51
|
Zhao L, Wang H, Du X. The therapeutic use of quercetin in ophthalmology: recent applications. Biomed Pharmacother 2021; 137:111371. [PMID: 33561647 DOI: 10.1016/j.biopha.2021.111371] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 12/15/2022] Open
Abstract
Quercetin is a natural flavonol antioxidant found in various plant sources and food samples. It is well known for its notable curative effects on the treatment of ophthalmic diseases due to various biological activities, such as antioxidant, anti-inflammatory, and anti-fibrosis activities. This review will discuss the latest developments in therapeutic quercetin for the treatment of keratoconus, Graves' orbitopathy, ocular surface, cataracts, glaucoma, retinoblastoma, and other retinal diseases.
Collapse
Affiliation(s)
- Lianghui Zhao
- Weifang Medical University, Weifang, Shandong 261021, China; Qingdao Eye Hospital of Shandong First Medical University, Qingdao, Shandong 266071, China
| | - Hongwei Wang
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, Shandong 266071, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, Shandong 266071, China.
| | - Xianli Du
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, Shandong 266071, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, Shandong 266071, China.
| |
Collapse
|
52
|
Kianian F, Marefati N, Boskabady M, Ghasemi SZ, Boskabady MH. Pharmacological Properties of Allium cepa, Preclinical and Clinical Evidences; A Review. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:107-134. [PMID: 34567150 PMCID: PMC8457748 DOI: 10.22037/ijpr.2020.112781.13946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Onion or Allium cepa (A. cepa) is one of the most important condiment plants grown and consumed all over the world. This plant has various therapeutic effects attributed to its constituents, such as quercetin, thiosulphinates and phenolic acids. In the present article, various pharmacological and therapeutic effects of A. cepa were reviewed. Different online databases using keywords such as onion, A. cepa, therapeutic effects, and pharmacological effects until the end of December 2019 were searched for this purpose. Onion has been suggested to be effective in treating a broad range of disorders, including asthma, inflammatory disorders, dysentery, wounds, scars, keloids and pain. In addition, different studies have demonstrated that onion possesses numerous pharmacological properties, including anti-cancer, anti-diabetic and anti-platelet properties as well as the effect on bone, cardiovascular, gastrointestinal, nervous, respiratory, and urogenital systems effects such as anti-osteoporosis, anti-hypertensive, antispasmodic, anti-diarrheal, neuro-protective, anti-asthmatic and diuretic effects. The present review provides detailed the various pharmacological properties of onion and its constituents and possible underlying mechanisms. The results of multiple studies suggested the therapeutic effect of onion on a wide range of disorders.
Collapse
Affiliation(s)
- Farzaneh Kianian
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- F. K. and N. M. contributed equally to this work
| | - Narges Marefati
- Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran.
- F. K. and N. M. contributed equally to this work
| | - Marzie Boskabady
- Dental Materials Research Center and Department of Pediatric Dentistry, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyyedeh Zahra Ghasemi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Hosein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
53
|
Helminthostachys zeylanica Water Extract Ameliorates Airway Hyperresponsiveness and Eosinophil Infiltration by Reducing Oxidative Stress and Th2 Cytokine Production in a Mouse Asthma Model. Mediators Inflamm 2020; 2020:1702935. [PMID: 33343229 PMCID: PMC7725587 DOI: 10.1155/2020/1702935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/26/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022] Open
Abstract
Helminthostachys zeylanica is a traditional folk herb used to improve inflammation and fever in Taiwan. Previous studies showed that H. zeylanica extract could ameliorate lipopolysaccharide-induced acute lung injury in mice. The aim of this study was to investigate whether H. zeylanica water (HZW) and ethyl acetate (HZE) extracts suppressed eosinophil infiltration and airway hyperresponsiveness (AHR) in asthmatic mice, and decreased the inflammatory response and oxidative stress in tracheal epithelial cells. Human tracheal epithelial cells (BEAS-2B cells) were pretreated with various doses of HZW or HZE (1 μg/ml-10 μg/ml), and cell inflammatory responses were induced with IL-4/TNF-α. In addition, female BALB/c mice sensitized with ovalbumin (OVA), to induce asthma, were orally administered with HZW or HZE. The result demonstrated that HZW significantly inhibited the levels of proinflammatory cytokines, chemokines, and reactive oxygen species in activated BEAS-2B cells. HZW also decreased ICAM-1 expression and blocked monocytic cells from adhering to inflammatory BEAS-2B cells in vitro. Surprisingly, HZW was more effective than HZE in suppressing the inflammatory response in BEAS-2B cells. Our results demonstrated that HZW significantly decreased AHR and eosinophil infiltration, and reduced goblet cell hyperplasia in the lungs of asthmatic mice. HZW also inhibited oxidative stress and reduced the levels of Th2 cytokines in bronchoalveolar lavage fluid. Our findings suggest that HZW attenuated the pathological changes and inflammatory response of asthma by suppressing Th2 cytokine production in OVA-sensitized asthmatic mice.
Collapse
|
54
|
Alves LP, da Silva Oliveira K, da Paixão Santos JA, da Silva Leite JM, Rocha BP, de Lucena Nogueira P, de Araújo Rêgo RI, Oshiro-Junior JA, Damasceno BPGDL. A review on developments and prospects of anti-inflammatory in microemulsions. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
55
|
Li QS, Wang YQ, Liang YR, Lu JL. The anti-allergic potential of tea: a review of its components, mechanisms and risks. Food Funct 2020; 12:57-69. [PMID: 33241826 DOI: 10.1039/d0fo02091e] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Allergy is an immune-mediated disease with increasing prevalence worldwide. Regular treatment with glucocorticoids and antihistamine drugs for allergy patients is palliative rather than permanent. Daily use of dietary anti-allergic natural products is a superior way to prevent allergy and alleviate the threat. Tea, as a health-promoting beverage, has multiple compounds with immunomodulatory ability. Persuasive evidence has shown the anti-allergic ability of tea against asthma, food allergy, atopic dermatitis and anaphylaxis. Recent advances in potential anti-allergic ability of tea and anti-allergic compounds in tea have been reviewed in this paper. Tea exerts its anti-allergic effect mainly by reducing IgE and histamine levels, decreasing FcεRI expression, regulating the balance of Th1/Th2/Th17/Treg cells and inhibiting related transcription factors. Further research perspectives are also discussed.
Collapse
Affiliation(s)
- Qing-Sheng Li
- Tea Research Institute, Zhejiang University, China. and Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, China
| | - Ying-Qi Wang
- Tea Research Institute, Zhejiang University, China.
| | | | | |
Collapse
|
56
|
Xuan X, Sun Z, Yu C, Chen J, Chen M, Wang Q, Li L. Network pharmacology-based study of the protective mechanism of conciliatory anti-allergic decoction on asthma. Allergol Immunopathol (Madr) 2020; 48:441-449. [PMID: 32359824 DOI: 10.1016/j.aller.2019.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/09/2019] [Accepted: 12/23/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND This study aimed to explore the underlying anti-asthma pharmacological mechanisms of conciliatory anti-allergic decoction (CAD) with a network pharmacology approach. METHODS Traditional Chinese medicine related databases were utilized to screen the active ingredients of CAD. Targets of CAD for asthma treatment were also identified based on related databases. The protein-protein interaction network, biological function and KEGG pathway enrichment analysis, and molecular docking of the targets were performed. Furthermore, an asthma mouse model experiment involving HE staining, AB-PAS staining, and ELISA was also performed to assess the anti-asthma effect of CAD. RESULTS There were 77 active ingredients in CAD, including quercetin, kaempferol, stigmasterol, luteolin, cryptotanshinone, beta-sitosterol, acacetin, naringenin, baicalin, and 48 related targets for asthma treatment, mainly including TNF, IL4, IL5, IL10, IL13 and IFN-γ, were identified with ideal molecular docking binding scores by network pharmacology analysis. KEGG pathway analysis revealed that these targets were directly involved in the asthma pathway, Th1 and Th2 cell differentiation, and signaling pathways correlated with asthma (NF-κB, IL17, T cell receptor, TNF, JAK-STAT signaling pathways, etc.). Animal experiments also confirmed that CAD could attenuate inflammatory cell invasion, goblet cell hyperplasia and mucus secretion. The levels of the major targets TNF-α, IL4, IL5, and IL13 can also be regulated by CAD in an asthma mouse model. CONCLUSION The anti-asthma mechanism of CAD possibly stemmed from the active ingredients targeting asthma-related targets, which are involved in the asthma pathway and signaling pathways to exhibit therapeutic effects.
Collapse
Affiliation(s)
- Xiaobo Xuan
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310006, China
| | - Ziyan Sun
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310006, China
| | - Chenhuan Yu
- Experimental Animal centre, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, 310013, China
| | - Jian Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310006, China
| | - Mei Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310006, China
| | - Qili Wang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310006, China
| | - Lan Li
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310006, China.
| |
Collapse
|
57
|
Hogenkamp A, Ehlers A, Garssen J, Willemsen LEM. Allergy Modulation by N-3 Long Chain Polyunsaturated Fatty Acids and Fat Soluble Nutrients of the Mediterranean Diet. Front Pharmacol 2020; 11:1244. [PMID: 32973501 PMCID: PMC7472571 DOI: 10.3389/fphar.2020.01244] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
The Mediterranean diet, containing valuable nutrients such as n-3 long chain poly-unsaturated fatty acids (LCPUFAs) and other fat-soluble micronutrients, is known for its health promoting and anti-inflammatory effects. Its valuable elements might help in the battle against the rising prevalence of non-communicable diseases (NCD), including the development of allergic diseases and other (chronic) inflammatory diseases. The fat fraction of the Mediterranean diet contains bioactive fatty acids but can also serve as a matrix to dissolve and increase the uptake of fat-soluble vitamins and phytochemicals, such as luteolin, quercetin, resveratrol and lycopene with known immunomodulatory and anti-inflammatory capacities. Especially n-3 LCPUFAs such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) derived from marine oils can target specific receptors or signaling cascades, act as eicosanoid precursors and/or alter membrane fluidity and lipid raft formation, hereby exhibiting anti-inflammatory properties. Beyond n-3 LCPUFAs, fat-soluble vitamins A, D, E, and K1/2 have the potential to affect pro-inflammatory signaling cascades by interacting with receptors or activating/inhibiting signaling proteins or phosphorylation in immune cells (DCs, T-cells, mast cells) involved in allergic sensitization or the elicitation/effector phase of allergic reactions. Moreover, fat-soluble plant-derived phytochemicals can manipulate signaling cascades, mostly by interacting with other receptors or signaling proteins compared to those modified by fat-soluble vitamins, suggesting potential additive or synergistic actions by applying a combination of these nutrients which are all part of the regular Mediterranean diet. Research concerning the effects of phytochemicals such as polyphenols has been hampered due to their poor bio-availability. However, their solubility and uptake are improved by applying them within the dietary fat matrix. Alternatively, they can be prepared for targeted delivery by means of pharmaceutical approaches such as encapsulation within liposomes or even unique nanoparticles. This review illuminates the molecular mechanisms of action and possible immunomodulatory effects of n-3 LCPUFAs and fat-soluble micronutrients from the Mediterranean diet in allergic disease development and allergic inflammation. This will enable us to further appreciate how to make use of the beneficial effects of n-3 LCPUFAs, fat-soluble vitamins and a selection of phytochemicals as active biological components in allergy prevention and/or symptom reduction.
