51
|
Zhou J, He W, Luo G, Wu J. Mixed lymphocyte reaction induced by multiple alloantigens and the role for IL-10 in proliferation inhibition. BURNS & TRAUMA 2014; 2:24-28. [PMID: 27574643 PMCID: PMC4994508 DOI: 10.4103/2321-3868.126088] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 12/25/2013] [Indexed: 06/06/2023]
Abstract
The frequency of T cells that can respond to alloantigens is unusually high. It remains unclear how T cells would respond when stimulated by multiple major histocompatibility complex (MHC) disparate alloantigens in the same cultures. In this report, we examined potential interactions of T cell clones that were stimulated simultaneously by two sets of complete MHC disparate alloantigens using mixed lymphocyte reaction (MLR). In this assay, we observed that proliferation of B6 lymphocytes (H-2b) stimulated by both BALB/c (H-2d) and C3H (H-2k) allogeneic cells was not increased but rather reduced as compared to B6 cells stimulated with either BALB/c or C3H allogeneic cells. Interestingly, interleukin (IL)-10 expressions at both protein level and mRNA level was significantly increased in cultures stimulated with the two MHC alloantigens, while IL-2, tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-β1 production did not show any differences. In addition, Foxp3 mRNA expression was comparable amongst all groups. In conclusion, we observed an inhibitory effect in T cell proliferation in response to multiple MHC mismatched alloantigens in MLR, and this effect might be associated with the upregulation of IL-10 expression.
Collapse
Affiliation(s)
- Junyi Zhou
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, the Third Military Medical University, China
- Chongqing Key Laboratory for Proteomics of Diseases, Chongqing, China
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, the Third Military Medical University, China
- Chongqing Key Laboratory for Proteomics of Diseases, Chongqing, China
| | - Gaoxing Luo
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, the Third Military Medical University, China
- Chongqing Key Laboratory for Proteomics of Diseases, Chongqing, China
| | - Jun Wu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, the Third Military Medical University, China
- Chongqing Key Laboratory for Proteomics of Diseases, Chongqing, China
| |
Collapse
|
52
|
The transcription factor IRF4 is essential for TCR affinity-mediated metabolic programming and clonal expansion of T cells. Nat Immunol 2013; 14:1155-65. [PMID: 24056747 DOI: 10.1038/ni.2710] [Citation(s) in RCA: 317] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 08/13/2013] [Indexed: 12/12/2022]
Abstract
During immune responses, T cells are subject to clonal competition, which leads to the predominant expansion of high-affinity clones; however, there is little understanding of how this process is controlled. We found here that the transcription factor IRF4 was induced in a manner dependent on affinity for the T cell antigen receptor (TCR) and acted as a dose-dependent regulator of the metabolic function of activated T cells. IRF4 regulated the expression of key molecules required for the aerobic glycolysis of effector T cells and was essential for the clonal expansion and maintenance of effector function of antigen-specific CD8(+) T cells. Thus, IRF4 is an indispensable molecular 'rheostat' that 'translates' TCR affinity into the appropriate transcriptional programs that link metabolic function with the clonal selection and effector differentiation of T cells.
Collapse
|
53
|
Wensveen FM, Lenartic M, Jelencic V, Lemmermann NAW, ten Brinke A, Jonjic S, Polic B. NKG2D induces Mcl-1 expression and mediates survival of CD8 memory T cell precursors via phosphatidylinositol 3-kinase. THE JOURNAL OF IMMUNOLOGY 2013; 191:1307-15. [PMID: 23804716 DOI: 10.4049/jimmunol.1300670] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Memory formation of activated CD8 T cells is the result of a specific combination of signals that promote long-term survival and inhibit differentiation into effector cells. Much is known about initial cues that drive memory formation, but it is poorly understood which signals are essential during the intermediate stages before terminal differentiation. NKG2D is an activating coreceptor on Ag-experienced CD8 T cells that promotes effector cell functions. Its role in memory formation is currently unknown. In this study, we show that NKG2D controls formation of CD8 memory T cells by promoting survival of precursor cells. We demonstrate that NKG2D enhances IL-15-mediated PI3K signaling of activated CD8 T cells, in a specific phase of memory cell commitment, after activation but before terminal differentiation. This signal is essential for the induction of prosurvival protein Mcl-1 and precursor cell survival. In vivo, NKG2D deficiency results in reduced memory cell formation and impaired protection against reinfection. Our findings show a new role for PI3K and the NKG2D/IL-15 axis in an underappreciated stage of effector to memory cell transition that is essential for the generation of antiviral immunity. Moreover, we provide novel insights how these receptors control both effector and memory T cell differentiation.
