indexed: 02/01/2023] Open
Abstract
Following radiation induced DNA damage, several repair pathways are activated to help preserve genome integrity. Double Strand Breaks (DSBs), which are highly toxic, have specified repair pathways to address them. The main repair pathways used to resolve DSBs are Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR). Cell cycle phase determines the availability of HR, but the repair choice between pathways in the G2 phases where both HR and NHEJ can operate is not clearly understood. This study compares several in silico models of repair choice to experimental data published in the literature, each model representing a different possible scenario describing how repair choice takes place. Competitive only scenarios, where initial protein recruitment determines repair choice, are unable to fit the literature data. In contrast, the scenario which uses a more entwined relationship between NHEJ and HR, incorporating protein co-localisation and RNF138-dependent removal of the Ku/DNA-PK complex, is better able to predict levels of repair similar to the experimental data. Furthermore, this study concludes that co-localisation of the Mre11-Rad50-Nbs1 (MRN) complexes, with initial NHEJ proteins must be modeled to accurately depict repair choice.
Collapse
|
66
|
Paganetti H, Blakely E, Carabe-Fernandez A, Carlson DJ, Das IJ, Dong L, Grosshans D, Held KD, Mohan R, Moiseenko V, Niemierko A, Stewart RD, Willers H. Report of the AAPM TG-256 on the relative biological effectiveness of proton beams in radiation therapy. Med Phys 2019; 46:e53-e78. [PMID: 30661238 DOI: 10.1002/mp.13390] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/21/2018] [Accepted: 01/13/2019] [Indexed: 12/14/2022] Open
Abstract
The biological effectiveness of proton beams relative to photon beams in radiation therapy has been taken to be 1.1 throughout the history of proton therapy. While potentially appropriate as an average value, actual relative biological effectiveness (RBE) values may differ. This Task Group report outlines the basic concepts of RBE as well as the biophysical interpretation and mathematical concepts. The current knowledge on RBE variations is reviewed and discussed in the context of the current clinical use of RBE and the clinical relevance of RBE variations (with respect to physical as well as biological parameters). The following task group aims were designed to guide the current clinical practice: Assess whether the current clinical practice of using a constant RBE for protons should be revised or maintained. Identifying sites and treatment strategies where variable RBE might be utilized for a clinical benefit. Assess the potential clinical consequences of delivering biologically weighted proton doses based on variable RBE and/or LET models implemented in treatment planning systems. Recommend experiments needed to improve our current understanding of the relationships among in vitro, in vivo, and clinical RBE, and the research required to develop models. Develop recommendations to minimize the effects of uncertainties associated with proton RBE for well-defined tumor types and critical structures.
Collapse
Affiliation(s)
- Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Eleanor Blakely
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - David J Carlson
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Indra J Das
- New York University Langone Medical Center & Laura and Isaac Perlmutter Cancer Center, New York, NY, USA
| | - Lei Dong
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - David Grosshans
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kathryn D Held
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Radhe Mohan
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vitali Moiseenko
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
| | - Andrzej Niemierko
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Robert D Stewart
- Department of Radiation Oncology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
67
|
Elming PB, Sørensen BS, Oei AL, Franken NAP, Crezee J, Overgaard J, Horsman MR. Hyperthermia: The Optimal Treatment to Overcome Radiation Resistant Hypoxia. Cancers (Basel) 2019; 11:E60. [PMID: 30634444 PMCID: PMC6356970 DOI: 10.3390/cancers11010060] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/14/2018] [Accepted: 12/29/2018] [Indexed: 12/23/2022] Open
Abstract
Regions of low oxygenation (hypoxia) are a characteristic feature of solid tumors, and cells existing in these regions are a major factor influencing radiation resistance as well as playing a significant role in malignant progression. Consequently, numerous pre-clinical and clinical attempts have been made to try and overcome this hypoxia. These approaches involve improving oxygen availability, radio-sensitizing or killing the hypoxic cells, or utilizing high LET (linear energy transfer) radiation leading to a lower OER (oxygen enhancement ratio). Interestingly, hyperthermia (heat treatments of 39⁻45 °C) induces many of these effects. Specifically, it increases blood flow thereby improving tissue oxygenation, radio-sensitizes via DNA repair inhibition, and can kill cells either directly or indirectly by causing vascular damage. Combining hyperthermia with low LET radiation can even result in anti-tumor effects equivalent to those seen with high LET. The various mechanisms depend on the time and sequence between radiation and hyperthermia, the heating temperature, and the time of heating. We will discuss the role these factors play in influencing the interaction between hyperthermia and radiation, and summarize the randomized clinical trials showing a benefit of such a combination as well as suggest the potential future clinical application of this combination.
Collapse
Affiliation(s)
- Pernille B Elming
- Department of Experimental Clinical Oncology, Aarhus University Hospital, DK-8000 Aarhus C, Denmark.
| | - Brita S Sørensen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, DK-8000 Aarhus C, Denmark.
| | - Arlene L Oei
- Department of Radiation Oncology, Academic University Medical Centers, University of Amsterdam, 1105AZ Amsterdam, The Netherlands.
| | - Nicolaas A P Franken
- Department of Radiation Oncology, Academic University Medical Centers, University of Amsterdam, 1105AZ Amsterdam, The Netherlands.
| | - Johannes Crezee
- Department of Radiation Oncology, Academic University Medical Centers, University of Amsterdam, 1105AZ Amsterdam, The Netherlands.
| | - Jens Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, DK-8000 Aarhus C, Denmark.
| | - Michael R Horsman
- Department of Experimental Clinical Oncology, Aarhus University Hospital, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
68
|
Wang L, Han S, Zhu J, Wang X, Li Y, Wang Z, Lin E, Wang X, Molkentine DP, Blanchard P, Yang Y, Zhang R, Sahoo N, Gillin M, Zhu XR, Zhang X, Myers JN, Frank SJ. Proton versus photon radiation-induced cell death in head and neck cancer cells. Head Neck 2018; 41:46-55. [PMID: 30561022 DOI: 10.1002/hed.25357] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 04/04/2018] [Accepted: 05/16/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Photon (X-ray) radiotherapy (XRT) kills cells via DNA damage, however, how proton radiotherapy (PRT) causes cell death in head and neck squamous cell carcinoma (HNSCC) is unclear. We investigated mechanisms of HNSCC cell death after XRT versus PRT. METHODS We assessed type of death in 2 human papillomavirus (HPV)-positive and two HPV-negative cell lines: necrosis and apoptosis (Annexin-V fluorescein isothiocyanate [FITC]); senescence (β-galactosidase); and mitotic catastrophe (γ-tubulin and diamidino-phenylindole [DAPI]). RESULTS The XRT-induced or PRT-induced cellular senescence and mitotic catastrophe in all cell lines studied suggested that PRT caused cell death to a greater extent than XRT. After PRT, mitotic catastrophe peaked in HPV-negative and HPV-positive cells at 48 and 72 hours, respectively. No obvious differences were noted in the extent of cell necrosis or apoptosis after XRT versus PRT. CONCLUSION Under the conditions and in the cell lines reported here, mitotic catastrophe and senescence were the major types of cell death induced by XRT and PRT, and PRT may be more effective.