Collapse
Affiliation(s)
- Astrid Hogenkamp
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Anna Ehlers
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Dermatology/Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands.,Global Centre of Excellence Immunology, Danone Nutricia Research B.V., Utrecht, Netherlands
| | - Linette E M Willemsen
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
58
|
Tanaka Y, Furuta A, Asano K, Kobayashi H. Modulation of Th1/Th2 Cytokine Balance by Quercetin In Vitro. MEDICINES (BASEL, SWITZERLAND) 2020; 7:medicines7080046. [PMID: 32751563 PMCID: PMC7459988 DOI: 10.3390/medicines7080046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 04/12/2023]
Abstract
Background: Allergic rhinitis (AR) is well known to be an IgE-mediated chronic inflammatory disease in the nasal wall, which is primarily mediated by Th2-type cytokines such as IL-4, IL-5, and IL-13. Although quercetin is also accepted to attenuate the development of allergic diseases such as AR, the influence of quercetin on Th2-type cytokine production is not well understood. The present study was designed to examine whether quercetin could attenuate the development of AR via the modulation of Th2-type cytokine production using an in vitro cell culture technique. Methods: Human peripheral-blood CD4+ T cells (1 × 106 cells/mL) were cultured with 10.0 ng/mL IL-4 in the presence or absence of quercetin. The levels of IL-5, IL-13, and INF-γ in 24 h culture supernatants were examined by ELISA. The influence of quercetin on the phosphorylation of transcription factors NF-κB and STAT6, and mRNA expression for cytokines were also examined by ELISA and RT-PCR, respectively. Results: Treatment of cells with quercetin at more than 5.0 μM inhibited the production of IL-5 and IL-13 from CD4+ T cells induced by IL-4 stimulation through the suppression of transcription factor activation and cytokine mRNA expression. On the other hand, quercetin at more than 5.0 μM abrogated the inhibitory action of IL-4 on INF-γ production from CD4+ T cells in vitro. Conclusions: The immunomodulatory effects of quercetin, especially on cytokine production, may be responsible, in part, for the mode of therapeutic action of quercetin on allergic diseases, including AR.
Collapse
Affiliation(s)
- Yoshihito Tanaka
- Department of Otolaryngology, School of Medicine, Showa University, Tokyo 142-8555, Japan; (Y.T.); (H.K.)
| | - Atsuko Furuta
- Department of Medical Education, School of Medicine, Showa University, Tokyo 142-8555, Japan;
| | - Kazuhito Asano
- School of Health Sciences, University of Human Arts and Sciences, Saitama 339-8555, Japan
- Correspondence: ; Tel.: +81-48-758-7111
| | - Hitome Kobayashi
- Department of Otolaryngology, School of Medicine, Showa University, Tokyo 142-8555, Japan; (Y.T.); (H.K.)
| |
Collapse
|
59
|
Alrumaihi F, Almatroudi A, Allemailem KS, Rahmani AH, Khan A, Khan MA. Therapeutic Effect of Bilsaan, Sambucus nigra Stem Exudate, on the OVA-Induced Allergic Asthma in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3620192. [PMID: 32617136 PMCID: PMC7313152 DOI: 10.1155/2020/3620192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022]
Abstract
Asthma is characterized by the elevated level of Th2 immune responses, oxidative stress, and airway inflammation. Bilsaan, an exudate from the stem of Sambucus nigra, has been traditionally used in the treatment of various ailments in Saudi Arabia. Here, we investigated the therapeutic potential of Bilsaan against ovalbumin- (OVA-) induced allergic asthma in a mouse model. In order to induce allergic asthma, mice were intraperitoneally injected with alum-emulsified-OVA (20 μg/mouse) on days 0, 14, and 21 that is followed by an intranasal OVA exposure from days 22 to 30. During this time, mice were orally administered with Bilsaan at the doses of 5, 10, and 25 mg/kg. The numbers of total and differential inflammatory cells and the levels of Th2 cytokines (IL-4, IL-5, and IL-13) and IgE were determined in bronchoalveolar lavage fluid (BALF). Moreover, the therapeutic effect of Bilsaan was also assessed to analyze the oxidative stress and inflammatory changes in the lung tissues. The results demonstrated that Bilsaan treatment significantly reduced the total and differential inflammatory cell count in the BALF. The BALF from the mice treated with Bilsaan showed significantly lower levels of IL-4, IL-5, IL-13, and IgE. Interestingly, a similar pattern was observed in IL-4, IL-5, and IL-13 secreted by OVA-sensitized splenocytes from the mice of various groups. Bilsaan treatment alleviated the status of oxidative stress by modulating malondialdehyde (MDA), superoxide dismutase (SOD), and catalase levels in the lung. Moreover, Bilsaan treatment reduced the infiltration of inflammatory cells, thickening of alveolar wall, and congestion in the lung tissues. The findings of the present study demonstrated an antiasthmatic effect of Bilsaan through the modulation of Th2 immune responses, inflammation, and the oxidative stress.
Collapse
Affiliation(s)
- Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah51452, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah51452, Saudi Arabia
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah51452, Saudi Arabia
| | - Arshad H. Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah51452, Saudi Arabia
| | - Arif Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah51452, Saudi Arabia
| | - Masood Alam Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah51452, Saudi Arabia
| |
Collapse
|
60
|
Jafarinia M, Sadat Hosseini M, kasiri N, Fazel N, Fathi F, Ganjalikhani Hakemi M, Eskandari N. Quercetin with the potential effect on allergic diseases. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2020; 16:36. [PMID: 32467711 PMCID: PMC7227109 DOI: 10.1186/s13223-020-00434-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 05/07/2020] [Indexed: 02/08/2023]
Abstract
Quercetin is a naturally occurring polyphenol flavonoid which is rich in antioxidants. It has anti-allergic functions that are known for inhibiting histamine production and pro-inflammatory mediators. Quercetin can regulate the Th1/Th2 stability, and decrease the antigen-specific IgE antibody releasing by B cells. Quercetin has a main role in anti-inflammatory and immunomodulatory function which makes it proper for the management of different diseases. Allergic diseases are a big concern and have high health care costs. In addition, the use of current therapies such as ß2-agonists and corticosteroids has been limited for long term use due to their numerous side effects. Since the effect of quercetin on allergic diseases has been widely studied, in the current article, we review the effect of quercetin on allergic diseases, such as allergic asthma, allergic rhinitis (AR), and atopic dermatitis (AD).
Collapse
Affiliation(s)
- Morteza Jafarinia
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Box 8174673461, Isfahan, Iran
| | - Mahnaz Sadat Hosseini
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Box 8174673461, Isfahan, Iran
| | - Neda kasiri
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Box 8174673461, Isfahan, Iran
| | - Niloofar Fazel
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Box 8174673461, Isfahan, Iran
| | - Farshid Fathi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Box 8174673461, Isfahan, Iran
| | - Mazdak Ganjalikhani Hakemi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Box 8174673461, Isfahan, Iran
| | - Nahid Eskandari
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Box 8174673461, Isfahan, Iran
- Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
61
|
Gandhi GR, Leão GCDS, Calisto VKDS, Vasconcelos ABS, Almeida MLD, Quintans JDSS, Barreto E, Narain N, Júnior LJQ, Gurgel RQ. Modulation of interleukin expression by medicinal plants and their secondary metabolites: A systematic review on anti-asthmatic and immunopharmacological mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 70:153229. [PMID: 32361292 DOI: 10.1016/j.phymed.2020.153229] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/09/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Asthma is one of the most common chronic inflammatory conditions of the lungs in modern society. Asthma is associated with airway hyperresponsiveness and remodeling of the airways, with typical symptoms of cough, wheezing, shortness of breath and chest tightness. Interleukins (IL) play an integral role in its inflammatory pathogenesis. Medicinal herbs and secondary metabolites are gaining considerable attention due to their potential therapeutic role and pharmacological mechanisms as adjunct tools to synthetic bronchodilator drugs. PURPOSE To systematically review the literature on the use of single or mixed plants extracts therapy in vivo experimental systems for asthma, emphasizing their regulations on IL production to improve lung. METHODS Literature searches were performed on PubMed, EMBASE, Scopus and Web of Science databases. All articles in English were extracted from 1999 up to September 2019, assessed critically for data extraction. Studies investigating the effectiveness and safety of plant extracts administered; inflammatory cell count, immunoglobulin E (IgE) production and regulation of pro-inflammatory cytokine and T helper (Th) 1 and Th2-driven cytokine expression in bronchoalveolar lavage fluid (BALF) and lung of asthmatic animals were included. RESULTS Four hundred and eighteen publications were identified and 51 met the inclusion criteria. Twenty-six studies described bioactive compounds from plant extracts. The most frequent immunopharmacological mechanisms described included reduction in IgE and eosinophilic recruitment, decreased mucus hypersecretion and airway hyperreactivity, enhancement of the balance of Th1/Th2 cytokine ratio, suppression of matrix metallopeptidase 9 (MMP-9) and reversal of structural alterations. CONCLUSION Plant extract therapies have potential control activities on asthma symptoms by modulating the secretion of pro-inflammatory (IL-1β, IL-8), Th17 (IL-17), anti-inflammatory (IL-10, IL-23, IL-31, IL-33), Th1 (IL-2, IL-12) and Th2 (IL-4, IL-5, IL-6, IL-13) cytokines, reducing the level of biomarkers of airway inflammation.