Collapse
Affiliation(s)
- Felix M Wensveen
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | | | | | | | | | | | | |
Collapse
|
54
|
Hirata Y, Sugie A, Matsuda A, Matsuda S, Koyasu S. TAK1-JNK axis mediates survival signal through Mcl1 stabilization in activated T cells. THE JOURNAL OF IMMUNOLOGY 2013; 190:4621-6. [PMID: 23547112 DOI: 10.4049/jimmunol.1202809] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
TAK1, a member of MAPK kinase kinase (MAPKK-K) family, can activate JNK, p38 MAPK, and NF-κB signaling pathways. Although targeted gene disruption studies have demonstrated that TAK1 plays a critical role in T cell functions, precise functions of downstream mediators remain elusive. We used the chemical compound LL-Z1640-2, which preferentially suppressed MAPK activation but not NF-κB signal downstream of TAK1. LL-Z1640-2 blocked TCR-induced T cell proliferation and activation, confirming that a TAK1-mediated MAPK signal is essential for T cell activation. LL-Z1640-2 induced apoptosis of activated mouse splenic T cells in a caspase- and caspase-activated DNase-dependent manner. TAK1-JNK pathway, which is activated downstream of IL-2R, induced the phosphorylation of antiapoptotic protein Mcl1 in activated T cells, resulting in the stabilization of Mcl1 protein. Our data uncover that among signal transduction pathways downstream of TAK1, JNK mediates a survival program through Mcl1 stabilization downstream of IL-2R in activated T cells and that blockade of TAK1-JNK pathway can eliminate activated T cells by apoptosis.
Collapse
Affiliation(s)
- Yasuko Hirata
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | | | | | | | | |
Collapse
|
55
|
Affiliation(s)
- Jeffrey C Rathmell
- Department of Pharmacology and Cancer Biology, Sarah W. Stedman Nutrition and Metabolism Center, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
56
|
Wensveen FM, van Gisbergen KPJM, Eldering E. The fourth dimension in immunological space: how the struggle for nutrients selects high-affinity lymphocytes. Immunol Rev 2013; 249:84-103. [PMID: 22889217 DOI: 10.1111/j.1600-065x.2012.01156.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lymphocyte activation via the antigen receptor is associated with radical shifts in metabolism and changes in requirements for nutrients and cytokines. Concomitantly, drastic changes occur in the expression of pro-and anti-apoptotic proteins that alter the sensitivity of lymphocytes to limiting concentrations of key survival factors. Antigen affinity is a primary determinant for the capacity of activated lymphocytes to access these vital resources. The shift in metabolic needs and the variable access to key survival factors is used by the immune system to eliminate activated low-affinity cells and to generate an optimal high-affinity response. In this review, we focus on the control of apoptosis regulators in activated lymphocytes by nutrients, cytokines, and costimulation. We propose that the struggle among individual clones that leads to the formation of high-affinity effector cell populations is in effect an 'invisible' fourth signal required for effective immune responses.
Collapse
Affiliation(s)
- Felix M Wensveen
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands
| | | | | |
Collapse
|
57
|
Wensveen FM, Klarenbeek PL, van Gisbergen KPJM, Pascutti MF, Derks IAM, van Schaik BDC, Ten Brinke A, de Vries N, Cekinovic D, Jonjic S, van Lier RAW, Eldering E. Pro-apoptotic protein Noxa regulates memory T cell population size and protects against lethal immunopathology. THE JOURNAL OF IMMUNOLOGY 2012; 190:1180-91. [PMID: 23277490 DOI: 10.4049/jimmunol.1202304] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Memory T cells form a highly specific defense layer against reinfection with previously encountered pathogens. In addition, memory T cells provide protection against pathogens that are similar, but not identical to the original infectious agent. This is because each T cell response harbors multiple clones with slightly different affinities, thereby creating T cell memory with a certain degree of diversity. Currently, the mechanisms that control size, diversity, and cross-reactivity of the memory T cell pool are incompletely defined. Previously, we established a role for apoptosis, mediated by the BH3-only protein Noxa, in controlling diversity of the effector T cell population. This function might positively or negatively impact T cell memory in terms of function, pool size, and cross-reactivity during recall responses. Therefore, we investigated the role of Noxa in T cell memory during acute and chronic infections. Upon influenza infection, Noxa(-/-) mice generate a memory compartment of increased size and clonal diversity. Reinfection resulted in an increased recall response, whereas cross-reactive responses were impaired. Chronic infection of Noxa(-/-) mice with mouse CMV resulted in enhanced memory cell inflation, but no obvious pathology. In contrast, in a model of continuous, high-level T cell activation, reduced apoptosis of activated T cells rapidly led to severe organ pathology and premature death in Noxa-deficient mice. These results establish Noxa as an important regulator of the number of memory cells formed during infection. Chronic immune activation in the absence of Noxa leads to excessive accumulation of primed cells, which may result in severe pathology.