Collapse
Affiliation(s)
- Li Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shichao Han
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Gynecology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jinming Zhu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Radiation Oncology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Xiaochun Wang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yuting Li
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zeming Wang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Eric Lin
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiaofang Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David P Molkentine
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pierre Blanchard
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France
| | - Yining Yang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ruiping Zhang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Narayan Sahoo
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael Gillin
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiaorong Ronald Zhu
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiaodong Zhang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey N Myers
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Steven J Frank
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
69
|
Nielsen S, Bassler N, Grzanka L, Laursen L, Swakon J, Olko P, Andreassen CN, Alsner J, Singers Sørensen B. Comparison of Coding Transcriptomes in Fibroblasts Irradiated With Low and High LET Proton Beams and Cobalt-60 Photons. Int J Radiat Oncol Biol Phys 2018; 103:1203-1211. [PMID: 30529373 DOI: 10.1016/j.ijrobp.2018.11.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/27/2018] [Accepted: 11/29/2018] [Indexed: 10/27/2022]
Abstract
PURPOSE To identify differential cellular responses after proton and photon irradiation by comparing transcriptomes of primary fibroblasts irradiated with either radiation type. METHODS AND MATERIALS A panel of primary dermal fibroblast cultures was irradiated with low and higher linear energy transfer (LET) proton beams. Cobalt-60 photon irradiation was used as reference. Dose was delivered in 3 fractions of 3.5 Gy (relative biological effectiveness) using a relative biological effectiveness of 1.1 for proton doses. Cells were harvested 2 hours after the final fraction was delivered, and RNA was purified. RNA sequencing was performed using Illumina NextSeq 500 with high-output kit. The edgeR package in R was used for differential gene expression analysis. RESULTS Pairwise comparisons of the transcriptomes in the 3 treatment groups showed that there were 84 and 56 differentially expressed genes in the low LET group compared with the Cobalt-60 group and the higher LET group, respectively. The higher LET proton group and the Cobalt-60 group had the most distinct transcriptome profiles, with 725 differentially regulated genes. Differentially regulated canonical pathways and various regulatory factors involved in regulation of biological mechanisms such as inflammation, carcinogenesis, and cell cycle control were identified. CONCLUSIONS Inflammatory regulators associated with the development of normal tissue complications and malignant transformation factors seem to be differentially regulated by higher LET proton and Cobalt-60 photon irradiation. The reported transcriptome differences could therefore influence the progression of adverse effects and the risk of developing secondary cancers.
Collapse
Affiliation(s)
- Steffen Nielsen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark.
| | - Niels Bassler
- Medical Radiation Physics, Department of Physics, Stockholm University, Stockholm, Sweden
| | - Leszek Grzanka
- Proton Radiotherapy Group, Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
| | - Louise Laursen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Jan Swakon
- Proton Radiotherapy Group, Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
| | - Pawel Olko
- Proton Radiotherapy Group, Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
| | | | - Jan Alsner
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Brita Singers Sørensen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
70
|
Oeck S, Szymonowicz K, Wiel G, Krysztofiak A, Lambert J, Koska B, Iliakis G, Timmermann B, Jendrossek V. Relating Linear Energy Transfer to the Formation and Resolution of DNA Repair Foci After Irradiation with Equal Doses of X-ray Photons, Plateau, or Bragg-Peak Protons. Int J Mol Sci 2018; 19:ijms19123779. [PMID: 30486506 PMCID: PMC6320817 DOI: 10.3390/ijms19123779] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/24/2018] [Accepted: 11/26/2018] [Indexed: 12/27/2022] Open
Abstract
Proton beam therapy is increasingly applied for the treatment of human cancer, as it promises to reduce normal tissue damage. However, little is known about the relationship between linear energy transfer (LET), the type of DNA damage, and cellular repair mechanisms, particularly for cells irradiated with protons. We irradiated cultured cells delivering equal doses of X-ray photons, Bragg-peak protons, or plateau protons and used this set-up to quantitate initial DNA damage (mainly DNA double strand breaks (DSBs)), and to analyze kinetics of repair by detecting γH2A.X or 53BP1 using immunofluorescence. The results obtained validate the reliability of our set-up in delivering equal radiation doses under all conditions employed. Although the initial numbers of γH2A.X and 53BP1 foci scored were similar under the different irradiation conditions, it was notable that the maximum foci level was reached at 60 min after irradiation with Bragg-peak protons, as compared to 30 min for plateau protons and photons. Interestingly, Bragg-peak protons induced larger and irregularly shaped γH2A.X and 53BP1 foci. Additionally, the resolution of these foci was delayed. These results suggest that Bragg-peak protons induce DNA damage of increased complexity which is difficult to process by the cellular repair apparatus.
Collapse
Affiliation(s)
- Sebastian Oeck
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Virchowstrasse 173, 45122 Essen, Germany.
- Department of Therapeutic Radiology, Yale University School of Medicine, 15 York Street, New Haven, CT 06520, USA.
| | - Klaudia Szymonowicz
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Virchowstrasse 173, 45122 Essen, Germany.
| | - Gesa Wiel
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Virchowstrasse 173, 45122 Essen, Germany.
| | - Adam Krysztofiak
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Virchowstrasse 173, 45122 Essen, Germany.
| | - Jamil Lambert
- West German Proton Therapy Centre Essen, University Hospital Essen, Am Muehlenbach 1, 45147 Essen, Germany.
| | - Benjamin Koska
- West German Proton Therapy Centre Essen, University Hospital Essen, Am Muehlenbach 1, 45147 Essen, Germany.
| | - George Iliakis
- Institute of Medical Radiation Biology; University of Duisburg-Essen; Medical School; Hufelandstr. 55, 45122 Essen, Germany.
| | - Beate Timmermann
- West German Proton Therapy Centre Essen, University Hospital Essen, Am Muehlenbach 1, 45147 Essen, Germany.
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Virchowstrasse 173, 45122 Essen, Germany.
| |
Collapse
|
71
|
Panek A, Miszczyk J, Swakoń J. Biological effects and inter-individual variability in peripheral blood lymphocytes of healthy donors exposed to 60 MeV proton radiotherapeutic beam. Int J Radiat Biol 2018; 94:1085-1094. [PMID: 30273081 DOI: 10.1080/09553002.2019.1524941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Purpose: The aim of our study was to investigate the amount of initial DNA damage and cellular repair capacity of human peripheral blood lymphocytes exposed to the therapeutic proton beam and compare it to X-rays. Materials and methods: Lymphocytes from 10 healthy donors were irradiated in the Spread Out Bragg Peak of the 60 MeV proton beam or, as a reference, exposed to 250 kV X-rays. DNA damage level was assessed using the alkaline version of the comet assay method. For both sources of radiation, dose-DNA damage response (0-4 Gy) and DNA repair kinetics (0-120 min) were estimated. The observed DNA damage was then used to calculate the relative biological effectiveness (RBE) of the proton beam in comparison to that of X-rays. Results: Dose-response relationships for the DNA damage level showed linear dependence for both proton beam and X-rays (R2 = 0.995 for protons and R2 = 0.993 for X-rays). Within the dose range of 1-4 Gy, protons were significantly more effective in inducing DNA damage than were X-rays (p < .05). The average RBE, calculated from the proton and X-ray doses required for the iso-effective, internally standardized tail DNA parameter (sT-DNA) was 1.28 ± 0.57. Similar half-life time of residual damage and repair efficiency of induced DNA damage for both radiation types were observed. In the X-irradiated group, significant inter-individual differences were observed. Conclusions: Proton therapy was more effective at high radiation doses. However, DNA damage repair mechanism after proton irradiation seems to differ from that following X-rays.