Collapse
Affiliation(s)
- Gopalsamy Rajiv Gandhi
- Graduate Program in Health Sciences, Federal University of Sergipe, Rua Cláudio Batista, s/n, Cidade Nova, Aracaju, 49.100-000 Sergipe, Brazil
| | - Gabriel Campos de Sousa Leão
- Department of Medicine, Federal University of Sergipe, Rua Cláudio Batista, s/n, Cidade Nova, Aracaju, 49.100-000, Sergipe, Brazil
| | - Valdete Kaliane da Silva Calisto
- Graduate Program in Health Sciences, Federal University of Sergipe, Rua Cláudio Batista, s/n, Cidade Nova, Aracaju, 49.100-000 Sergipe, Brazil
| | - Alan Bruno Silva Vasconcelos
- Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, 49.100-000, Sergipe, Brazil
| | - Maria Luiza Doria Almeida
- Graduate Program in Health Sciences, Federal University of Sergipe, Rua Cláudio Batista, s/n, Cidade Nova, Aracaju, 49.100-000 Sergipe, Brazil; Department of Medicine, Federal University of Sergipe, Rua Cláudio Batista, s/n, Cidade Nova, Aracaju, 49.100-000, Sergipe, Brazil
| | - Jullyana de Souza Siqueira Quintans
- Graduate Program in Health Sciences, Federal University of Sergipe, Rua Cláudio Batista, s/n, Cidade Nova, Aracaju, 49.100-000 Sergipe, Brazil; Laboratory of Neurosciences and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, 49.100-000 Sergipe, Brazil
| | - Emiliano Barreto
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Alagoas, Maceió, 57.072-900 Alagoas, Brazil
| | - Narendra Narain
- Laboratory of Flavor and Chromatographic Analysis, Federal University of Sergipe, São Cristóvão, Aracaju, 49.100-000 Sergipe, Brazil
| | - Lucindo José Quintans Júnior
- Graduate Program in Health Sciences, Federal University of Sergipe, Rua Cláudio Batista, s/n, Cidade Nova, Aracaju, 49.100-000 Sergipe, Brazil; Laboratory of Neurosciences and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, 49.100-000 Sergipe, Brazil
| | - Ricardo Queiroz Gurgel
- Graduate Program in Health Sciences, Federal University of Sergipe, Rua Cláudio Batista, s/n, Cidade Nova, Aracaju, 49.100-000 Sergipe, Brazil; Department of Medicine, Federal University of Sergipe, Rua Cláudio Batista, s/n, Cidade Nova, Aracaju, 49.100-000, Sergipe, Brazil.
| |
Collapse
|
62
|
Khazdair MR, Anaeigoudari A, Kianmehr M. Anti-Asthmatic Effects of Portulaca Oleracea and its Constituents, a Review. J Pharmacopuncture 2019; 22:122-130. [PMID: 31673441 PMCID: PMC6820471 DOI: 10.3831/kpi.2019.22.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 03/11/2019] [Accepted: 05/27/2019] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES The medicinal plants are believed to enhance the natural resistance of the body to infections. Some of the main constituents of the plant and derived materials such as, proteins, lectins and polysaccharides have anti-inflammatory effects. Portulaca oleracea (P. oleracea) were used traditionally for dietary, food additive, spice and various medicinal purposes. This review article is focus on the anti-asthmatic effects of P. oleracea and its constituents. METHODS Various databases, such as the PubMed, Scopus, and Google Scholar, were searched the keywords including "Portulaca oleracea", "Quercetin", "Anti-inflammatory", "Antioxidant", "Cytokines", "Smooth muscle ", and " Relaxant effects " until the end of Jul 2018. RESULTS P. oleracea extracts and its constituents increased IFN-γ, IL-2, IFNγ/IL-4 and IL- 10/IL-4 ratio, but decreased secretion of TNF-α, IL-4 and chemokines in both in vitro and in vivo studies. P. oleracea extracts and quercetin also significantly decreased production of NO, stimulated β-adrenoceptor and/or blocking muscarinic receptors in tracheal smooth muscles. Conclusion: P. oleracea extracts and quercetin showed relatively potent anti-asthmatic effects due to decreased production of NO, inflammatory cytokines and chemokines, reduced oxidant while enhanced antioxidant markers, and also showed potent relaxant effects on tracheal smooth muscles via stimulatory on β-adrenoceptor or/and blocking muscarinic receptors.
Collapse
Affiliation(s)
| | - Akbar Anaeigoudari
- Department of Physiology, School of Medicine, Jiroft University of Medical Sciences, Jiroft,
Iran
| | | |
Collapse
|
63
|
Nakamoto A, Mitani M, Urayama K, Maki A, Nakamoto M, Shuto E, Nii Y, Sakai T. Nobiletin Enhances Induction of Antigen-Specific Immune Responses in BALB/c Mice Immunized with Ovalbumin. J Nutr Sci Vitaminol (Tokyo) 2019; 65:278-282. [PMID: 31257269 DOI: 10.3177/jnsv.65.278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We examined the effect of nobiletin (5,6,7,8,3',4'-hexamethoxyflavone) on immune response in ovalbumin (OVA)-immunized mice. Treatment with nobiletin increased OVA-specific IL-4 and IL-10 production. In addition, mice that received nobiletin showed higher levels of OVA-specific IgE, IgG and IgG1 production than did control mice. The antibody response to the thymus-independent antigen 2,4,6-trinitrophenyl-Ficoll was not different in the control and nobiletin groups, suggesting that nobiletin does not directly stimulate antibody production. An in vitro study showed that treatment with nobiletin enhanced the ability of antigen presentation of bone marrow-derived dendritic cells. The in vivo and in vitro results indicate that nobiletin regulates immune function.
Collapse
Affiliation(s)
- Akiko Nakamoto
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Mami Mitani
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Kana Urayama
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Akari Maki
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Mariko Nakamoto
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Emi Shuto
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Yoshitaka Nii
- Food and Biotechnology Division, Tokushima Prefectural Industrial Technology Center
| | - Tohru Sakai
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| |
Collapse
|
64
|
Ou Q, Zheng Z, Zhao Y, Lin W. Impact of quercetin on systemic levels of inflammation: a meta-analysis of randomised controlled human trials. Int J Food Sci Nutr 2019; 71:152-163. [PMID: 31213101 DOI: 10.1080/09637486.2019.1627515] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Knowledge regarding the anti-inflammatory capability of quercetin remains inconclusive and controversial due to the heterogeneous methods and inconsistent results of RCTs. We performed a series of meta-analyses of RCTs to evaluate the impact of quercetin supplementation on inflammatory biomarkers. Three cytokines (CRP, IL-6, TNF-α) with enough eligible studies (n = 6, 5 and 4, respectively) were selected for further meta-analyses. Data from these RCTs were pooled, and both overall effect and stratified subgroup analyses were performed. No relevant overall effects on peripheral CRP, IL-6 and TNF-α were observed. Subgroup analyses revealed a significant reduction in circulating CRP in participants with diagnosed diseases (SMD: -0.24, 95% CI: -0.49, 0.00) and IL-6 in females (SMD: -1.37, 95% CI: -1.93, -0.81), subjects with diagnosed diseases (SMD: -1.37, 95% CI: -1.93, -0.81) and with high-dose interventions (SMD: -0.69, 95% CI: -1.10, -0.38). In conclusion, consumption of quercetin is a promising therapeutic strategy for chronic disease management.
Collapse
Affiliation(s)
- Qiaowen Ou
- Department of Clinical Nutrition, The First Affiliated Hospital of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Zhifen Zheng
- Huangpu Customs District People's Republic of China, Guangzhou, PR China
| | - Yongyi Zhao
- Department of Clinical Nutrition, The First Affiliated Hospital of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Weiqun Lin
- Department of Clinical Nutrition, The First Affiliated Hospital of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, PR China
| |
Collapse
|
65
|
Seo MY, Kim KR, Lee JJ, Ryu G, Lee SH, Hong SD, Dhong HJ, Baek CH, Chung SK, Kim HY. Therapeutic effect of topical administration of red onion extract in a murine model of allergic rhinitis. Sci Rep 2019; 9:2883. [PMID: 30814581 PMCID: PMC6393461 DOI: 10.1038/s41598-019-39379-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 01/23/2019] [Indexed: 11/28/2022] Open
Abstract
The aim of this study was to evaluate the effect of topical administration of onion (Allium cepa) extract on nasal cavity for treatment of allergic rhinitis (AR). BALB/c mice were sensitized by intraperitoneal injection of ovalbumin (OVA) and challenged with intranasal instillation of OVA with or without onion extracts for five times a week on 3 consecutive weeks. Allergic symptom score according to frequencies of sneezing, serum total and OVA specific immunoglobulin E (IgE) level, cytokine levels of nasal mucosa and eosinophilic infiltration were analyzed. Allergic symptom score, serum total and OVA specific IgE, cytokine levels of nasal mucosa (interleukin (IL)-4, IL-5, IL-10, IL-13, IFN-γ, TNF-α and COX-2) and eosinophilic infiltration were higher in allergic mouse group than negative control group. Topical application of onion extracts significantly reduced allergic symptoms and OVA specific IgE levels. Cytokine levels of IL-4, IL-5, IL-10, IL-13 and IFN-γ were significantly decreased in groups treated with onion extract. In addition, eosinophil infiltration of nasal turbinate mucosa was also significantly decreased after treatment with onion extract. Topical administration of onion extract significantly reduces allergic rhinitis symptom and allergic inflammatory reaction in a murine allergic model. It can be assumed that the topical application of onion extract regulates allergic symptoms by suppressing the type-1 helper (Th1) and type-2 helper (Th2) responses and reducing the allergic inflammatory reaction.
Collapse
Affiliation(s)
- Min Young Seo
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University College of Medicine, Korea University Ansan Hospital, Ansan, South Korea
| | - Ki Ryung Kim
- Department of Otorhinolaryngology - Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jung Joo Lee
- Department of Otorhinolaryngology - Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Gwanghui Ryu
- Department of Otorhinolaryngology - Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seung Hoon Lee
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University College of Medicine, Korea University Ansan Hospital, Ansan, South Korea
| | - Sang Duk Hong
- Department of Otorhinolaryngology - Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hun-Jong Dhong
- Department of Otorhinolaryngology - Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chung-Hwan Baek
- Department of Otorhinolaryngology - Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seung-Kyu Chung
- Department of Otorhinolaryngology - Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyo Yeol Kim
- Department of Otorhinolaryngology - Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
66
|
Hosseinzade A, Sadeghi O, Naghdipour Biregani A, Soukhtehzari S, Brandt GS, Esmaillzadeh A. Immunomodulatory Effects of Flavonoids: Possible Induction of T CD4+ Regulatory Cells Through Suppression of mTOR Pathway Signaling Activity. Front Immunol 2019; 10:51. [PMID: 30766532 PMCID: PMC6366148 DOI: 10.3389/fimmu.2019.00051] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/09/2019] [Indexed: 12/12/2022] Open
Abstract
The increasing rate of autoimmune disorders and cancer in recent years has been a controversial issue in all aspects of prevention, diagnosis, prognosis and treatment. Among dietary factors, flavonoids have specific immunomodulatory effects that might be of importance to several cancers. Over different types of immune cells, T lymphocytes play a critical role in protecting the immune system as well as in the pathogenesis of specific autoimmune diseases. One of the important mediators of metabolism and immune system is mTOR, especially in T lymphocytes. In the current review, we assessed the effects of flavonoids on the immune system and then their impact on the mTOR pathway. Flavonoids can suppress mTOR activity and are consequently able to induce the T regulatory subset.