Collapse
Affiliation(s)
- Felix M Wensveen
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Garrod KR, Moreau HD, Garcia Z, Lemaître F, Bouvier I, Albert ML, Bousso P. Dissecting T cell contraction in vivo using a genetically encoded reporter of apoptosis. Cell Rep 2012; 2:1438-47. [PMID: 23159042 DOI: 10.1016/j.celrep.2012.10.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 10/01/2012] [Accepted: 10/22/2012] [Indexed: 12/11/2022] Open
Abstract
Contraction is a critical phase of immunity whereby the vast majority of effector T cells die by apoptosis, sparing a population of long-lived memory cells. Where, when, and why contraction occurs has been difficult to address directly due in large part to the rapid clearance of apoptotic T cells in vivo. To circumvent this issue, we introduced a genetically encoded reporter for caspase-3 activity into naive T cells to identify cells entering the contraction phase. Using two-photon imaging, we found that caspase-3 activity in T cells was maximal at the peak of the response and was associated with loss of motility followed minutes later by cell death. We demonstrated that contraction is a widespread process occurring uniformly in all organs tested and targeting phenotypically diverse T cells. Importantly, we identified a critical window of time during which antigen encounters act to antagonize T cell apoptosis, supporting a causal link between antigen clearance and T cell contraction. Our results offer insight into a poorly explored phase of immunity and provide a versatile methodology to study apoptosis during the development or function of a variety of immune cells in vivo.
Collapse
Affiliation(s)
- Kym R Garrod
- Institut Pasteur, Dynamics of Immune Responses Unit, 75015 Paris, France; INSERM U668, 75015 Paris, France
| | | | | | | | | | | | | |
Collapse
|
59
|
Baumgartner CK, Yagita H, Malherbe LP. A TCR affinity threshold regulates memory CD4 T cell differentiation following vaccination. THE JOURNAL OF IMMUNOLOGY 2012; 189:2309-17. [PMID: 22844120 DOI: 10.4049/jimmunol.1200453] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Diverse Ag-specific memory TCR repertoires are essential for protection against pathogens. Subunit vaccines that combine peptide or protein Ags with TLR agonists are very potent at inducing T cell immune responses, but their capacity to elicit stable and diverse memory CD4 T cell repertoires has not been evaluated. In this study, we examined the evolution of a complex Ag-specific population during the transition from primary effectors to memory T cells after peptide or protein vaccination. Both vaccination regimens induced equally diverse effector CD4 TCR repertoires, but peptide vaccines skewed the memory CD4 TCR repertoire toward high-affinity clonotypes whereas protein vaccines maintained low-affinity clonotypes in the memory compartment. CD27-mediated signaling was essential for the maintenance of low-affinity clonotypes after protein vaccination but was not sufficient to promote their survival following peptide vaccination. The rapid culling of the TCR repertoire in peptide-immunized mice coincided with a prolonged proliferation phase during which low-affinity clonotypes disappeared despite exhibiting no sign of enhanced apoptosis. Our study reveals a novel affinity threshold for memory CD4 T cell differentiation following vaccination and suggests a role for nonapoptotic cell death in the regulation of CD4 T cell clonal selection.
Collapse
|
60
|
Ottina E, Tischner D, Herold MJ, Villunger A. A1/Bfl-1 in leukocyte development and cell death. Exp Cell Res 2012; 318:1291-303. [PMID: 22342458 PMCID: PMC3405526 DOI: 10.1016/j.yexcr.2012.01.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/24/2012] [Accepted: 01/25/2012] [Indexed: 12/17/2022]
Abstract
The function of the anti-apoptotic Bcl-2 family member Bcl2a1/Bfl-1/A1 is poorly understood due to the lack of appropriate loss-of-function mouse models and redundant effects with other Bcl-2 pro-survival proteins upon overexpression. Expression analysis of A1 suggests predominant roles in leukocyte development, their survival upon viral or bacterial infection, as well as during allergic reactions. In addition, A1 has been implicated in autoimmunity and the pathology and therapy resistance of hematological as well as solid tumors that may aberrantly express this protein. In this review, we aim to summarize current knowledge on A1 biology, focusing on its role in the immune system and compare it to that of other pro-survival Bcl-2 proteins.
Collapse
Affiliation(s)
- Eleonora Ottina
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Denise Tischner
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Marco J. Herold
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Andreas Villunger
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
- Corresponding author at: Division of Developmental Immunology, BIOCENTER, Innsbruck Medical University, A-6020 Innsbruck, Austria. Fax: + 43 512 9003 73960.
| |
Collapse
|
61
|
Moreau HD, Lemaître F, Terriac E, Azar G, Piel M, Lennon-Dumenil AM, Bousso P. Dynamic in situ cytometry uncovers T cell receptor signaling during immunological synapses and kinapses in vivo. Immunity 2012; 37:351-63. [PMID: 22683126 DOI: 10.1016/j.immuni.2012.05.014] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 02/22/2012] [Accepted: 05/03/2012] [Indexed: 01/03/2023]
Abstract
Upon antigen recognition, T cells form either static (synapses) or migratory (kinapses) contacts with antigen-presenting cells. Addressing whether synapses and kinapses result in distinct T cell receptor (TCR) signals has been hampered by the inability to simultaneously assess T cell phenotype and behavior. Here, we introduced dynamic in situ cytometry (DISC), a combination of intravital multiphoton imaging and flow cytometry-like phenotypic analysis. Taking advantage of CD62L shedding as a marker of early TCR signaling, we examined how T cells sense TCR ligands of varying affinities in vivo. We uncovered three modes of antigen recognition: synapses with the strongest TCR signals, kinapses with robust signaling, and kinapses with weak signaling. As illustrated here, the DISC approach should provide unique opportunities to link immune cell behavior to phenotype and function in vivo.