Collapse
Affiliation(s)
- Agnieszka Panek
- a Institute of Nuclear Physics Polish Academy of Sciences , Krakow , Poland
| | - Justyna Miszczyk
- a Institute of Nuclear Physics Polish Academy of Sciences , Krakow , Poland
| | - Jan Swakoń
- a Institute of Nuclear Physics Polish Academy of Sciences , Krakow , Poland
| |
Collapse
|
72
|
Ray S, Cekanaviciute E, Lima IP, Sørensen BS, Costes SV. Comparing Photon and Charged Particle Therapy Using DNA Damage Biomarkers. Int J Part Ther 2018; 5:15-24. [PMID: 31773017 DOI: 10.14338/ijpt-18-00018.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/05/2018] [Indexed: 11/21/2022] Open
Abstract
Treatment modalities for cancer radiation therapy have become increasingly diversified given the growing number of facilities providing proton and carbon-ion therapy in addition to the more historically accepted photon therapy. An understanding of high-LET radiobiology is critical for optimization of charged particle radiation therapy and potential DNA damage response. In this review, we present a comprehensive summary and comparison of these types of therapy monitored primarily by using DNA damage biomarkers. We focus on their relative profiles of dose distribution and mechanisms of action from the level of nucleic acid to tumor cell death.
Collapse
Affiliation(s)
- Shayoni Ray
- USRA/NASA Ames Research Center, Moffett Field, CA, USA
| | | | | | | | | |
Collapse
|
73
|
Sertorio M, Perentesis JP, Vatner RE, Mascia AE, Zheng Y, Wells SI. Cancer Cell Metabolism: Implications for X-ray and Particle Radiation Therapy. Int J Part Ther 2018; 5:40-48. [PMID: 31773019 DOI: 10.14338/ijpt-18-00023.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/21/2018] [Indexed: 01/13/2023] Open
Abstract
Advances in radiation delivery technologies and immunotherapy have improved effective cancer treatments and long-term outcomes. Experimental and clinical trials have demonstrated the benefit of a combination of radiation therapy and immunotherapy for tumor eradication. Despite precise radiation dose delivery that is achievable by particle therapy and benefits from reactivating the antitumor immune response, resistance to both therapeutic strategies is frequently observed in patients. Understanding the biological origins of such resistance will create new opportunities for improved cancer treatment. Cancer metabolism and especially a high rate of aerobic glycolysis leading to overproduction and release of lactate is one such biological process favoring tumor progression and treatment resistance. Because of their known protumor effects, aerobic glycolysis and lactate production are potential targets for increased efficacy of radiation alone or in combination with immunotherapy. In the following review, we present an overview of the interplay of cancer cell lactate metabolism with the tumor microenvironment and immune cells. We discuss how a deeper understanding and careful modulation of lactate metabolism and radiation therapy might exploit this interplay for improved therapeutic outcome.
Collapse
Affiliation(s)
- Mathieu Sertorio
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - John P Perentesis
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Ralph E Vatner
- Division of Immunobiology, Cincinnati Children's Hospital, OH, USA.,Department of Radiation Oncology, University of Cincinnati, Cincinnati, OH, USA
| | - Anthony E Mascia
- Department of Radiation Oncology, University of Cincinnati, Cincinnati, OH, USA
| | - Yi Zheng
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Susanne I Wells
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital, Cincinnati, OH, USA
| |
Collapse
|
74
|
Paganetti H. Proton Relative Biological Effectiveness - Uncertainties and Opportunities. Int J Part Ther 2018; 5:2-14. [PMID: 30370315 DOI: 10.14338/ijpt-18-00011.1] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Proton therapy treatments are prescribed using a biological effectiveness relative to photon therapy of 1.1, that is, proton beams are considered to be 10% more biologically effective. Debate is ongoing as to whether this practice needs to be revised. This short review summarizes current knowledge on relative biological effectiveness variations and uncertainties in vitro and in vivo. Clinical relevance is discussed and strategies toward biologically guided treatment planning are presented.
Collapse
Affiliation(s)
- Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
75
|
Morton LM, Ricks-Santi L, West CML, Rosenstein BS. Radiogenomic Predictors of Adverse Effects following Charged Particle Therapy. Int J Part Ther 2018; 5:103-113. [PMID: 30505881 PMCID: PMC6261418 DOI: 10.14338/ijpt-18-00009.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/16/2018] [Indexed: 12/31/2022] Open
Abstract
Radiogenomics is the study of genomic factors that are associated with response to radiation therapy. In recent years, progress has been made toward identifying genetic risk factors linked with late radiation-induced adverse effects. These advances have been underpinned by the establishment of an international Radiogenomics Consortium with collaborative studies that expand cohort sizes to increase statistical power and efforts to improve methodologic approaches for radiogenomic research. Published studies have predominantly reported the results of research involving patients treated with photons using external beam radiation therapy. These studies demonstrate our ability to pool international cohorts to identify common single nucleotide polymorphisms associated with risk for developing normal tissue toxicities. Progress has also been achieved toward the discovery of genetic variants associated with radiation therapy-related subsequent malignancies. With the increasing use of charged particle therapy (CPT), there is a need to establish cohorts for patients treated with these advanced technology forms of radiation therapy and to create biorepositories with linked clinical data. While some genetic variants are likely to impact toxicity and second malignancy risks for both photons and charged particles, it is plausible that others may be specific to the radiation modality due to differences in their biological effects, including the complexity of DNA damage produced. In recognition that the formation of patient cohorts treated with CPT for radiogenomic studies is a high priority, efforts are underway to establish collaborations involving institutions treating cancer patients with protons and/or carbon ions as well as consortia, including the Proton Collaborative Group, the Particle Therapy Cooperative Group, and the Pediatric Proton Consortium Registry. These important radiogenomic CPT initiatives need to be expanded internationally to build on experience gained from the Radiogenomics Consortium and epidemiologists investigating normal tissue toxicities and second cancer risk.
Collapse
Affiliation(s)
- Lindsay M. Morton
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Catharine M. L. West
- Division of Cancer Sciences, The University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, United Kingdom
| | - Barry S. Rosenstein
- Department of Radiation Oncology and Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
76
|
Deycmar S, Pruschy M. Combined Treatment Modalities for High-Energy Proton Irradiation: Exploiting Specific DNA Repair Dependencies. Int J Part Ther 2018; 5:133-139. [DOI: 10.14338/ijpt-18-00020.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/05/2018] [Indexed: 11/21/2022] Open
Affiliation(s)
- Simon Deycmar
- Department of Radiation Oncology, Laboratory for Applied Radiobiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Martin Pruschy
- Department of Radiation Oncology, Laboratory for Applied Radiobiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
77
|
Calcitriol and Calcidiol Can Sensitize Melanoma Cells to Low⁻LET Proton Beam Irradiation. Int J Mol Sci 2018; 19:ijms19082236. [PMID: 30065179 PMCID: PMC6122082 DOI: 10.3390/ijms19082236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/19/2018] [Accepted: 07/27/2018] [Indexed: 12/17/2022] Open
Abstract
Proton beam irradiation promises therapeutic utility in the management of uveal melanoma. Calcitriol (1,25(OH)2D3)—the biologically active metabolite of vitamin D3—and its precursor, calcidiol (25(OH)D3), exert pleiotropic effects on melanoma cells. The aim of the study was to evaluate the effect of both calcitriol and calcidiol on melanoma cell proliferation and their response to proton beam irradiation. Three melanoma cell lines (human SKMEL-188 and hamster BHM Ma and BHM Ab), pre-treated with 1,25(OH)2D3 or 25(OH)D3 at graded concentrations (0, 10, 100 nM), were irradiated with 0–5 Gy and then cultured in vitro. Growth curves were determined by counting the cell number every 24 h up to 120 h, which was used to calculate surviving fractions. The obtained survival curves were analysed using two standard models: linear-quadratic and multi-target single hit. Calcitriol inhibited human melanoma proliferation at 10 nM, while only calcidiol inhibited proliferation of hamster lines at 10 and 100 nM doses. Treatment with either 1,25(OH)2D3 or 25(OH)D3 radio sensitized melanoma cells to low doses of proton beam radiation. The strength of the effect increased with the concentration of vitamin D3. Our data suggest that vitamin D3 may be an adjuvant that modifies proton beam efficiency during melanoma therapy.