Collapse
Affiliation(s)
- Aysooda Hosseinzade
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Omid Sadeghi
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Naghdipour Biregani
- Department of Nutrition, School of Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sepideh Soukhtehzari
- Department of Pharmaceutical Science, University of British Columbia, Vancouver, BC, Canada
| | - Gabriel S Brandt
- Department of Chemistry, Franklin & Marshall College,, Lancaster, PA, United States
| | - Ahmad Esmaillzadeh
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Community Nutrition, Food Security Research Center, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
67
|
Lee SH, Heng D, Xavier VJ, Chan KP, Ng WK, Zhao Y, Chan HK, Tan RB. Inhaled non-steroidal polyphenolic alternatives for anti-inflammatory combination therapy. POWDER TECHNOL 2018. [DOI: 10.1016/j.powtec.2018.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
68
|
Dai R, Yu Y, Yan G, Hou X, Ni Y, Shi G. Intratracheal administration of adipose derived mesenchymal stem cells alleviates chronic asthma in a mouse model. BMC Pulm Med 2018; 18:131. [PMID: 30089474 PMCID: PMC6083609 DOI: 10.1186/s12890-018-0701-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 07/31/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Adipose-derived mesenchymal stem cell (ASCs) exerts immunomodulatory roles in asthma. However, the underlying mechanism remains unclear. The present study aimed to explore the effects and mechanisms of ASCs on chronic asthma using an ovalbumin (OVA)-sensitized asthmatic mouse model. METHODS Murine ASCs (mASCs) were isolated from male Balb/c mice and identified by the expression of surface markers using flow cytometry. The OVA-sensitized asthmatic mouse model was established and then animals were treated with the mASCs through intratracheal delivery. The therapy effects were assessed by measuring airway responsiveness, performing immuohistochemical analysis, and examining bronchoalveolar lavage fluid (BALF). Additionally, the expression of inflammatory cytokines and lgE was detected by CHIP and ELISA, respectively. The mRNA levels of serum indices were detected using qRT-PCR. RESULTS The mASCs grew by adherence with fibroblast-like morphology, and showed the positive expression of CD90, CD44, and CD29 as well as the negative expression of CD45 and CD34, indicating that the mASCs were successfully isolated. Administering mASCs to asthmatic model animals through intratracheal delivery reduced airway responsiveness, the number of lymphocytes (P < 0.01) and the expression of lgE (P < 0.01), IL-1β (P < 0.05), IL-4 (P < 0.001), and IL-17F (P < 0.001), as well as increased the serum levels of IL-10 and Foxp3, and the percentage of CD4 + CD25 + Foxp3+ Tregs in the spleen, and reduced the expression of IL-17 (P < 0.05) and RORγ. CONCLUSIONS Intratracheal administration of mASCs alleviated airway inflammation, improved airway remodeling, and relieved airway hyperresponsiveness in an OVA-sensitized asthma model, which might be associated with the restoration of Th1/Th2 cell balance by mASCs.
Collapse
Affiliation(s)
- Ranran Dai
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, NO.197, Ruijin Er Road, Shanghai, 200025, China
| | - Youchao Yu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, NO.197, Ruijin Er Road, Shanghai, 200025, China
| | - Guofeng Yan
- School of Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Xiaoxia Hou
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, NO.197, Ruijin Er Road, Shanghai, 200025, China
| | - Yingmeng Ni
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, NO.197, Ruijin Er Road, Shanghai, 200025, China
| | - Guochao Shi
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, NO.197, Ruijin Er Road, Shanghai, 200025, China.
| |
Collapse
|
69
|
Gandhi GR, Neta MTSL, Sathiyabama RG, Quintans JDSS, de Oliveira E Silva AM, Araújo AADS, Narain N, Júnior LJQ, Gurgel RQ. Flavonoids as Th1/Th2 cytokines immunomodulators: A systematic review of studies on animal models. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 44:74-84. [PMID: 29895495 DOI: 10.1016/j.phymed.2018.03.057] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 02/08/2018] [Accepted: 03/19/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Flavonoids are naturally occurring compounds, extensively distributed in plants. T helper (Th)1 and Th2 cytokines balance plays an essential role in the reaction of inflammatory, allergic and infectious processes and transplantation rejection. PURPOSE This systematic review focuses on various classes of flavonoids with a view to evaluate whether Th1/Th2 cytokine-mediated pathways of immunoenhancement could reduce immune overwhelming reactions. METHODS Articles in English published from inception to December 2017 reporting flavonoids with immunomodulatory activity for the management of immune-mediated disorders were acquired from PubMed, EMBASE, Scopus and Web of Science and a animal experiments where Th1 and Th2 cytokines were investigated to assess the outcome of immunoregulatory therapy were included. CHAPTERS 1809 publications were identified and 26 were included in this review. Ten articles described the effect of flavonoids on allergic inflammation in an animal model of asthma; eleven in vivo studies evaluated the immunomodulating and immunosuppressive effects of flavonoids on Th1/Th2 cytokines production and five reports described the regulatory role of flavonoids for Th1/Th2 cytokine responses to experimental arthritis and myocarditis. Modulation of Th1/Th2 cytokine balance, inhibition of eosinophil accumulation and remodeling of the airways and lungs, downregulation of Notch and PI3K signaling pathways, regulation of CD4 + /CD8 + lymphocytes ratio and decreasing inflammatory mediator expressions levels are among the most important immunopharmacological mechanisms for the retrieved flavonoids. CONCLUSION Naturally occurring flavonoids discussed in the present article have optimal immunomodulation to prevent immune-mediated disorders through management of Th1/Th2 cytokine balance.
Collapse
Affiliation(s)
- Gopalsamy Rajiv Gandhi
- Division of Paediatrics, Department of Medicine, Federal University of Sergipe, Rua Cláudio Batista, s/n, Cidade Nova, Aracaju 49.100-000 Sergipe, Brazil; Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, 49.100-000 Sergipe, Brazil.
| | | | - Rajiv Gandhi Sathiyabama
- Division of Paediatrics, Department of Medicine, Federal University of Sergipe, Rua Cláudio Batista, s/n, Cidade Nova, Aracaju 49.100-000 Sergipe, Brazil; Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, 49.100-000 Sergipe, Brazil
| | - Jullyana de Souza Siqueira Quintans
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, 49.100-000 Sergipe, Brazil
| | | | | | - Narendra Narain
- Laboratory of Flavor and Chromatographic Analysis, Federal University of Sergipe, São Cristóvão, 49.100-000 Sergipe, Brazil
| | - Lucindo José Quintans Júnior
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, 49.100-000 Sergipe, Brazil
| | - Ricardo Queiroz Gurgel
- Division of Paediatrics, Department of Medicine, Federal University of Sergipe, Rua Cláudio Batista, s/n, Cidade Nova, Aracaju 49.100-000 Sergipe, Brazil
| |
Collapse
|
70
|
Marefati N, Eftekhar N, Kaveh M, Boskabadi J, Beheshti F, Boskabady M. The Effect of Allium cepa Extract on Lung Oxidant, Antioxidant, and Immunological Biomarkers in Ovalbumin-Sensitized Rats. Med Princ Pract 2018; 27:122-128. [PMID: 29471299 PMCID: PMC5968249 DOI: 10.1159/000487885] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 02/22/2018] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES To evaluate the effects of Allium cepa (A. cepa) on levels of oxidants, antioxidants, and immunological markers in bronchoalveolar lavage fluids (BALF) of sensitized rats. MATERIALS AND METHODS Oxidant/antioxidant markers and cytokines in BALF of control rats treated with saline (group C), ovalbumin-sensitized rats (group S), rats treated with 1.25 μg/mL dexamethasone and 3 doses of A. cepa extract (35, 70, and 140 mg/kg body weight [BW]/day) (S + AC) were investigated. Comparison of the results between groups was performed using analysis of variance with the Tukey-Kramer post hoc test. RESULTS The oxidant markers nitrogen dioxide (NO2), nitrate (NO3-), and malondialdehyde (MDA), and immunological markers interleukin (IL)-4 and immunoglobulin E (IgE) were significantly higher, but the antioxidant markers superoxide dismutase (SOD), catalase (CAT), thiol, and interferon (IFN)-γ, and the IFN-γ/IL-4 ratio were lower in sensitized rats compared to control rats (p < 0.001 to p < 0.01). Compared to group S, the levels of the following markers were significantly lower: NO2, NO3-, and IgE in groups treated with the A. cepa extract, MDA and IL-4 levels in groups treated with 70 and 140 mg/kg BW/day of the A. cepa extract, and all these markers as well as IFN-γ in rats treated with dexamethasone (p < 0.001 to p < 0.05). However, there were significantly higher levels of SOD and CAT and an increased IFN-γ/IL-4 ratio (groups treated with 70 and 140 mg/kg BW/day of the A. cepa extract), and levels of thiol and IFN-γ (group treated with 140 mg/kg BW/day of the A. cepa extract) as well as SOD, CAT, and thiol (dexamethasone-treated group) versus group S (p < 0.00 to p < 0.05). CONCLUSION A. cepa showed antioxidant and immunomodulatory properties in sensitized rats.
Collapse
Affiliation(s)
- N. Marefati
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - N. Eftekhar
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - M. Kaveh
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - J. Boskabadi
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - F. Beheshti
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - M.H. Boskabady
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
71
|
Liu LF, Chen JS, Shen JY, Dou TT, Zhou J, Cai SQ, Zheng M. Ustekinumab treats psoriasis by suppressing RORC and T-box but its suppression of GATA restrains its efficacy. BRAZ J PHARM SCI 2018. [DOI: 10.1590/s2175-97902018000417349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Lun-Fei Liu
- Zhejiang University School of Medicine, China; Zhejiang University School of Medicine, China
| | - Ji-Su Chen
- Zhejiang University School of Medicine, China
| | | | | | - Jiong Zhou
- Zhejiang University School of Medicine, China
| | | | - Min Zheng
- Zhejiang University School of Medicine, China
| |
Collapse
|
72
|
Veith C, Drent M, Bast A, van Schooten FJ, Boots AW. The disturbed redox-balance in pulmonary fibrosis is modulated by the plant flavonoid quercetin. Toxicol Appl Pharmacol 2017; 336:40-48. [PMID: 28987380 DOI: 10.1016/j.taap.2017.10.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/26/2017] [Accepted: 10/03/2017] [Indexed: 02/08/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by a disturbed pulmonary redox balance associated with inflammation. To restore this balance, antioxidants are often suggested as therapy for IPF but previous clinical trials with these compounds and their precursors have not been successful in the clinic. The exogenous antioxidant quercetin, which has a versatile antioxidant profile and is effective in restoring a disturbed redox balance, might be a better candidate. The aim of this study was to evaluate the protective effect of quercetin on oxidative and inflammatory markers in IPF. Here, we demonstrate that IPF patients have a significantly reduced endogenous antioxidant defense, shown by a reduced total antioxidant capacity and lowered glutathione and uric acid levels compared to healthy controls. This confirms that the redox balance is disturbed in IPF. Ex vivo incubation with quercetin in blood of both IPF patients and healthy controls reduces LPS-induced production of the pro-inflammatory cytokines IL-8 and TNFα. This anti-inflammatory effect was more pronounced in the blood of the patients. Our pro-fibrotic in vitro model, consisting of bleomycin-triggered BEAS-2B cells, shows that quercetin boosts the antioxidant response, by increasing Nrf2 activity, and decreases pro-inflammatory cytokine production in a concentration-dependent manner. Collectively, our findings implicate that IPF patients may benefit from the use of quercetin to restore the disturbed redox balance and reduce inflammation.