Collapse
Affiliation(s)
- Hélène D Moreau
- Institut Pasteur, Dynamics of Immune Responses Unit, 75015 Paris, France
| | | | | | | | | | | | | |
Collapse
|
62
|
Distinct CD4+ helper T cells involved in primary and secondary responses to infection. Proc Natl Acad Sci U S A 2012; 109:9511-6. [PMID: 22645349 DOI: 10.1073/pnas.1202408109] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Helper T cells are critical for protective immunity, CD8(+) T-cell memory, and CD4(+) recall responses, but whether the same or distinct CD4(+) T cells are involved in these responses has not been established. Here we describe two CD4(+) T cells, LLO118 and LLO56, specific for an immunodominant Listeria monocytogenes epitope, with dramatically different responses to primary and secondary infection. Comparing in vivo responses, LLO118 T cells proliferate more strongly to primary infection, whereas surprisingly, LLO56 has a superior CD4(+) recall response to secondary infection. LLO118 T cells provide more robust help for CD8(+) T-cell responses to secondary infection than LLO56. We found no detectable differences in antigen sensitivity, but naive LLO118 T cells have much lower levels of CD5 and their T-cell receptor levels are dramatically down-regulated after their strong primary response. Thus, distinct CD4(+) helper T cells are specialized to help either in primary or secondary responses to infection.
Collapse
|
63
|
Cippà PE, Kraus AK, Lindenmeyer MT, Chen J, Guimezanes A, Bardwell PD, Wekerle T, Wüthrich RP, Fehr T. Resistance to ABT-737 in activated T lymphocytes: molecular mechanisms and reversibility by inhibition of the calcineurin-NFAT pathway. Cell Death Dis 2012; 3:e299. [PMID: 22513873 PMCID: PMC3358016 DOI: 10.1038/cddis.2012.38] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dynamic regulation of the intrinsic apoptosis pathway controls central and peripheral lymphocyte deletion, and may interfere with the pro-apoptotic potency of B-cell lymphoma 2 inhibitors such as ABT-737. By following a T-cell receptor (TCR) transgenic population of alloantigen-specific T cells, we found that sensitivity to ABT-737 radically changed during the course of allo-specific immune responses. Particularly, activated T cells were fully resistant to ABT-737 during the first days after antigen recognition. This phenomenon was caused by a TCR–calcineurin–nuclear factor of activated T cells-dependent upregulation of A1, and was therefore prevented by cyclosporine A (CsA). As a result, exposure to ABT-737 after alloantigen recognition induced selection of alloreactive T cells in vivo, whereas in combination with low-dose CsA, ABT-737 efficiently depleted alloreactive T cells in murine host-versus-graft and graft-versus-host models. Thus, ABT-737 resistance is not a prerogative of neoplastic cells, but it physiologically occurs in T cells after antigen recognition. Reversibility of this process by calcineurin inhibitors opens new pharmacological opportunities to modulate this process in the context of cancer, autoimmunity and transplantation.
Collapse
Affiliation(s)
- P E Cippà
- Institute of Physiology, University of Zürich, Zürich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Cao K, Yang J, Lin C, Wang BN, Yang Y, Zhang J, Dai J, Li L, Nie CL, Yuan Z, Li MY. Noxa enhances the cytotoxic effect of gemcitabine in human ovarian cancer cells. Cancer Biother Radiopharm 2012; 27:259-66. [PMID: 22489660 DOI: 10.1089/cbr.2011.1126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Noxa is an important proapoptotic protein in the intrinsic pathway of cell apoptosis. Experiments were carried out to investigate whether Noxa could, therefore, enhance the cytotoxic effect of gemcitabine in human ovarian cancer cell lines (A2780 and COC1). In this study, the combined treatment of Noxa and gemcitabine, in vitro, significantly inhibited the proliferation of A2780 and COC1 cells, as verified by MTT assay, Hoechst staining, and flow cytometric analysis. Moreover, the combination of Noxa and gemcitabine inhibited tumor growth and prolonged the survival of nude mice in vivo. The combined treatment also inhibited the growth of tumor xenografts through the inhibition of proliferation and the induction of apoptosis, as observed in immunohistochemical anti-PCNA staining and TdT-mediated dUTP-biotin nick-end labeling (TUNEL) assay. Our data suggest that Noxa exhibited potent proapoptotic activity against human ovarian cancer cells, and the combination of Noxa and gemcitabine showed a more significant cytotoxic effect against ovarian cancer cells in comparison with either of these agents alone. To our knowledge, we have provided the first evidence that Noxa can enhance therapeutic responses of ovarian cancer cells to gemcitabine, and that it could be potentially useful as a chemosensitizer in ovarian cancer therapy.