Collapse
|
78
|
Underwood TS, McMahon SJ. Proton relative biological effectiveness (RBE): a multiscale problem. Br J Radiol 2018; 92:20180004. [PMID: 29975153 DOI: 10.1259/bjr.20180004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Proton radiotherapy is undergoing rapid expansion both within the UK and internationally, but significant challenges still need to be overcome if maximum benefit is to be realised from this technique. One major limitation is the persistent uncertainty in proton relative biological effectiveness (RBE). While RBE values are needed to link proton radiotherapy to our existing experience with photon radiotherapy, RBE remains poorly understood and is typically incorporated as a constant dose scaling factor of 1.1 in clinical plans. This is in contrast to extensive experimental evidence indicating that RBE is a function of dose, tissue type, and proton linear energy transfer, among other parameters. In this article, we discuss the challenges associated with obtaining clinically relevant values for proton RBE through commonly-used assays, and highlight the wide range of other experimental end points which can inform our understanding of RBE. We propose that accurate and robust optimization of proton radiotherapy ultimately requires a multiscale understanding of RBE, integrating subcellular, cellular, and patient-level processes.
Collapse
Affiliation(s)
- Tracy Sa Underwood
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Stephen J McMahon
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, UK
| |
Collapse
|
79
|
Relative Biological Effectiveness Uncertainties and Implications for Beam Arrangements and Dose Constraints in Proton Therapy. Semin Radiat Oncol 2018; 28:256-263. [DOI: 10.1016/j.semradonc.2018.02.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
80
|
Toward A variable RBE for proton beam therapy. Radiother Oncol 2018; 128:68-75. [PMID: 29910006 DOI: 10.1016/j.radonc.2018.05.019] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/09/2018] [Accepted: 05/17/2018] [Indexed: 12/19/2022]
Abstract
In the clinic, proton beam therapy (PBT) is based on the use of a generic relative biological effectiveness (RBE) of 1.1 compared to photons in human cancers and normal tissues. However, the experimental basis for this RBE lacks any significant number of representative tumor models and clinically relevant endpoints for dose-limiting organs at risk. It is now increasingly appreciated that much of the variations of treatment responses in cancers are due to inter-tumoral genomic heterogeneity. Indeed, recently it has been shown that defects in certain DNA repair pathways, which are found in subsets of many cancers, are associated with a RBE increase in vitro. However, there currently exist little in vivo or clinical data that confirm the existence of similarly increased RBE values in human cancers. Furthermore, evidence for variable RBE values for normal tissue toxicity has been sparse and conflicting to date. If we could predict variable RBE values in patients, we would be able to optimally use and personalize PBT. For example, predictive tumor biomarkers may facilitate selection of patients with proton-sensitive cancers previously ineligible for PBT. Dose de-escalation may be possible to reduce normal tissue toxicity, especially in pediatric patients. Knowledge of increased tumor RBE may allow us to develop biologically optimized therapies to enhance local control while RBE biomarkers for normal tissues could lead to a better understanding and prevention of unusual PBT-associated toxicity. Here, we will review experimental data on the repair of proton damage to DNA that impact both RBE values and biophysical modeling to predict RBE variations. Experimental approaches for studying proton sensitivity in vitro and in vivo will be reviewed as well and recent clinical findings discussed. Ultimately, therapeutically exploiting the understudied biological advantages of protons and developing approaches to limit treatment toxicity should fundamentally impact the clinical use of PBT.
Collapse
|
81
|
van den Tempel N, Laffeber C, Odijk H, van Cappellen WA, van Rhoon GC, Franckena M, Kanaar R. The effect of thermal dose on hyperthermia-mediated inhibition of DNA repair through homologous recombination. Oncotarget 2018; 8:44593-44604. [PMID: 28574821 PMCID: PMC5546504 DOI: 10.18632/oncotarget.17861] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/26/2017] [Indexed: 12/16/2022] Open
Abstract
Hyperthermia has a number of biological effects that sensitize tumors to radiotherapy in the range between 40-44 °C. One of these effects is heat-induced degradation of BRCA2 that in turn causes reduced RAD51 focus formation, which results in an attenuation of DNA repair through homologous recombination. Prompted by this molecular insight into how hyperthermia attenuates homologous recombination, we now quantitatively explore time and temperature dynamics of hyperthermia on BRCA2 levels and RAD51 focus formation in cell culture models, and link this to their clonogenic survival capacity after irradiation (0-6 Gy). For treatment temperatures above 41 °C, we found a decrease in cell survival, an increase in sensitization towards irradiation, a decrease of BRCA2 protein levels, and altered RAD51 focus formation. When the temperatures exceeded 43 °C, we found that hyperthermia alone killed more cells directly, and that processes other than homologous recombination were affected by the heat. This study demonstrates that optimal inhibition of HR is achieved by subjecting cells to hyperthermia at 41-43 °C for 30 to 60 minutes. Our data provides a guideline for the clinical application of novel combination treatments that could exploit hyperthermia's attenuation of homologous recombination, such as the combination of hyperthermia with PARP-inhibitors for non-BRCA mutations carriers.