Collapse
Affiliation(s)
- C Veith
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition & Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - M Drent
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition & Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; ILD Center of Excellence, St. Antonius Hospital, Koekoekslaan 1, 3435 CM Nieuwegein, The Netherlands
| | - A Bast
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition & Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - F J van Schooten
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition & Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - A W Boots
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition & Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
73
|
Ma X, Sun Z, Zhai P, Yu W, Wang T, Li F, Ding J. Effect of follicular helper T cells on the pathogenesis of asthma. Exp Ther Med 2017; 14:967-972. [PMID: 28810548 PMCID: PMC5525906 DOI: 10.3892/etm.2017.4627] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 03/24/2017] [Indexed: 02/01/2023] Open
Abstract
Follicular helper T (TFH) cells are considered to be a separate T helper cell subset, specifically to help memory B cell participate in humoral immunity. It has been reported that there is an association between the imbalance of TFH function and certain autoimmune diseases. However, to the best of our knowledge, the effect of TFH cells on the process of bronchial asthma has not been investigated. The aim of the present study was to investigate the associated markers of TFH cells in bronchial asthma-induced mice. In the current study, sensitized and long-term challenges induced a mouse asthmatic model and were used to investigate the associated markers of TFH cells in the pathogenesis of asthma. The results demonstrated that B cell lymphoma 6, inducible T-cell costimulator (ICOS), ICOS ligand, C-X-C chemokine receptor type 5 (CXCR5) and interleukin (IL)-21 protein and mRNA expression levels were higher in the asthma group, as compared with the control group. Furthermore, the ratio of cluster of differentiation (CD) 4+CXCR5+/CD4+ and CD4+CXCR5+ICOS+/CD4+CXCR5+ was significantly increased in the asthma group. The results of the current study suggest that TFH cells and associated markers may have a role in the pathogenesis of chronic bronchial asthma.
Collapse
Affiliation(s)
- Xiaojuan Ma
- Department of Respiratory Medicine, Xinjiang National Clinical Research Base of Traditional Chinese Medicine, Xinjiang Medical University, Ürümqi, Xinjiang 830011, P.R. China.,Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Ürümqi, Xinjiang 830011, P.R. China
| | - Zhan Sun
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Ürümqi, Xinjiang 830011, P.R. China
| | - Pei Zhai
- Medical Department, Xinjiang Police College, Ürümqi, Xinjiang 830013, P.R. China
| | - Wenyan Yu
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Ürümqi, Xinjiang 830011, P.R. China
| | - Ting Wang
- Library Department, College of Basic Medicine, Xinjiang Medical University, Ürümqi, Xinjiang 830011, P.R. China
| | - Fengsen Li
- Department of Respiratory Medicine, Xinjiang National Clinical Research Base of Traditional Chinese Medicine, Xinjiang Medical University, Ürümqi, Xinjiang 830011, P.R. China
| | - Jianbing Ding
- Department of Immunology, College of Basic Medicine, Xinjiang Medical University, Ürümqi, Xinjiang 830011, P.R. China
| |
Collapse
|
74
|
Ye P, Yang XL, Chen X, Shi C. Hyperoside attenuates OVA-induced allergic airway inflammation by activating Nrf2. Int Immunopharmacol 2017; 44:168-173. [PMID: 28107754 DOI: 10.1016/j.intimp.2017.01.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Allergic airways disease (AAD) is one of the most common medical illnesses that is associated with an increased allergic airway inflammation. Hyperoside, an active compound isolated from Rhododendron brachycarpum G. Don, has been reported to have anti-inflammatory effect. The aim of this study was to analyze the protective effect of hyperoside on OVA-induced allergic airway inflammation in mice. In the present study, the mouse asthma model was induced by given OVA and hyperoside was administrated 1h before OVA challenge. The levels of IL-4, IL-5, IL-13, and IgE were detected by ELISA. H&E staining was used to assess lung histopathological changes. The expression of NF-κB p65, IκB, HO-1, and Nf-E2 related factor 2 (Nrf2) were measured by western blot analysis. The results showed that hyperoside significantly reduced the inflammatory cells infiltration and the levels of IL-4, IL-5, IL-13, and IgE. Hyperoside significantly inhibited OVA-induced oxidative stress as demonstrated by decreased MDA, and increased GSH and SOD levels. Treatment of hyperoside also inhibited OVA-induced airway hyperresponsiveness (AHR). Furthermore, the results showed that treatment of hyperoside significantly inhibited LPS-induced NF-κB activation. In addition, hyperoside was found to activate Nrf2/HO-1 signaling pathway. In conclusion, these results suggest that hyperoside ameliorates OVA-induced allergic airway inflammation by activating Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Peng Ye
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Xi-Liang Yang
- Pharmacy department of medical college, Wuhan University of Science and technology, Wuhan 430065, China
| | - Xing Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Cai Shi
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
75
|
Singh D, Tanwar H, Jayashankar B, Sharma J, Murthy S, Chanda S, Singh SB, Ganju L. Quercetin exhibits adjuvant activity by enhancing Th2 immune response in ovalbumin immunized mice. Biomed Pharmacother 2017; 90:354-360. [PMID: 28380410 DOI: 10.1016/j.biopha.2017.03.067] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/12/2017] [Accepted: 03/22/2017] [Indexed: 01/16/2023] Open
Abstract
Quercetin, one of the most abundant of plant flavonoids, has been studied with a great deal of attention over the last several decades mainly for its properties in inflammation and allergy. In this study, we are reporting for the first time the in vivo immunostimulatory activity of quercetin in ovalbumin immunized Balb/c mice. Administration of quercetin (50mg/kg body weight) along with ovalbumin antigen showed increased ovalbumin specific serum IgG antibody titres in comparison to the control group (p<0.05). Quercetin administration not only showed predominance of Th2 immune response by increasing the IgG1 antibody titres, but also increased the infiltration of CD11c+ dendritic cells in the mouse peritoneum and also increased LPS activated IL-1β and nitric oxide (NO) production by peritoneal macrophages. Expression of Tbx21, GATA-3 and Oct-2 proteins also enhanced in splenocytes of quercetin administered mice. Quercetin also did not cause any hemolysis in human RBCs. Overall, our findings strongly demonstrate the novel in vivo immunostimulatory and adjuvant potentials of quercetin.
Collapse
Affiliation(s)
- Divya Singh
- Defence Institute of Physiology & Allied Sciences (DIPAS), Delhi, India.
| | - Himanshi Tanwar
- Defence Institute of Physiology & Allied Sciences (DIPAS), Delhi, India
| | | | - Jyoti Sharma
- Defence Institute of Physiology & Allied Sciences (DIPAS), Delhi, India
| | - Swetha Murthy
- Defence Institute of Physiology & Allied Sciences (DIPAS), Delhi, India
| | - Sudipta Chanda
- Defence Institute of Physiology & Allied Sciences (DIPAS), Delhi, India
| | - Shashi Bala Singh
- Defence Institute of Physiology & Allied Sciences (DIPAS), Delhi, India
| | - Lilly Ganju
- Defence Institute of Physiology & Allied Sciences (DIPAS), Delhi, India
| |
Collapse
|
76
|
Rheb1 deletion in myeloid cells aggravates OVA-induced allergic inflammation in mice. Sci Rep 2017; 7:42655. [PMID: 28225024 PMCID: PMC5320517 DOI: 10.1038/srep42655] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 01/12/2017] [Indexed: 12/28/2022] Open
Abstract
The small GTPase ras homolog enriched in brain (Rheb) is a downstream target of tuberous sclerosis complex 1/2 (TSC1/2) and an upstream activator of the mechanistic target of rapamycin complex 1 (mTORC1), the emerging essential modulator of M1/M2 balance in macrophages. However, the role and regulatory mechanisms of Rheb in macrophage polarization and allergic asthma are not known. In the present study, we utilized a mouse model with myeloid cell-specific deletion of the Rheb1 gene and an ovalbumin (OVA)-induced allergic asthma model to investigate the role of Rheb1 in allergic asthma and macrophage polarization. Increased activity of Rheb1 and mTORC1 was observed in myeloid cells of C57BL/6 mice with OVA-induced asthma. In an OVA-induced asthma model, Rheb1-KO mice demonstrated a more serious inflammatory response, more mucus production, enhanced airway hyper-responsiveness, and greater eosinophil numbers in bronchoalveolar lavage fluid (BALF). They also showed increased numbers of bone marrow macrophages and BALF myeloid cells, elevated M2 polarization and reduced M1 polarization of macrophages. Thus, we have established that Rheb1 is critical for the polarization of macrophages and inhibition of allergic asthma. Deletion of Rheb1 enhances M2 polarization but decreases M1 polarization in alveolar macrophages, leading to the aggravation of OVA-induced allergic asthma.
Collapse
|
77
|
Shang S, Li J, Zhao Y, Xi Z, Lu Z, Li B, Yang X, Li R. Oxidized graphene-aggravated allergic asthma is antagonized by antioxidant vitamin E in Balb/c mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:1784-1793. [PMID: 27796986 DOI: 10.1007/s11356-016-7903-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 10/11/2016] [Indexed: 06/06/2023]
Abstract
Nanomaterials have been widely used in a number of applications; however, these nanomaterials may potentially be risky for human health, particularly for the respiratory system. In this study, we used a mouse asthma model to study whether graphene oxide (GO), a promising carbonaceous nanomaterial with unique physicochemical properties, aggravates allergic asthma via the oxidative stress pathway. Mice were sensitized with ovalbumin (OVA) to trigger immune reactions, while vitamin E (Ve) was administered as an antioxidant. Our results showed that GO aggravated OVA-induced allergic asthma in mice, as suggested by increased reactive oxygen species (ROS), elevated total immunoglobulin E (IgE), upregulated Th2 response, and the aggravation of allergic asthma symptoms, such as airway remolding, collagen deposition with mucus hypersecretion, and airway hyperresponsiveness (AHR). The administration of Ve dramatically attenuated all of the above effects. In conclusion, Ve showed anti-allergic properties in antagonizing the exacerbation of allergic asthma induced by GO, providing a new possibility for the treatment of allergic asthma.