Collapse
Affiliation(s)
- Kang Cao
- Department of Microbiology, College of Preclinical Medicine and Forensic Medicine, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
BH3-only protein Noxa regulates apoptosis in activated B cells and controls high-affinity antibody formation. Blood 2012; 119:1440-9. [DOI: 10.1182/blood-2011-09-378877] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Abstract
The efficiency of humoral immune responses depends on the selective outgrowth of B cells and plasmacells that produce high affinity antibodies. The factors responsible for affinity maturation of B cell clones in the germinal center (GC) have been well established but selection mechanisms that allow clones to enter the GC are largely unknown. Here we identify apoptosis, regulated by the proapoptotic BH3-only member Noxa (Pmaip1), as a critical factor for the selection of high-affinity clones during B cell expansion after antigen triggering. Noxa is induced in activated B cells, and its ablation provides a survival advantage both in vitro and in vivo. After immunization or influenza infection, Noxa−/− mice display enlarged GCs, in which B cells with reduced antigen affinity accumulate. As a consequence, Noxa−/− mice mount low affinity antibody responses compared with wild-type animals. Importantly, the low affinity responses correlate with increased immunoglobulin diversity, and cannot be corrected by booster immunization. Thus, normal elimination of low affinity cells favors outgrowth of the remaining high-affinity clones, and this is mandatory for the generation of proper antibody responses. Manipulation of this process may alter the breadth of antibody responses after immunization.
Collapse
|
66
|
Wang X, Szymczak-Workman AL, Gravano DM, Workman CJ, Green DR, Vignali DAA. Preferential control of induced regulatory T cell homeostasis via a Bim/Bcl-2 axis. Cell Death Dis 2012; 3:e270. [PMID: 22318539 PMCID: PMC3288351 DOI: 10.1038/cddis.2012.9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Apoptosis has an essential role in controlling T cell homeostasis, especially during the contraction phase of an immune response. However, its contribution to the balance between effector and regulatory populations remains unclear. We found that Rag1−/− hosts repopulated with Bim−/− conventional CD4+ T cells (Tconv) resulted in a larger induced regulatory T cell (iTreg) population than mice given wild-type (WT) Tconv. This appears to be due to an increased survival advantage of iTregs compared with activated Tconv in the absence of Bim. Downregulation of Bcl-2 expression and upregulation of Bim expression were more dramatic in WT iTregs than activated Tconv in the absence of IL-2 in vitro. The iTregs generated following Tconv reconstitution of Rag1−/− hosts exhibited lower Bcl-2 expression and higher Bim/Bcl-2 ratio than Tconv, which indicates that iTregs were in an apoptosis-prone state in vivo. A significant proportion of the peripheral iTreg pool exhibits low Bcl-2 expression indicating increased sensitivity to apoptosis, which may be a general characteristic of certain Treg subpopulations. In summary, our data suggest that iTregs and Tconv differ in their sensitivity to apoptotic stimuli due to their altered ratio of Bim/Bcl-2 expression. Modulating the apoptosis pathway may provide novel therapeutic approaches to alter the balance between effector T cells and Tregs.
Collapse
Affiliation(s)
- X Wang
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | |
Collapse
|
67
|
Goplen N, Karim Z, Guo L, Zhuang Y, Huang H, Gorska MM, Gelfand E, Pagés G, Pouysségur J, Alam R. ERK1 is important for Th2 differentiation and development of experimental asthma. FASEB J 2012; 26:1934-45. [PMID: 22262639 DOI: 10.1096/fj.11-196477] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The ERK1/2 signaling pathway regulates a variety of T-cell functions. We observed dynamic changes in the expression of ERK1/2 during T-helper cell differentiation. Specifically, the expression of ERK1/2 was decreased and increased by IL-12 and IL-4, respectively. To address this subject further, we examined the specific role of ERK1 in Th2 differentiation and development of experimental asthma using ERK1(-/-) mice. ERK1(-/-) mice were unable to mount airway inflammation and hyperreactivity in two different models of asthma, acute and chronic. ERK1(-/-) mice had reduced expression of Th2 cytokines IL-4 and IL-5 but not IL-17A or IFN-γ. They had reduced levels of allergen-specific IgE and blood eosinophils. T cells from immunized ERK1(-/-) mice manifested reduced proliferation in response to the sensitizing allergen. ERK1(-/-) T cells had reduced and short-lived expression of JunB following TCR stimulation, which likely contributed to their impaired Th2 differentiation. Immunized ERK1(-/-) mice showed reduced numbers of CD44(high) CD4 T cells in the spleen. In vitro studies demonstrated that Th2 but not Th1 cells from ERK1(-/-) mice had reduced numbers of CD44(high) cells. Finally, CD4 T cells form ERK1(-/-) mice expressed higher levels of BIM under growth factor-deprived conditions and reduced Mcl-1 on stimulation. As a result, the survival of CD4 T cells, especially CD44(high) Th2 cells, was much reduced in ERK1(-/-) mice. We conclude that ERK1 plays a nonredundant role in Th2 differentiation and development of experimental asthma. ERK1 controls Th2 differentiation and survival through its effect on JunB and BIM, respectively.