Collapse
Affiliation(s)
- Nathalie van den Tempel
- Department of Molecular Genetics, Cancer Genomics Center Netherlands, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Charlie Laffeber
- Department of Molecular Genetics, Cancer Genomics Center Netherlands, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Hanny Odijk
- Department of Molecular Genetics, Cancer Genomics Center Netherlands, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Wiggert A van Cappellen
- Optical Imaging Center, Department of Pathology, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Gerard C van Rhoon
- Department of Radiation Oncology, Erasmus MC Cancer Institute, 3008 AE, Rotterdam, The Netherlands
| | - Martine Franckena
- Department of Radiation Oncology, Erasmus MC Cancer Institute, 3008 AE, Rotterdam, The Netherlands
| | - Roland Kanaar
- Department of Molecular Genetics, Cancer Genomics Center Netherlands, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands
| |
Collapse
|
82
|
Ilicic K, Combs SE, Schmid TE. New insights in the relative radiobiological effectiveness of proton irradiation. Radiat Oncol 2018; 13:6. [PMID: 29338744 PMCID: PMC5771069 DOI: 10.1186/s13014-018-0954-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/05/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Proton radiotherapy is a form of charged particle therapy that is preferentially applied for the treatment of tumors positioned near to critical structures due to their physical characteristics, showing an inverted depth-dose profile. The sparing of normal tissue has additional advantages in the treatment of pediatric patients, in whom the risk of secondary cancers and late morbidity is significantly higher. Up to date, a fixed relative biological effectiveness (RBE) of 1.1 is commonly implemented in treatment planning systems with protons in order to correct the physical dose. This value of 1.1 comes from averaging the results of numerous in vitro experiments, mostly conducted in the middle of the spread-out Bragg peak, where RBE is relatively constant. However, the use of a constant RBE value disregards the experimental evidence which clearly demonstrates complex RBE dependency on dose, cell- or tissue type, linear energy transfer and biological endpoints. In recent years, several in vitro studies indicate variations in RBE of protons which translate to an uncertainty in the biological effective dose delivery to the patient. Particularly for regions surrounding the Bragg peak, the more localized pattern of energy deposition leads to more complex DNA lesions. These RBE variations of protons bring the validity of using a constant RBE into question. MAIN BODY This review analyzes how RBE depends on the dose, different biological endpoints and physical properties. Further, this review gives an overview of the new insights based on findings made during the last years investigating the variation of RBE with depth in the spread out Bragg peak and the underlying differences in radiation response on the molecular and cellular levels between proton and photon irradiation. Research groups such as the Klinische Forschergruppe Schwerionentherapie funded by the German Research Foundation (DFG, KFO 214) have included work on this topic and the present manuscript highlights parts of the preclinical work and summarizes the research activities in this context. SHORT CONCLUSION In summary, there is an urgent need for more coordinated in vitro and in vivo experiments that concentrate on a realistic dose range of in clinically relevant tissues like lung or spinal cord.
Collapse
Affiliation(s)
- K Ilicic
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, 81675, München, Germany.,Institute of Innovative Radiotherapy, Helmholtz Zentrum München, Neuherberg, Germany
| | - S E Combs
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, 81675, München, Germany.,Institute of Innovative Radiotherapy, Helmholtz Zentrum München, Neuherberg, Germany.,Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, Munich, Germany
| | - T E Schmid
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, 81675, München, Germany. .,Institute of Innovative Radiotherapy, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
83
|
Proceedings of the National Cancer Institute Workshop on Charged Particle Radiobiology. Int J Radiat Oncol Biol Phys 2017; 100:816-831. [PMID: 29485053 DOI: 10.1016/j.ijrobp.2017.12.260] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/05/2017] [Accepted: 12/11/2017] [Indexed: 12/21/2022]
Abstract
In April 2016, the National Cancer Institute hosted a multidisciplinary workshop to discuss the current knowledge of the radiobiological aspects of charged particles used in cancer therapy to identify gaps in that knowledge that might hinder the effective clinical use of charged particles and to propose research that could help fill those gaps. The workshop was organized into 10 topics ranging from biophysical models to clinical trials and included treatment optimization, relative biological effectiveness of tumors and normal tissues, hypofractionation with particles, combination with immunotherapy, "omics," hypoxia, and particle-induced second malignancies. Given that the most commonly used charged particle in the clinic currently is protons, much of the discussion revolved around evaluating the state of knowledge and current practice of using a relative biological effectiveness of 1.1 for protons. Discussion also included the potential advantages of heavier ions, notably carbon ions, because of their increased biological effectiveness, especially for tumors frequently considered to be radiation resistant, increased effectiveness in hypoxic cells, and potential for differentially altering immune responses. The participants identified a large number of research areas in which information is needed to inform the most effective use of charged particles in the future in clinical radiation therapy. This unique form of radiation therapy holds great promise for improving cancer treatment.
Collapse
|
84
|
Valproic Acid Sensitizes Hepatocellular Carcinoma Cells to Proton Therapy by Suppressing NRF2 Activation. Sci Rep 2017; 7:14986. [PMID: 29118323 PMCID: PMC5678087 DOI: 10.1038/s41598-017-15165-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 10/23/2017] [Indexed: 01/08/2023] Open
Abstract
Although efficacy of combined histone deacetylase (HDAC) inhibitors and conventional photon radiotherapy is being tested in clinical trials, their combined effect with proton beam radiotherapy has yet to be determined. Here, we compared combined effect of valproic acid (VPA), a class I and II HDAC inhibitor and antiepileptic drug with proton and photon irradiation in hepatocellular carcinoma (HCC) cells in vitro and in vivo. We found that VPA sensitized more Hep3B cells to proton than to photon irradiation. VPA prolonged proton-induced DNA damage and augmented proton-induced apoptosis. In addition, VPA further increased proton-induced production of intracellular reactive oxygen species and suppressed expression of nuclear factor erythroid-2-related factor 2 (NRF2), a key transcription factor regulating antioxidant response. Downregulation of NRF2 by siRNA transfection increased proton-induced apoptotic cell death, supporting NRF2 as a target of VPA in radiosensitization. In Hep3B tumor xenograft models, VPA significantly enhanced proton-induced tumor growth delay with increased apoptosis and decreased NRF2 expression in vivo. Collectively, our study highlights a proton radiosensitizing effect of VPA in HCC cells. As NRF2 is an emerging prognostic marker contributing to radioresistance in HCC, targeting NRF2 pathway may impact clinical outcome of proton beam radiotherapy.
Collapse
|
85
|
Jasińska-Konior K, Pochylczuk K, Czajka E, Michalik M, Romanowska-Dixon B, Swakoń J, Urbańska K, Elas M. Proton beam irradiation inhibits the migration of melanoma cells. PLoS One 2017; 12:e0186002. [PMID: 29016654 PMCID: PMC5634624 DOI: 10.1371/journal.pone.0186002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 09/22/2017] [Indexed: 12/12/2022] Open
Abstract
Purpose In recent years experimental data have indicated that low-energy proton beam radiation might induce a difference in cellular migration in comparison to photons. We therefore set out to compare the effect of proton beam irradiation and X-rays on the survival and long-term migratory properties of two cell lines: uveal melanoma Mel270 and skin melanoma BLM. Materials and methods Cells treated with either proton beam or X-rays were analyzed for their survival using clonogenic assay and MTT test. Long-term migratory properties were assessed with time-lapse monitoring of individual cell movements, wound test and transpore migration, while the expression of the related proteins was measured with western blot. Results Exposure to proton beam and X-rays led to similar survival but the quality of the cell colonies was markedly different. More paraclones with a low proliferative activity and fewer highly-proliferative holoclones were found after proton beam irradiation in comparison to X-rays. At 20 or 40 days post-irradiation, migratory capacity was decreased more by proton beam than by X-rays. The beta-1-integrin level was decreased in Mel270 cells after both types of radiation, while vimentin, a marker of EMT, was increased in BLM cells only. Conclusions We conclude that proton beam irradiation induced long-term inhibition of cellular motility, as well as changes in the level of beta-1 integrin and vimentin. If confirmed, the change in the quality, but not in the number of colonies after proton beam irradiation might favor tumor growth inhibition after fractionated proton therapy.