Collapse
Affiliation(s)
- Shuai Shang
- Laboratory of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan, Hubei Province, 430079, China
| | - Jinquan Li
- Laboratory of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan, Hubei Province, 430079, China
- National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Yun Zhao
- Laboratory of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan, Hubei Province, 430079, China
| | - Zhuge Xi
- Institute of Health and Environmental Medicine, Dali Road, Heping District, Tianjin, 300050, People's Republic of China
| | - Zhisong Lu
- Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing, 400715, People's Republic of China
| | - Baizhan Li
- National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Xu Yang
- Laboratory of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan, Hubei Province, 430079, China.
| | - Rui Li
- Laboratory of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan, Hubei Province, 430079, China.
| |
Collapse
|
78
|
Malekar SA, Sarode AL, Bach AC, Worthen DR. The Localization of Phenolic Compounds in Liposomal Bilayers and Their Effects on Surface Characteristics and Colloidal Stability. AAPS PharmSciTech 2016; 17:1468-1476. [PMID: 26842800 DOI: 10.1208/s12249-016-0483-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/13/2016] [Indexed: 01/21/2023] Open
Abstract
The interactions with and effects of five chemically distinct, bioactive phenolic compounds on the lipid bilayers of model dipalmitoylphosphatidylcholine (DPPC) liposomes were investigated. Complementary analytical techniques, including differential scanning calorimetry (DSC) and phosphorus and proton nuclear magnetic resonance spectroscopy (NMR), were employed in order to determine the location of the compounds within the bilayer and to correlate location with their effects on bilayer characteristics and liposomal stability. As compared to the phenolic compounds localized in the glycerol region of the DPPC head group within the bilayer, which enhanced the colloidal stability of the liposomes, compounds located closer to the center of the bilayer reduced vesicle stability as a function of time. Molecules present in the upper region of liposomal DPPC acyl chains (C1-C10) inhibited liposomal aggregation and size increase, perhaps due to tighter packing of adjoining DPPC molecules and increased surface exposure of DPPC phosphate head groups. These data may be useful for designing liposomal systems containing hydrophobic phenols and other small molecules, selecting appropriate analytical methods for determining their location within liposomal bilayers, and predicting their effects on liposome characteristics early in the liposome formulation development process.
Collapse
|
79
|
Shamshuddin NSS, Mohd Zohdi R. Gelam honey attenuates ovalbumin-induced airway inflammation in a mice model of allergic asthma. J Tradit Complement Med 2016; 8:39-45. [PMID: 29321987 PMCID: PMC5755958 DOI: 10.1016/j.jtcme.2016.08.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/12/2016] [Accepted: 08/31/2016] [Indexed: 12/25/2022] Open
Abstract
Allergic asthma is a chronic inflammatory disorder of the pulmonary airways. Gelam honey has been proven to possess anti-inflammatory property with great potential to treat an inflammatory condition. However, the effect of ingestion of Gelam honey on allergic asthma has never been studied. This study aimed to investigate the efficacy of Gelam honey on the histopathological changes in the lungs of a mice model of allergic asthma. Forty-two Balb/c mice were divided into seven groups: control, I, II, III, IV, V and VI group. All groups except the control were sensitized and challenged with ovalbumin. Mice in groups I, II, III, IV, and V were given honey at a dose of 10% (v/v), 40% (v/v) and 80% (v/v), dexamethasone 3 mg/kg, and phosphate buffered saline (vehicle) respectively, orally once a day for 5 days of the challenged period. Mice were sacrificed 24 h after the last OVA challenged and the lungs were evaluated for histopathological changes by light microscopy. All histopathological parameters such as epithelium thickness, the number of mast cell and mucus expression in Group III significantly improved when compared to Group VI except for subepithelial smooth muscle thickness (p < 0.05). In comparing Group III and IV, all the improvements in histopathological parameters were similar. Also, Gelam honey showed a significant (p < 0.05) reduction in inflammatory cell infiltration and beta-hexosaminidase level in bronchoalveolar lavage fluid. In conclusion, we demonstrated that administration of high concentration of Gelam honey alleviates the histopathological changes of mice model of allergic asthma.
Collapse
Affiliation(s)
| | - Rozaini Mohd Zohdi
- Faculty of Pharmacy, Universiti Teknologi Mara (UiTM), 40450 Shah Alam, Selangor, Malaysia.,Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), 40450 Shah Alam, Selangor, Malaysia
| |
Collapse
|
80
|
Dussossoy E, Bichon F, Bony E, Portet K, Brat P, Vaillant F, Michel A, Poucheret P. Pulmonary anti-inflammatory effects and spasmolytic properties of Costa Rican noni juice (Morinda citrifolia L.). JOURNAL OF ETHNOPHARMACOLOGY 2016; 192:264-272. [PMID: 27451258 DOI: 10.1016/j.jep.2016.07.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 07/10/2016] [Accepted: 07/12/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Morinda citrifolia L. (Noni) is a medicinal plant used in Polynesia for many properties such as anti-inflammatory, anti-diabetic and antineoplastic effects. Recent studies showed that noni juice have anti-oxidant and acute anti-inflammatory activities likely due to polyphenols, iridoids and vitamin C content. The present study was undertaken to evaluate chronic anti-inflammatory and spasmolytic effects of noni juice. MATERIALS AND METHODS Therefore, we evaluated the effect of oral or intraperitoneal administrations of noni juice in vivo on the lung inflammation in ovalbumin (OVA) sensitized Brown Norway rat (with prednisolone 10mg/kg intraperitoneously as reference compound) and the ex vivo effect of noni juice on BaCl2 (calcium signal) or methacholine (cholinergic signal) induced spasms in jejunum segments. RESULTS We found that noni juice (intraperitoneously 2.17mL/kg and orally 4.55mL/kg) reduced the inflammation in OVA-sensitized Brown Norway rat with regard to the decreased number of inflammatory cells in lung (macrophages minus 20-26%, lymphocytes minus 58-34%, eosinophils minus 53-30%, neutrophils minus 70-28% respectively). Noni juice demonstrated a dose-dependent NO scavenging effect up to 8.1nmol of nitrites for 50µL of noni juice. In addition noni juice inhibited (up to 90%) calcium and cholinergic induced spasms on the jejunum segments model with a rightward shift of the concentration response curve. CONCLUSION We describe for the first time that noni juice demonstrate (1) a chronic anti-inflammatory activity on sensitized lungs along with (2) a spasmolytic effect integrating a calcium channel blocker activity component.
Collapse
Affiliation(s)
- Emilie Dussossoy
- Laboratoire de pharmacologie et physiopathologie expérimentales, UMR Qualisud, Faculté de pharmacie, Université Montpellier I, 15 avenue Charles Flahault, 34000 Montpellier, France.
| | - Florence Bichon
- Laboratoire de pharmacologie et physiopathologie expérimentales, UMR Qualisud, Faculté de pharmacie, Université Montpellier I, 15 avenue Charles Flahault, 34000 Montpellier, France.
| | - Emilie Bony
- Laboratoire de pharmacologie et physiopathologie expérimentales, UMR Qualisud, Faculté de pharmacie, Université Montpellier I, 15 avenue Charles Flahault, 34000 Montpellier, France.
| | - Karine Portet
- Laboratoire de pharmacologie et physiopathologie expérimentales, UMR Qualisud, Faculté de pharmacie, Université Montpellier I, 15 avenue Charles Flahault, 34000 Montpellier, France.
| | - Pierre Brat
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Département PERSYST, UMR Qualisud, TA B-95/16, 34398 Montpellier Cedex 5, France.
| | - Fabrice Vaillant
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Département PERSYST, UMR Qualisud, TA B-95/16, 34398 Montpellier Cedex 5, France.
| | - Alain Michel
- Laboratoire de pharmacologie et physiopathologie expérimentales, UMR Qualisud, Faculté de pharmacie, Université Montpellier I, 15 avenue Charles Flahault, 34000 Montpellier, France.
| | - Patrick Poucheret
- Laboratoire de pharmacologie et physiopathologie expérimentales, UMR Qualisud, Faculté de pharmacie, Université Montpellier I, 15 avenue Charles Flahault, 34000 Montpellier, France.
| |
Collapse
|
81
|
Liu X, Yu D, Wang T. Sappanone A Attenuates Allergic Airway Inflammation in Ovalbumin-Induced Asthma. Int Arch Allergy Immunol 2016; 170:180-6. [PMID: 27576536 DOI: 10.1159/000448331] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/12/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Sappanone A (SA) is isolated from the heartwood of Caesalpinia sappan and exerts a wide range of pharmacological activities. In the present study, we investigated the protective effects of SA on allergic asthma in a murine model of ovalbumin (OVA)-induced asthma. METHODS BALB/c mice were sensitized and challenged. Then, the mice were intraperitoneally injected with SA (12.5, 25 and 50 mg/kg) 1 h before OVA challenge; 24 h after the last challenge, the mice were sacrificed, and data were collected by different experimental methods. RESULTS The results showed that SA dose-dependently reduced inflammatory cell counts, levels of cytokines IL-4, IL-5 and IL-13, and OVA-specific IgE in bronchoalveolar lavage fluid. The level of IFN-γ decreased by OVA was upregulated by the treatment with SA. Furthermore, SA was found to attenuate the airway inflammation and mucus hypersecretion induced by the OVA challenge. In addition, SA dose-dependently upregulated the expression of Nrf2 and HO-1. SA inhibited OVA-induced asthma by activating the Nrf2 signaling pathway. CONCLUSIONS These data suggest that SA may have a potential use as a therapeutic agent for asthma.
Collapse
Affiliation(s)
- Xueshibojie Liu
- Departments of Otolaryngology, Head and Neck Surgery, 2nd Hospital Affiliated to Jilin University, Changchun, China
| | | | | |
Collapse
|
82
|
Lee E, Kim SG, Park NY, Park HH, Jeong KT, Choi J, Lee IH, Lee H, Kim KJ, Lee E. KOTMIN13, a Korean herbal medicine alleviates allergic inflammation in vivo and in vitro. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:169. [PMID: 27267050 PMCID: PMC4896024 DOI: 10.1186/s12906-016-1155-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/28/2016] [Indexed: 12/20/2022]
Abstract
Background The ethanol extract of KOTMIN13, composed of Inula japonica Flowers, Trichosanthes kirilowii Semen, Peucedanum praeruptorum Radix, and Allium macrostemon Bulbs, was investigated for its anti-asthmatic and anti-allergic activities. Methods The anti-asthmatic effects of KOTMIN13 were evaluated on ovalbumin (OVA)-induced murine asthma model. Anti-allergic properties of KOTMIN13 in bone-marrow derived mast cells (BMMC) and passive cutaneous anaphylaxis (PCA) in vivo were also examined. Results In asthma model, KOTMIN13 effectively suppressed airway hyperresponsiveness induced by aerosolized methacholine when compared to the levels of OVA-induced mice. KOTMIN13 treatment reduced the total leukocytes, eosinophil percentage, and Th2 cytokines in the bronchoalveolar lavage fluids in OVA-induced mice. The increased levels of eotaxin and Th2 cytokines in the lung as well as serum IgE were decreased by KOTMIN13. The histological analysis shows that the increased inflammatory cell infiltration and mucus secretion were also reduced. In addition, the degranulation and leukotriene C4 production were inhibited in BMMC with IC50 values of 3.9 μg/ml and 1.7 μg/ml, respectively. Furthermore, KOTMIN13 treatment attenuated mast-mediated PCA reaction. Conclusions These results demonstrate that KOTMIN13 has anti-asthmatic and anti-allergic effects in vivo and in vitro models.