Collapse
Affiliation(s)
- Nicholas Goplen
- Division of Allergy and Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Tischner D, Gaggl I, Peschel I, Kaufmann M, Tuzlak S, Drach M, Thuille N, Villunger A, Jan Wiegers G. Defective cell death signalling along the Bcl-2 regulated apoptosis pathway compromises Treg cell development and limits their functionality in mice. J Autoimmun 2012; 38:59-69. [PMID: 22257939 PMCID: PMC3314992 DOI: 10.1016/j.jaut.2011.12.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 12/16/2011] [Accepted: 12/19/2011] [Indexed: 01/07/2023]
Abstract
The Bcl-2 regulated apoptosis pathway is critical for the elimination of autoreactive lymphocytes, thereby precluding autoimmunity. T cells escaping this process can be kept in check by regulatory T (Treg) cells expressing the transcription and lineage commitment factor Foxp3. Despite the well-established role of Bcl-2 family proteins in shaping the immune system and their frequent deregulation in autoimmune pathologies, it is poorly understood how these proteins affect Treg cell development and function. Here we compared the relative expression of a panel of 40 apoptosis-associated genes in Treg vs. conventional CD4+ T cells. Physiological significance of key-changes was validated using gene-modified mice lacking or overexpressing pro- or anti-apoptotic Bcl-2 family members. We define a key role for the Bim/Bcl-2 axis in Treg cell development, homeostasis and function but exclude a role for apoptosis induction in responder T cells as relevant suppression mechanism. Notably, only lack of the pro-apoptotic BH3-only protein Bim or Bcl-2 overexpression led to accumulation of Treg cells while loss of pro-apoptotic Bad, Bmf, Puma or Noxa had no effect. Remarkably, apoptosis resistant Treg cells showed reduced suppressive capacity in a model of T cell-driven colitis, posing a caveat for the use of such long-lived cells in possible therapeutic settings.
Collapse
Affiliation(s)
- Denise Tischner
- Biocenter, Division of Developmental Immunology, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Kim KD, Srikanth S, Yee MKW, Mock DC, Lawson GW, Gwack Y. ORAI1 deficiency impairs activated T cell death and enhances T cell survival. THE JOURNAL OF IMMUNOLOGY 2011; 187:3620-30. [PMID: 21873530 DOI: 10.4049/jimmunol.1100847] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
ORAI1 is a pore subunit of Ca(2+) release-activated Ca(2+) channels that mediate TCR stimulation-induced Ca(2+) entry. A point mutation in ORAI1 (ORAI1(R91W)) causes SCID in human patients that is recapitulated in Orai1(-/-) mice, emphasizing its important role in the immune cells. In this study, we have characterized a novel function of ORAI1 in T cell death. CD4(+) T cells from Orai1(-/-) mice showed robust proliferation with repetitive stimulations and strong resistance to stimulation-induced cell death due to reduced mitochondrial Ca(2+) uptake and altered gene expression of proapoptotic and antiapoptotic molecules (e.g., Fas ligand, Noxa, and Mcl-1). Nuclear accumulation of NFAT was severely reduced in ORAI1-deficient T cells, and expression of ORAI1 and a constitutively active mutant of NFAT recovered cell death. These results indicate NFAT-mediated cell death pathway as one of the major downstream targets of ORAI1-induced Ca(2+) entry. By expressing various mutants of ORAI1 in wild-type and Orai1(-/-) T cells to generate different levels of intracellular Ca(2+), we have shown that activation-induced cell death is directly proportional to the intracellular Ca(2+) concentration levels. Consistent with the in vitro results, Orai1(-/-) mice showed strong resistance to T cell depletion induced by injection of anti-CD3 Ab. Furthermore, ORAI1-deficient T cells showed enhanced survival after adoptive transfer into immunocompromised hosts. Thus, our results demonstrate a crucial role of the ORAI1-NFAT pathway in T cell death and highlight the important role of ORAI1 as a major route of Ca(2+) entry during activated T cell death.