Collapse
Affiliation(s)
| | - Katarzyna Pochylczuk
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Cracow, Poland
| | - Elżbieta Czajka
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Cracow, Poland
| | - Marta Michalik
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Cracow, Poland
| | - Bożena Romanowska-Dixon
- Department of Ophthalmology and Ophthalmic Oncology, Jagiellonian University Medical College, Cracow, Poland
| | - Jan Swakoń
- Institute of Nuclear Physics, PAS, Cracow, Poland
| | - Krystyna Urbańska
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Cracow, Poland
| | - Martyna Elas
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Cracow, Poland
- * E-mail:
| |
Collapse
|
86
|
Lin YF, Chen BP, Li W, Perko Z, Wang Y, Testa M, Schneider R, Lu HM, Gerweck LE. The Relative Biological Effect of Spread-Out Bragg Peak Protons in Sensitive and Resistant Tumor Cells. Int J Part Ther 2017; 4:33-39. [DOI: 10.14338/ijpt-17-00025.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Yu-Fen Lin
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Benjamin P. Chen
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Wende Li
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Zoltan Perko
- Department of Radiation, Science and Technology, Delft University of Technology, Delft, The Netherlands
| | - Yi Wang
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Mauro Testa
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Robert Schneider
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Hsaio-Ming Lu
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Leo E. Gerweck
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
87
|
Carbon Ion Radiotherapy: A Review of Clinical Experiences and Preclinical Research, with an Emphasis on DNA Damage/Repair. Cancers (Basel) 2017; 9:cancers9060066. [PMID: 28598362 PMCID: PMC5483885 DOI: 10.3390/cancers9060066] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/21/2017] [Accepted: 06/06/2017] [Indexed: 12/31/2022] Open
Abstract
Compared to conventional photon-based external beam radiation (PhXRT), carbon ion radiotherapy (CIRT) has superior dose distribution, higher linear energy transfer (LET), and a higher relative biological effectiveness (RBE). This enhanced RBE is driven by a unique DNA damage signature characterized by clustered lesions that overwhelm the DNA repair capacity of malignant cells. These physical and radiobiological characteristics imbue heavy ions with potent tumoricidal capacity, while having the potential for simultaneously maximally sparing normal tissues. Thus, CIRT could potentially be used to treat some of the most difficult to treat tumors, including those that are hypoxic, radio-resistant, or deep-seated. Clinical data, mostly from Japan and Germany, are promising, with favorable oncologic outcomes and acceptable toxicity. In this manuscript, we review the physical and biological rationales for CIRT, with an emphasis on DNA damage and repair, as well as providing a comprehensive overview of the translational and clinical data using CIRT.
Collapse
|
88
|
Jessri M, Dalley AJ, Farah CS. Deficient double-strand break repair in oral squamous cell carcinoma cell lines. J Oral Pathol Med 2017; 46:695-702. [PMID: 28383762 DOI: 10.1111/jop.12576] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2017] [Indexed: 02/02/2023]
Abstract
BACKGROUND Approximately 20% of oral squamous cell carcinoma (OSCC) cases arise without any identifiable environmental cause, suggesting involvement of genetic influences in their aetiology. DNA double-strand breaks (DSBs) sever both strands of DNA and pose a potential threat to genomic integrity. A hastened accumulation of somatic mutations consequent to DSB repair is deemed to be a likely event in tumorigenesis of OSCC. METHODS Two discrete chemical approaches, namely hydrogen peroxide and camptothecin, were used to induce DSB in oral cell lines derived from normal through dysplastic to OSCC tissues. After optimization, gamma histone 2Ax (γH2Ax) foci were counted as an indirect measure of kinetics of DSB and confirmed with Western blot of γH2Ax, Nbs1 and ATM. RESULTS Maximal number of γH2Ax foci was detected 1 and 2 hours post-exposure to camptothecin and hydrogen peroxide, respectively; when adjusted for the baseline number of γH2Ax, neoplastic cell lines showed the lowest number of maximal DSB and slowest rate of repair compared to other cell lines. γH2 Ax Western blot closely mirrored the trend observed in immunofluorescent staining for γH2 Ax foci. Changes in the expression level of ATM and Nbs1 were minimal; however, ATM expression showed a slight gradual increase in normal cells which reached its peak at 2 hours after exposure to camptothecin. CONCLUSIONS There is a difference in efficiency of DSB repair pathways in cell lines derived from different stages of oral tumorigenesis with neoplastic cell lines having the most defective DSB repair system.
Collapse
Affiliation(s)
- Maryam Jessri
- Oral Oncology Research Program, UQ Centre for Clinical Research, The University of Queensland, Herston, Qld, Australia
| | - Andrew J Dalley
- Oral Oncology Research Program, UQ Centre for Clinical Research, The University of Queensland, Herston, Qld, Australia
| | - Camile S Farah
- Oral Oncology Research Program, UQ Centre for Clinical Research, The University of Queensland, Herston, Qld, Australia.,Australian Centre for Oral Oncology Research & Education, School of Dentistry, University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
89
|
Wang L, Wang X, Li Y, Han S, Zhu J, Wang X, Molkentine DP, Blanchard P, Yang Y, Zhang R, Sahoo N, Gillin M, Zhu XR, Zhang X, Myers JN, Frank SJ. Human papillomavirus status and the relative biological effectiveness of proton radiotherapy in head and neck cancer cells. Head Neck 2016; 39:708-715. [DOI: 10.1002/hed.24673] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2016] [Indexed: 01/27/2023] Open
Affiliation(s)
- Li Wang
- Department of Experimental Radiation Oncology; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Xiaochun Wang
- Department of Radiation Physics; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Yuting Li
- Department of Radiation Physics; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Shichao Han
- Department of Experimental Radiation Oncology; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Jinming Zhu
- Department of Experimental Radiation Oncology; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Xiaofang Wang
- Department of Experimental Radiation Oncology; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - David P. Molkentine
- Department of Experimental Radiation Oncology; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Pierre Blanchard
- Department of Radiation Oncology; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Yining Yang
- Department of Radiation Physics; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Ruiping Zhang
- Department of Radiation Physics; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Narayan Sahoo
- Department of Radiation Physics; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Michael Gillin
- Department of Radiation Physics; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Xiaorong Ronald Zhu
- Department of Radiation Physics; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Xiaodong Zhang
- Department of Radiation Physics; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Jeffrey N. Myers
- Department of Head and Neck Surgery; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Steven J. Frank
- Department of Radiation Oncology; The University of Texas MD Anderson Cancer Center; Houston Texas
| |
Collapse
|
90
|
McFadden CH, Hallacy TM, Flint DB, Granville DA, Asaithamby A, Sahoo N, Akselrod MS, Sawakuchi GO. Time-Lapse Monitoring of DNA Damage Colocalized With Particle Tracks in Single Living Cells. Int J Radiat Oncol Biol Phys 2016; 96:221-7. [DOI: 10.1016/j.ijrobp.2016.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 04/08/2016] [Indexed: 12/18/2022]
|
91
|
Underwood T, Paganetti H. Variable Proton Relative Biological Effectiveness: How Do We Move Forward? Int J Radiat Oncol Biol Phys 2016; 95:56-58. [DOI: 10.1016/j.ijrobp.2015.10.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 10/01/2015] [Indexed: 12/26/2022]
|
92
|
van den Tempel N, Horsman MR, Kanaar R. Improving efficacy of hyperthermia in oncology by exploiting biological mechanisms. Int J Hyperthermia 2016; 32:446-54. [PMID: 27086587 DOI: 10.3109/02656736.2016.1157216] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It has long been established that hyperthermia increases the therapeutic benefit of radiation and chemotherapy in cancer treatment. During the last few years there have been substantial technical improvements in the sources used to apply and measure heat, which greatly increases enthusiasm for the clinical use of hyperthermia. These advances are converging with a better understanding of the physiological and molecular effects of hyperthermia. Therefore, we are now at a juncture where the parameters that will influence the efficacy of hyperthermia in cancer treatment can be optimised in a more systematic and rational manner. In addition, the novel insights in hyperthermia's many biological effects on tumour cells will ultimately result in new treatment regimes. For example, the molecular effects of hyperthermia on the essential cellular process of DNA repair suggest novel combination therapies, with DNA damage response targeting drugs that should now be clinically explored. Here, we provide an overview of recent studies on the various macroscopic and microscopic biological effects of hyperthermia. We indicate the significance of these effects on current treatments and suggest how they will help design novel future treatments.