Collapse
|
83
|
Sunder J, Sujatha T, Kundu A. Effect of Morinda citrifolia in growth, production and immunomodulatory properties in livestock and poultry: a review. ACTA ACUST UNITED AC 2016. [DOI: 10.18006/2016.4(3s).249.265] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
84
|
Mlcek J, Jurikova T, Skrovankova S, Sochor J. Quercetin and Its Anti-Allergic Immune Response. Molecules 2016; 21:E623. [PMID: 27187333 PMCID: PMC6273625 DOI: 10.3390/molecules21050623] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 12/29/2022] Open
Abstract
Quercetin is the great representative of polyphenols, flavonoids subgroup, flavonols. Its main natural sources in foods are vegetables such as onions, the most studied quercetin containing foods, and broccoli; fruits (apples, berry crops, and grapes); some herbs; tea; and wine. Quercetin is known for its antioxidant activity in radical scavenging and anti-allergic properties characterized by stimulation of immune system, antiviral activity, inhibition of histamine release, decrease in pro-inflammatory cytokines, leukotrienes creation, and suppresses interleukin IL-4 production. It can improve the Th1/Th2 balance, and restrain antigen-specific IgE antibody formation. It is also effective in the inhibition of enzymes such as lipoxygenase, eosinophil and peroxidase and the suppression of inflammatory mediators. All mentioned mechanisms of action contribute to the anti-inflammatory and immunomodulating properties of quercetin that can be effectively utilized in treatment of late-phase, and late-late-phase bronchial asthma responses, allergic rhinitis and restricted peanut-induced anaphylactic reactions. Plant extract of quercetin is the main ingredient of many potential anti-allergic drugs, supplements and enriched products, which is more competent in inhibiting of IL-8 than cromolyn (anti-allergic drug disodium cromoglycate) and suppresses IL-6 and cytosolic calcium level increase.
Collapse
Affiliation(s)
- Jiri Mlcek
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavreckova 275, CZ-760 01 Zlín, Czech Republic.
| | - Tunde Jurikova
- Institute for Teacher Training, Faculty of Central European Studies, Constantine the Philosopher University in Nitra, Drazovska 4, SK-949 74 Nitra, Slovakia.
| | - Sona Skrovankova
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavreckova 275, CZ-760 01 Zlín, Czech Republic.
| | - Jiri Sochor
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Valticka 337, CZ-691 44 Lednice, Czech Republic.
| |
Collapse
|
85
|
Zhao Y, Zhao Y, Li J, Zhang Y, Zhang L. HLA-DRB1*08:03:02 and HLA-DQB1*06:01:01 are associated with house dust mite-sensitive allergic rhinitis in Chinese subjects. Int Forum Allergy Rhinol 2016; 6:854-61. [PMID: 27013183 DOI: 10.1002/alr.21747] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/06/2016] [Accepted: 01/22/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Yanming Zhao
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital; Capital Medical University; Beijing China
| | - Yali Zhao
- Beijing Key Laboratory of Nasal Diseases; Beijing Institute of Otolaryngology; Beijing China
| | - Jingyun Li
- Beijing Key Laboratory of Nasal Diseases; Beijing Institute of Otolaryngology; Beijing China
| | - Yuan Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Nasal Diseases; Beijing Institute of Otolaryngology; Beijing China
- Department of Allergy, Beijing TongRen Hospital; Capital Medical University; Beijing China
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Nasal Diseases; Beijing Institute of Otolaryngology; Beijing China
- Department of Allergy, Beijing TongRen Hospital; Capital Medical University; Beijing China
| |
Collapse
|
86
|
Xu T, Zhou Y, Qiu L, Do DC, Zhao Y, Cui Z, Wang H, Liu X, Saradna A, Cao X, Wan M, Gao P. Aryl Hydrocarbon Receptor Protects Lungs from Cockroach Allergen-Induced Inflammation by Modulating Mesenchymal Stem Cells. THE JOURNAL OF IMMUNOLOGY 2015; 195:5539-50. [PMID: 26561548 DOI: 10.4049/jimmunol.1501198] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/19/2015] [Indexed: 12/19/2022]
Abstract
Exposure to cockroach allergen leads to allergic sensitization and increased risk of developing asthma. Aryl hydrocarbon receptor (AhR), a receptor for many common environmental contaminants, can sense not only environmental pollutants but also microbial insults. Mesenchymal stem cells (MSCs) are multipotent progenitor cells with the capacity to modulate immune responses. In this study, we investigated whether AhR can sense cockroach allergens and modulate allergen-induced lung inflammation through MSCs. We found that cockroach allergen-treated AhR-deficient (AhR(-/-)) mice showed exacerbation of lung inflammation when compared with wild-type (WT) mice. In contrast, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), an AhR agonist, significantly suppressed allergen-induced mouse lung inflammation. MSCs were significantly reduced in cockroach allergen-challenged AhR(-/-) mice as compared with WT mice, but increased in cockroach allergen-challenged WT mice when treated with TCDD. Moreover, MSCs express AhR, and AhR signaling can be activated by cockroach allergen with increased expression of its downstream genes cyp1a1 and cyp1b1. Furthermore, we tracked the migration of i.v.-injected GFP(+) MSCs and found that cockroach allergen-challenged AhR(-/-) mice displayed less migration of MSCs to the lungs compared with WT. The AhR-mediated MSC migration was further verified by an in vitro Transwell migration assay. Epithelial conditioned medium prepared from cockroach extract-challenged epithelial cells significantly induced MSC migration, which was further enhanced by TCDD. The administration of MSCs significantly attenuated cockroach allergen-induced inflammation, which was abolished by TGF-β1-neutralizing Ab. These results suggest that AhR plays an important role in protecting lungs from allergen-induced inflammation by modulating MSC recruitment and their immune-suppressive activity.
Collapse
Affiliation(s)
- Ting Xu
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD 21224; Department of Sleep Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China; and
| | - Yufeng Zhou
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Lipeng Qiu
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Danh C Do
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Yilin Zhao
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Zhuang Cui
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Heng Wang
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Xiaopeng Liu
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Arjun Saradna
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Xu Cao
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Mei Wan
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Peisong Gao
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD 21224;
| |
Collapse
|
87
|
Zhu Y, Li J, Wu Z, Lu Y, You H, Li R, Li B, Yang X, Duan L. Acute exposure of ozone induced pulmonary injury and the protective role of vitamin E through the Nrf2 pathway in Balb/c mice. Toxicol Res (Camb) 2015; 5:268-277. [PMID: 30090343 DOI: 10.1039/c5tx00259a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/05/2015] [Indexed: 11/21/2022] Open
Abstract
Ozone (O3) in the lower atmosphere is generally derived from various sources of human activity. It has become a major air pollutant in China and has been shown to adversely affect the health of humans and animals. We undertook a study to ascertain the molecular mechanism of ozone induced lung injury in mice and tried to demonstrate the protective mechanism of vitamin E. In this study, mice were exposed to clean air and three different concentrations of ozone. Oxidative stress (reactive oxygen species and malondialdehyde) and Th cytokines in the lung, serum IgE, as well as histopathological examination and the airway hyper-responsiveness (AHR) test were used to reflect inflammation and damage to the lungs of ozone-exposed mice. We then chose an effective concentration of ozone and combined treatment with vitamin E (VE) to explore the underlying mechanism of ozone-induced lung damage. The results of immunological and inflammatory biomarkers (total-immunoglobulin (Ig) E and Th cytokines) as well as histopathological examination and AHR assessment supported the notion that high doses of ozone (>0.5 ppm) could induce inflammation and lung injury in mice and that this induction was counteracted by concurrent administration of VE. The elimination of oxidative stress, the reduced Th2 responses and Ig production, and the relief of lung damage were proposed to explain the molecular mechanism of ozone induced lung injury. We also showed that VE, an antioxidant that enhanced the expression of Nrf2 and up-regulated the antioxidant genes HO-1 and NQO1, could decrease the levels of oxidative stress and alleviate ozone-induced lung injury.
Collapse
Affiliation(s)
- Yuqing Zhu
- College of Public Health , Zhengzhou University , Zhengzhou , China.,Section of Environmental Biomedicine , Hubei Key Laboratory of Genetic Regulation and Integrative Biology , College of Life Science , Central China Normal University , Wuhan , China . ; Tel: +86-13871361954
| | - Jinquan Li
- Section of Environmental Biomedicine , Hubei Key Laboratory of Genetic Regulation and Integrative Biology , College of Life Science , Central China Normal University , Wuhan , China . ; Tel: +86-13871361954.,Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment , Ministry of Education , Chongqing University , Chongqing 400045 , China
| | - Zhuo Wu
- Section of Environmental Biomedicine , Hubei Key Laboratory of Genetic Regulation and Integrative Biology , College of Life Science , Central China Normal University , Wuhan , China . ; Tel: +86-13871361954
| | - Yu Lu
- Section of Environmental Biomedicine , Hubei Key Laboratory of Genetic Regulation and Integrative Biology , College of Life Science , Central China Normal University , Wuhan , China . ; Tel: +86-13871361954
| | - Huihui You
- Section of Environmental Biomedicine , Hubei Key Laboratory of Genetic Regulation and Integrative Biology , College of Life Science , Central China Normal University , Wuhan , China . ; Tel: +86-13871361954
| | - Rui Li
- Section of Environmental Biomedicine , Hubei Key Laboratory of Genetic Regulation and Integrative Biology , College of Life Science , Central China Normal University , Wuhan , China . ; Tel: +86-13871361954
| | - Baizhan Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment , Ministry of Education , Chongqing University , Chongqing 400045 , China
| | - Xu Yang
- Section of Environmental Biomedicine , Hubei Key Laboratory of Genetic Regulation and Integrative Biology , College of Life Science , Central China Normal University , Wuhan , China . ; Tel: +86-13871361954
| | - Liju Duan
- College of Public Health , Zhengzhou University , Zhengzhou , China.,College of Public Health , Huazhong University of Science and Technology , Wuhan , China . ; Tel: +86-18768869690
| |
Collapse
|
88
|
Thatcher TH, Williams MA, Pollock SJ, McCarthy CE, Lacy SH, Phipps RP, Sime PJ. Endogenous ligands of the aryl hydrocarbon receptor regulate lung dendritic cell function. Immunology 2015; 147:41-54. [PMID: 26555456 DOI: 10.1111/imm.12540] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/28/2015] [Accepted: 10/01/2015] [Indexed: 02/06/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a transcription factor that has been extensively studied as a regulator of toxicant metabolism. However, recent evidence indicates that the AhR also plays an important role in immunity. We hypothesized that the AhR is a novel, immune regulator of T helper type 2 (Th2) -mediated allergic airway disease. Here, we report that AhR-deficient mice develop increased allergic responses to the model allergen ovalbumin (OVA), which are driven in part by increased dendritic cell (DC) functional activation. AhR knockout (AhR(-/-) ) mice sensitized and challenged with OVA develop an increased inflammatory response in the lung compared with wild-type controls, with greater numbers of inflammatory eosinophils and neutrophils, greater T-cell proliferation, greater production of Th2 cytokines, and higher levels of OVA-specific IgE and IgG1. Lung DCs from AhR(-/-) mice stimulated antigen-specific proliferation and Th2 cytokine production by naive T cells in vitro. Additionally, AhR(-/-) DCs produced higher levels of tumour necrosis factor-α and interleukin-6, which promote Th2 differentiation, and expressed higher cell surface levels of stimulatory MHC Class II and CD86 molecules. Overall, loss of the AhR was associated with enhanced T-cell activation by pulmonary DCs and heightened pro-inflammatory allergic responses. This suggests that endogenous AhR ligands are involved in the normal regulation of Th2-mediated immunity in the lung via a DC-dependent mechanism. Therefore, the AhR may represent an important target for therapeutic intervention in allergic airways inflammation.