Collapse
Affiliation(s)
- Kyun-Do Kim
- Department of Physiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
70
|
van Gisbergen KPJM, Klarenbeek PL, Kragten NAM, Unger PPA, Nieuwenhuis MBB, Wensveen FM, ten Brinke A, Tak PP, Eldering E, Nolte MA, van Lier RAW. The costimulatory molecule CD27 maintains clonally diverse CD8(+) T cell responses of low antigen affinity to protect against viral variants. Immunity 2011; 35:97-108. [PMID: 21763160 DOI: 10.1016/j.immuni.2011.04.020] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 02/21/2011] [Accepted: 04/20/2011] [Indexed: 11/19/2022]
Abstract
CD70 and CD27 are costimulatory molecules that provide essential signals for the expansion and differentiation of CD8(+) T cells. Here, we show that CD27-driven costimulation lowered the threshold of T cell receptor activation on CD8(+) T cells and enabled responses against low-affinity antigens. Using influenza infection to study in vivo consequences, we found that CD27-driven costimulation promoted a CD8(+) T cell response of overall low affinity. These qualitative effects of CD27 on T cell responses were maintained into the memory phase. On a clonal level, CD27-driven costimulation established a higher degree of variety in memory CD8(+) T cells. The benefit became apparent when mice were reinfected, given that CD27 improved CD8(+) T cell responses against reinfection with viral variants, but not with identical virus. We propose that CD27-driven costimulation is a strategy to generate memory clones that have potential reactivity to a wide array of mutable pathogens.
Collapse
Affiliation(s)
- Klaas P J M van Gisbergen
- Department of Experimental Immunology, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Wensveen FM, Alves NL, Derks IAM, Reedquist KA, Eldering E. Apoptosis induced by overall metabolic stress converges on the Bcl-2 family proteins Noxa and Mcl-1. Apoptosis 2011; 16:708-21. [PMID: 21516346 PMCID: PMC3098366 DOI: 10.1007/s10495-011-0599-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Apoptosis provoked by glucose shortage in dividing T cells is mediated via the BH3-only protein Noxa and inhibition of its binding partner Mcl-1. It is unknown how signals from cellular metabolism can affect the balance between Mcl-1 and Noxa and to what extent other Bcl-2 members are involved in this apoptosis cascade. Here, we defined the mechanism underlying apoptosis in relation to various types of metabolic stress. First, we established that the Noxa/Mcl-1 balance is regulated by glucose deprivation as well as by general metabolic stress, via changes in proteasome-mediated degradation of Mcl-1. Second, in contrast with cytokine-deprivation, no transcriptional modulation of Mcl-1, Puma, Bim or Noxa was observed during glucose deprivation. Third, no changes in PKB or GSK3 activity occurred and no clear role for AMPK was detected. Fourth, apoptosis triggered by nutrient deprivation was executed without signs of overt autophagy and independent of ROS production or p38 MAP kinase activity. Lastly, apoptosis under nutrient limitation could also be delayed by knock-down of Bim or overexpression of Bcl-2. In conclusion, Noxa functions in a specific apoptotic pathway that integrates overall nutrient stress, independent from attenuated PI3K/PKB signaling and without clear involvement of autophagy.
Collapse
Affiliation(s)
- Felix M. Wensveen
- Department of Experimental Immunology, Academic Medical Center, Meibergdreef 9, Room K0-144, 1105 AZ Amsterdam, The Netherlands
| | - Nuno L. Alves
- Department of Experimental Immunology, Academic Medical Center, Meibergdreef 9, Room K0-144, 1105 AZ Amsterdam, The Netherlands
- Present Address: Cell Activation and Gene Expression Group, Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Ingrid A. M. Derks
- Department of Experimental Immunology, Academic Medical Center, Meibergdreef 9, Room K0-144, 1105 AZ Amsterdam, The Netherlands
| | - Kris A. Reedquist
- Department of Clinical Immunology and Rheumatology, Academic Medical Center, Amsterdam, The Netherlands
| | - Eric Eldering
- Department of Experimental Immunology, Academic Medical Center, Meibergdreef 9, Room K0-144, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
72
|
Alleva LM, Gualano RC, Clark IA. Current work and future possibilities for the management of severe influenza: using immunomodulatory agents that target the host response. Future Virol 2011. [DOI: 10.2217/fvl.11.51] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this article, we argue the case that the excessive inflammatory response seen in severe influenza contributes to severe illness and death by disabling oxidative phosphorylation in mitochondria, leading to reduced cellular levels of ATP. When the mitochondrial permeability transition is induced, cells cannot die by apoptosis in the face of reduced ATP levels, because apoptosis depends upon ATP availability, and so cells undergo necrosis. Cellular necrosis causes release of proinflammatory molecules such as high mobility group box 1 protein and mitochondrial DNA, and these could contribute to the prolongation of inflammation during severe influenza. With these concepts in mind, we discuss how immunomodulatory agents that prevent cellular necrosis (by restoring mitochondrial function) and limit inflammation are promising influenza treatments.