Collapse
Affiliation(s)
- Nathalie van den Tempel
- a Department of Molecular Genetics, Cancer Genomic Netherlands, Department of Radiation Oncology , Erasmus Medical Centre , Rotterdam , the Netherlands
| | - Michael R Horsman
- b Department of Experimental Clinical Oncology , Aarhus University Hospital , Aarhus , Denmark
| | - Roland Kanaar
- a Department of Molecular Genetics, Cancer Genomic Netherlands, Department of Radiation Oncology , Erasmus Medical Centre , Rotterdam , the Netherlands
| |
Collapse
|
93
|
Cuaron JJ, Chang C, Lovelock M, Higginson DS, Mah D, Cahlon O, Powell S. Exponential Increase in Relative Biological Effectiveness Along Distal Edge of a Proton Bragg Peak as Measured by Deoxyribonucleic Acid Double-Strand Breaks. Int J Radiat Oncol Biol Phys 2016; 95:62-69. [PMID: 27084629 DOI: 10.1016/j.ijrobp.2016.02.018] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 11/26/2022]
Abstract
PURPOSE To quantify the relative biological effectiveness (RBE) of the distal edge of the proton Bragg peak, using an in vitro assay of DNA double-strand breaks (DSBs). METHODS AND MATERIALS U2OS cells were irradiated within the plateau of a spread-out Bragg peak and at each millimeter position along the distal edge using a custom slide holder, allowing for simultaneous measurement of physical dose. A reference radiation signal was generated using photons. The DNA DSBs at 3 hours (to assess for early damage) and at 24 hours (to assess for residual damage and repair) after irradiation were measured using the γH2AX assay and quantified via flow cytometry. Results were confirmed with clonogenic survival assays. A detailed map of the RBE as a function of depth along the Bragg peak was generated using γH2AX measurements as a biological endpoint. RESULTS At 3 hours after irradiation, DNA DSBs were higher with protons at every point along the distal edge compared with samples irradiated with photons to similar doses. This effect was even more pronounced after 24 hours, indicating that the impact of DNA repair is less after proton irradiation relative to photons. The RBE demonstrated an exponential increase as a function of depth and was measured to be as high as 4.0 after 3 hours and as high as 6.0 after 24 hours. When the RBE-corrected dose was plotted as a function of depth, the peak effective dose was extended 2-3 mm beyond what would be expected with physical measurement. CONCLUSIONS We generated a highly comprehensive map of the RBE of the distal edge of the Bragg peak, using a direct assay of DNA DSBs in vitro. Our data show that the RBE of the distal edge increases with depth and is significantly higher than previously reported estimates.
Collapse
Affiliation(s)
- John J Cuaron
- Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Chang Chang
- Texas Center for Proton Therapy, Irving, Texas
| | | | | | - Dennis Mah
- Procure Proton Therapy Center, Somerset, New Jersey
| | - Oren Cahlon
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Simon Powell
- Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
94
|
Held KD, Kawamura H, Kaminuma T, Paz AES, Yoshida Y, Liu Q, Willers H, Takahashi A. Effects of Charged Particles on Human Tumor Cells. Front Oncol 2016; 6:23. [PMID: 26904502 PMCID: PMC4751258 DOI: 10.3389/fonc.2016.00023] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/21/2016] [Indexed: 12/22/2022] Open
Abstract
The use of charged particle therapy in cancer treatment is growing rapidly, in large part because the exquisite dose localization of charged particles allows for higher radiation doses to be given to tumor tissue while normal tissues are exposed to lower doses and decreased volumes of normal tissues are irradiated. In addition, charged particles heavier than protons have substantial potential clinical advantages because of their additional biological effects, including greater cell killing effectiveness, decreased radiation resistance of hypoxic cells in tumors, and reduced cell cycle dependence of radiation response. These biological advantages depend on many factors, such as endpoint, cell or tissue type, dose, dose rate or fractionation, charged particle type and energy, and oxygen concentration. This review summarizes the unique biological advantages of charged particle therapy and highlights recent research and areas of particular research needs, such as quantification of relative biological effectiveness (RBE) for various tumor types and radiation qualities, role of genetic background of tumor cells in determining response to charged particles, sensitivity of cancer stem-like cells to charged particles, role of charged particles in tumors with hypoxic fractions, and importance of fractionation, including use of hypofractionation, with charged particles.
Collapse
Affiliation(s)
- Kathryn D Held
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School , Boston, MA , USA
| | - Hidemasa Kawamura
- Gunma University Heavy Ion Medical Center, Gunma, Japan; Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Takuya Kaminuma
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Gunma University Heavy Ion Medical Center, Gunma, Japan; Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma, Japan
| | | | - Yukari Yoshida
- Gunma University Heavy Ion Medical Center , Gunma , Japan
| | - Qi Liu
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School , Boston, MA , USA
| | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School , Boston, MA , USA
| | | |
Collapse
|
95
|
Liu Q, Underwood TSA, Kung J, Wang M, Lu HM, Paganetti H, Held KD, Hong TS, Efstathiou JA, Willers H. Disruption of SLX4-MUS81 Function Increases the Relative Biological Effectiveness of Proton Radiation. Int J Radiat Oncol Biol Phys 2016; 95:78-85. [PMID: 27084631 DOI: 10.1016/j.ijrobp.2016.01.046] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/20/2015] [Accepted: 01/25/2016] [Indexed: 12/25/2022]
Abstract
PURPOSE Clinical proton beam therapy has been based on the use of a generic relative biological effectiveness (RBE) of ∼1.1. However, emerging data have suggested that Fanconi anemia (FA) and homologous recombination pathway defects can lead to a variable RBE, at least in vitro. We investigated the role of SLX4 (FANCP), which acts as a docking platform for the assembly of multiple structure-specific endonucleases, in the response to proton irradiation. METHODS AND MATERIALS Isogenic cell pairs for the study of SLX4, XPF/ERCC1, MUS81, and SLX1 were irradiated at the mid-spread-out Bragg peak of a clinical proton beam (linear energy transfer 2.5 keV/μm) or with 250 kVp x-rays, and the clonogenic survival fractions were determined. To estimate the RBE of the protons relative to cobalt-60 photons (Co60Eq), we assigned a RBE(Co60Eq) of 1.1 to x-rays to correct the physical dose measured. Standard DNA repair foci assays were used to monitor the damage responses, and the cell cycle distributions were assessed by flow cytometry. The poly(ADP-ribose) polymerase inhibitor olaparib was used for comparison. RESULTS Loss of SLX4 function resulted in an enhanced proton RBE(Co60Eq) of 1.42 compared with 1.11 for wild-type cells (at a survival fraction of 0.1; P<.05), which correlated with increased persistent DNA double-strand breaks in cells in the S/G2 phase. Genetic analysis identified the SLX4-binding partner MUS81 as a mediator of resistance to proton radiation. Both proton irradiation and olaparib treatment resulted in a similar prolonged accumulation of RAD51 foci in SLX4/MUS81-deficient cells, suggesting a common defect in the repair of DNA replication fork-associated damage. CONCLUSIONS A defect in the FA pathway at the level of SLX4 results in hypersensitivity to proton radiation, which is, at least in part, due to impaired MUS81-mediated processing of replication forks that stall at clustered DNA damage. In vivo and clinical studies are needed to confirm these findings in human cancers.
Collapse
Affiliation(s)
- Qi Liu
- Laboratory of Cellular and Molecular Radiation Oncology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Tracy S A Underwood
- Division of Radiation Physics, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Jong Kung
- Division of Radiation Physics, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Meng Wang
- Laboratory of Cellular and Molecular Radiation Oncology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Hsiao-Ming Lu
- Division of Radiation Physics, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Harald Paganetti
- Division of Radiation Physics, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Kathryn D Held
- Laboratory of Cellular and Molecular Radiation Oncology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Theodore S Hong
- Laboratory of Cellular and Molecular Radiation Oncology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Jason A Efstathiou
- Laboratory of Cellular and Molecular Radiation Oncology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Henning Willers
- Laboratory of Cellular and Molecular Radiation Oncology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts.
| |
Collapse
|
96
|
McNamara AL, Schuemann J, Paganetti H. A phenomenological relative biological effectiveness (RBE) model for proton therapy based on all published in vitro cell survival data. Phys Med Biol 2015; 60:8399-416. [PMID: 26459756 DOI: 10.1088/0031-9155/60/21/8399] [Citation(s) in RCA: 252] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Proton therapy treatments are currently planned and delivered using the assumption that the proton relative biological effectiveness (RBE) relative to photons is 1.1. This assumption ignores strong experimental evidence that suggests the RBE varies along the treatment field, i.e. with linear energy transfer (LET) and with tissue type. A recent review study collected over 70 experimental reports on proton RBE, providing a comprehensive dataset for predicting RBE for cell survival. Using this dataset we developed a model to predict proton RBE based on dose, dose average LET (LETd) and the ratio of the linear-quadratic model parameters for the reference radiation (α/β)x, as the tissue specific parameter. The proposed RBE model is based on the linear quadratic model and was derived from a nonlinear regression fit to 287 experimental data points. The proposed model predicts that the RBE increases with increasing LETd and decreases with increasing (α/β)x. This agrees with previous theoretical predictions on the relationship between RBE, LETd and (α/β)x. The model additionally predicts a decrease in RBE with increasing dose and shows a relationship between both α and β with LETd. Our proposed phenomenological RBE model is derived using the most comprehensive collection of proton RBE experimental data to date. Previously published phenomenological models, based on a limited data set, may have to be revised.
Collapse
Affiliation(s)
- Aimee L McNamara
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, 30 Fruit Street, Boston, MA 02114, USA
| | | | | |
Collapse
|
97
|
Fontana AO, Augsburger MA, Grosse N, Guckenberger M, Lomax AJ, Sartori AA, Pruschy MN. Differential DNA repair pathway choice in cancer cells after proton- and photon-irradiation. Radiother Oncol 2015; 116:374-80. [DOI: 10.1016/j.radonc.2015.08.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/12/2015] [Accepted: 08/15/2015] [Indexed: 01/23/2023]
|
98
|
Liu Q, Ghosh P, Magpayo N, Testa M, Tang S, Gheorghiu L, Biggs P, Paganetti H, Efstathiou JA, Lu HM, Held KD, Willers H. Lung Cancer Cell Line Screen Links Fanconi Anemia/BRCA Pathway Defects to Increased Relative Biological Effectiveness of Proton Radiation. Int J Radiat Oncol Biol Phys 2015; 91:1081-9. [DOI: 10.1016/j.ijrobp.2014.12.046] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 12/20/2014] [Accepted: 12/24/2014] [Indexed: 12/25/2022]
|
99
|
Gerelchuluun A, Manabe E, Ishikawa T, Sun L, Itoh K, Sakae T, Suzuki K, Hirayama R, Asaithamby A, Chen DJ, Tsuboi K. The major DNA repair pathway after both proton and carbon-ion radiation is NHEJ, but the HR pathway is more relevant in carbon ions. Radiat Res 2015; 183:345-56. [PMID: 25738894 DOI: 10.1667/rr13904.1] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The purpose of this study was to identify the roles of non-homologous end-joining (NHEJ) or homologous recombination (HR) pathways in repairing DNA double-strand breaks (DSBs) induced by exposure to high-energy protons and carbon ions (C ions) versus gamma rays in Chinese hamster cells. Two Chinese hamster cell lines, ovary AA8 and lung fibroblast V79, as well as various mutant sublines lacking DNA-PKcs (V3), X-ray repair cross-complementing protein-4 [XRCC4 (XR1), XRCC3 (irs1SF) and XRCC2 (irs1)] were exposed to gamma rays ((137)Cs), protons (200 MeV; 2.2 keV/μm) and C ions (290 MeV; 50 keV/μm). V3 and XR1 cells lack the NHEJ pathway, whereas irs1 and irs1SF cells lack the HR pathway. After each exposure, survival was measured using a clonogenic survival assay, in situ DSB induction was evaluated by immunocytochemical analysis of histone H2AX phosphorylation at serine 139 (γ-H2AX foci) and chromosome aberrations were examined using solid staining. The findings from this study showed that clonogenic survival clearly depended on the NHEJ and HR pathway statuses, and that the DNA-PKcs(-/-) cells (V3) were the most sensitive to all radiation types. While protons and γ rays yielded almost the same biological effects, C-ion exposure greatly enhanced the sensitivity of wild-type and HR-deficient cells. However, no significant enhancement of sensitivity in cell killing was seen after C-ion irradiation of NHEJ deficient cells. Decreases in the number of γ-H2AX foci after irradiation occurred more slowly in the NHEJ deficient cells. In particular, V3 cells had the highest number of residual γ-H2AX foci at 24 h after C-ion irradiation. Chromosomal aberrations were significantly higher in both the NHEJ- and HR-deficient cell lines than in wild-type cell lines in response to all radiation types. Protons and gamma rays induced the same aberration levels in each cell line, whereas C ions introduced higher but not significantly different aberration levels. Our results suggest that the NHEJ pathway plays an important role in repairing DSBs induced by both clinical proton and C-ion beams. Furthermore, in C ions the HR pathway appears to be involved in the repair of DSBs to a greater extent compared to gamma rays and protons.
Collapse
|
100
|
Abstract
In addition to the physical advantages (Bragg peak), the use of charged particles in cancer therapy can be associated with distinct biological effects compared to X-rays. While heavy ions (densely ionizing radiation) are known to have an energy- and charge-dependent increased Relative Biological Effectiveness (RBE), protons should not be very different from sparsely ionizing photons. A slightly increased biological effectiveness is taken into account in proton treatment planning by assuming a fixed RBE of 1.1 for the whole radiation field. However, data emerging from recent studies suggest that, for several end points of clinical relevance, the biological response is differentially modulated by protons compared to photons. In parallel, research in the field of medical physics highlighted how variations in RBE that are currently neglected might actually result in deposition of significant doses in healthy organs. This seems to be relevant in particular for normal tissues in the entrance region and for organs at risk close behind the tumor. All these aspects will be considered and discussed in this review, highlighting how a re-discussion of the role of a variable RBE in proton therapy might be well-timed.
Collapse
|