Collapse
Affiliation(s)
| | - Rosa C Gualano
- Department of Pharmacology, The University of Melbourne, Parkville VIC 3010, Australia
| | - Ian A Clark
- Division of Biomedical Science & Biochemistry, Research School of Biology, The Australian National University, Canberra ACT 0200, Australia
| |
Collapse
|
73
|
Idrus E, Nakashima T, Wang L, Hayashi M, Okamoto K, Kodama T, Tanaka N, Taniguchi T, Takayanagi H. The role of the BH3-only protein Noxa in bone homeostasis. Biochem Biophys Res Commun 2011; 410:620-5. [PMID: 21689638 DOI: 10.1016/j.bbrc.2011.06.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 06/06/2011] [Indexed: 10/18/2022]
Abstract
Bone homeostasis is maintained by a dynamic balance between bone resorption by osteoclasts and bone formation by osteoblasts. Since excessive osteoclast activity is implicated in pathological bone resorption, understanding the mechanism underlying osteoclast differentiation, function and survival is of both scientific and clinical importance. Osteoclasts are monocyte/macrophage lineage cells with a short life span that undergo rapid apoptosis, the rate of which critically determines the level of bone resorption in vivo. However, the molecular basis of rapid osteoclast apoptosis remains obscure. Here we report the role of a BH3-only protein, Noxa (encoded by the Pmaip1 gene), in bone homeostasis using Noxa-deficient mice. Among the Bcl-2 family members, Noxa was selectively induced during osteoclastogenesis. Mice lacking Noxa exhibit a severe osteoporotic phenotype due to an increased number of osteoclasts. Noxa deficiency did not have any effect on the number of osteoclast precursor cells or the expression of osteoclast-specific genes, but led to a prolonged survival of osteoclasts. Furthermore, adenovirus-mediated Noxa overexpression remarkably reduced bone loss in a model of inflammation-induced bone destruction. This study reveals Noxa to be a crucial regulator of osteoclast apoptosis, and may provide a molecular basis for a new therapeutic approach to bone diseases.
Collapse
Affiliation(s)
- Erik Idrus
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima 1-5-45, Tokyo 113-8549, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Essential role for Ptpn11 in survival of hematopoietic stem and progenitor cells. Blood 2011; 117:4253-61. [PMID: 21398220 DOI: 10.1182/blood-2010-11-319517] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Src homology 2 domain-containing phosphatase 2 (Shp2), encoded by Ptpn11, is a member of the nonreceptor protein-tyrosine phosphatase family, and functions in cell survival, proliferation, migration, and differentiation in many tissues. Here we report that loss of Ptpn11 in murine hematopoietic cells leads to bone marrow aplasia and lethality. Mutant mice show rapid loss of hematopoietic stem cells (HSCs) and immature progenitors of all hematopoietic lineages in a gene dosage-dependent and cell-autonomous manner. Ptpn11-deficient HSCs and progenitors undergo apoptosis concomitant with increased Noxa expression. Mutant HSCs/progenitors also show defective Erk and Akt activation in response to stem cell factor and diminished thrombopoietin-evoked Erk activation. Activated Kras alleviates the Ptpn11 requirement for colony formation by progenitors and cytokine/growth factor responsiveness of HSCs, indicating that Ras is functionally downstream of Shp2 in these cells. Thus, Shp2 plays a critical role in controlling the survival and maintenance of HSCs and immature progenitors in vivo.
Collapse
|
75
|
Wiegers GJ, Kaufmann M, Tischner D, Villunger A. Shaping the T‐cell repertoire: a matter of life and death. Immunol Cell Biol 2010; 89:33-9. [DOI: 10.1038/icb.2010.127] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- G Jan Wiegers
- Division of Developmental Immunology, Biocenter, Medical University Innsbruck Innsbruck Austria
| | - Manuel Kaufmann
- Division of Developmental Immunology, Biocenter, Medical University Innsbruck Innsbruck Austria
| | - Denise Tischner
- Division of Developmental Immunology, Biocenter, Medical University Innsbruck Innsbruck Austria
| | - Andreas Villunger
- Division of Developmental Immunology, Biocenter, Medical University Innsbruck Innsbruck Austria
| |
Collapse
|
76
|
Peperzak V, Veraar EAM, Keller AM, Xiao Y, Borst J. The Pim Kinase Pathway Contributes to Survival Signaling in Primed CD8+ T Cells upon CD27 Costimulation. THE JOURNAL OF IMMUNOLOGY 2010; 185:6670-8. [DOI: 10.4049/jimmunol.1000159] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
77
|
Abstract
Protective immunity against a variety of infections depends on the amplification and differentiation of rare naïve antigen-specific CD4 and CD8 T cells. Recent evidence indicates that the clonotypic composition of the responding T-cell compartment has a critical role in the immune defense against pathogens. The present review compares and contrasts how naive CD4 and CD8 T cells recognize their cognate antigen, and discusses the factors that regulate the genesis and maintenance of the CD4 and CD8 T-cell receptor repertoire diversity.
Collapse
|
78
|
Abstract
Whether apoptosis is relevant for interclonal competition of T cells after antigen encounter has remained uncertain. In this issue of Immunity, Wensveen et al. (2010) establish a critical role for the proapoptotic BH3-only protein Noxa in this selection process.
Collapse
Affiliation(s)
- Andreas Villunger
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, Innsbruck, Austria.
| |
Collapse
|