Collapse
Affiliation(s)
- Thomas H Thatcher
- Division of Pulmonary and Critical Care Medicine, University of Rochester, Rochester, NY, USA
| | - Marc A Williams
- Division of Pulmonary and Critical Care Medicine, University of Rochester, Rochester, NY, USA.,Department of Environmental Medicine, University of Rochester, Rochester, NY, USA
| | - Stephen J Pollock
- Department of Environmental Medicine, University of Rochester, Rochester, NY, USA.,Lung Biology and Disease Program, University of Rochester, Rochester, NY, USA
| | - Claire E McCarthy
- Department of Environmental Medicine, University of Rochester, Rochester, NY, USA
| | - Shannon H Lacy
- Department of Environmental Medicine, University of Rochester, Rochester, NY, USA
| | - Richard P Phipps
- Department of Environmental Medicine, University of Rochester, Rochester, NY, USA.,Lung Biology and Disease Program, University of Rochester, Rochester, NY, USA
| | - Patricia J Sime
- Division of Pulmonary and Critical Care Medicine, University of Rochester, Rochester, NY, USA.,Department of Environmental Medicine, University of Rochester, Rochester, NY, USA.,Lung Biology and Disease Program, University of Rochester, Rochester, NY, USA
| |
Collapse
|
89
|
Mann S, Sharma A, Biswas S, Gupta RK. Identification and molecular docking analysis of active ingredients with medicinal properties from edible Baccaurea sapida. Bioinformation 2015; 11:437-43. [PMID: 26527853 PMCID: PMC4620621 DOI: 10.6026/97320630011437] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/26/2015] [Accepted: 06/26/2015] [Indexed: 11/26/2022] Open
Abstract
Underutilized plant species has started changing the conception of plants by expanding the use well beyond from foods and fibers to rich source of medicinally important secondary metabolites. Bioactive compounds from natural sources are gaining importance as potential drug candidates towards many inflammatory conditions like Rheumatoid Arthritis (RA). The focus of the present study has been centred to reveal the anti-inflammatory potential of an underutilized fruits of B. sapida. Further efforts towards its medicinal significance may provide relieve from symptoms of RA by reducing the side effects that are observed in available medications. Total 10 compounds in fruit crude methanol extract were identified and quantified by LC-MS/MS analysis followed by the agar well diffusion method for their anti microbial activity. Among all studied micro organism S. aureus was found to surmount the inflammation in RA through domain B of surface protein A (Staphylococcal surface protein A). Identified compounds (having anti-inflammatory properties) were scrutinized for their toxicity and quantitative structure-activity relationship (QSAR) using lazer toxicity and Molinspiration servers respectively. Further, docking studies have been carried out between domain B and studied compounds using AutoDock. Out of 6 anti-inflammtory compounds, quercetin has been identified as the most potent compound in reference to its inhibitory constant (47.01) and binding energy (-5.90 kcal/mol) to bacterial protein. Our data suggest that methanol extract of B. sapida fruit posses medicinally significant anti-inflammatory compounds and thus justifies the use of this fruit as folklore medicine for preventing inflammation related diseases.
Collapse
Affiliation(s)
- Sonia Mann
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi - 110078, India
| | - Ankita Sharma
- CSIRInstitute of Genomics & Integrative Biology, Mall Road, Delhi-110007, India
| | - Sagarika Biswas
- CSIRInstitute of Genomics & Integrative Biology, Mall Road, Delhi-110007, India
| | - Rajinder K Gupta
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi - 110078, India
| |
Collapse
|
90
|
Kim KH, Choung SY. Oral administration of Vaccinium uliginosum L. extract alleviates DNCB-induced atopic dermatitis in NC/Nga mice. J Med Food 2015; 17:1350-60. [PMID: 25260029 DOI: 10.1089/jmf.2013.3053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic relapsing inflammatory skin disease that responds to the interplay of environmental, immunological, and genetic factors. To explore the effect of Vaccinium uliginosum (VU) extract on AD, we orally administrated VU total water extract to AD-induced NC/Nga mice. VU extract reduced AD-like skin lesions, ear thickness, and the frequency of scratching episodes in a time-dependent manner. VU also suppressed the levels of IgE and histamine and the ratio of IgG1/IgG2a in the serum of AD-induced NC/Nga mice. VU administration resulted in the reduction of splenic cytokine production, epidermal thickening, and the infiltration of eosinophils, mast cells, and degranulated mast cells induced by 2,4-dinitrochlorobenzene (DNCB). In addition, VU significantly reduced the mRNA expression of chemokine ligands in dorsal skin. Total water extract and subfractions of VU inhibited interleukin (IL)-4 production in splenocytes, suggesting that VU total extract has a Th2 cytokine modulating effect. These results suggest that the VU total water extract could be a candidate therapeutic agent for the treatment of AD through an immunoregulatory effect.
Collapse
Affiliation(s)
- Kang-Hyun Kim
- Department of Preventive Pharmacy and Toxicology, College of Pharmacy, Kyung Hee University , Seoul, Korea
| | | |
Collapse
|
91
|
Furue M, Tsuji G, Mitoma C, Nakahara T, Chiba T, Morino-Koga S, Uchi H. Gene regulation of filaggrin and other skin barrier proteins via aryl hydrocarbon receptor. J Dermatol Sci 2015; 80:83-8. [PMID: 26276439 DOI: 10.1016/j.jdermsci.2015.07.011] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/10/2015] [Accepted: 07/21/2015] [Indexed: 12/14/2022]
Abstract
Aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor that binds to structurally diverse chemicals including dioxins, coal tar, flavonoids and tryptophan photoproducts. Upon ligation, cytoplasmic AHR translocates to the nucleus, heterodimerizes with aryl hydrocarbon receptor nuclear translocator and mediates numerous biological effects by inducing the transcription of various AHR-responsive genes such as epidermal barrier proteins. The activation of AHR usually generates oxidative stress. However, AHR also mediates antioxidant signaling by a plethora of ligands via nuclear factor-erythroid 2-related factor-2. Both oxidative and antioxidant ligands upregulate the expression of the filaggrin gene. We review the role of AHR signaling in the gene regulation of epidermal barrier proteins.
Collapse
Affiliation(s)
- Masutaka Furue
- Department of Dermatology, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan; Research and Clinical Center for Yusho and Dioxin, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan; Division of Skin Surface Sensing, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan.
| | - Gaku Tsuji
- Department of Dermatology, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan; Research and Clinical Center for Yusho and Dioxin, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan
| | - Chikage Mitoma
- Department of Dermatology, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan; Research and Clinical Center for Yusho and Dioxin, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan
| | - Takeshi Nakahara
- Department of Dermatology, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan; Division of Skin Surface Sensing, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan
| | - Takahito Chiba
- Department of Dermatology, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan
| | - Saori Morino-Koga
- Research and Clinical Center for Yusho and Dioxin, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan; Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan
| | - Hiroshi Uchi
- Department of Dermatology, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan
| |
Collapse
|
92
|
Shi JP, Li XN, Zhang XY, Du B, Jiang WZ, Liu MY, Wang JJ, Wang ZG, Ren H, Qian M. Gpr97 Is Dispensable for Inflammation in OVA-Induced Asthmatic Mice. PLoS One 2015; 10:e0131461. [PMID: 26132811 PMCID: PMC4489018 DOI: 10.1371/journal.pone.0131461] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 06/02/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Asthma is a complex inflammatory disorder involving the activation and invasion of various immune cells. GPR97 is highly expressed in some immunocytes, including mast cells and eosinophils, which play critical roles in asthma development. However, the role of Gpr97 in regulating airway inflammation in asthma has rarely been reported. In this study, we investigated the potential role of Gpr97 in the development of allergic asthma in mice. METHODS Relevant airway asthmatic mouse models were constructed with both wild-type and Gpr97-/- mice sensitized to 250 μg ovalbumin (OVA). The levels of interleukin IL-4, IL-6 and IFN-γ, which are involved in OVA-induced asthma, in the bronchoalveolar lavage fluid (BALF) and the IgE level in the serum were examined by enzyme-linked immunosorbent assay (ELISA). The invasion of mast cells and eosinophils into lung tissues was assessed by immunohistochemical and eosinophil peroxidase activity assays, respectively. Goblet cell hyperplasia and mucus production were morphologically evaluated with periodic acid-Schiff (PAS) staining. RESULTS In our study, no obvious alteration in the inflammatory response or airway remodeling was found in the Gpr97-deficient mice with OVA-induced asthma. Neither the secretion of cytokines, including IL-4, IL-6 and IFN-γ, nor inflammatory cell recruitment was altered in the Gpr97-deficient mice. Moreover, Gpr97 deficiency did not affect airway remodeling or mucus production in the asthma mouse model. CONCLUSION Our findings imply that Gpr97 might not be required for the development of airway inflammation in OVA-induced allergic asthma in mice.
Collapse
Affiliation(s)
- Jue-ping Shi
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
- Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiao-ning Li
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
- Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiao-yu Zhang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
- Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Bing Du
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
- Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Wen-zheng Jiang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
- Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Ming-yao Liu
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
- Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Jin-jin Wang
- Shanghai Research Center for Model Organisms, Shanghai, China
| | - Zhu-gang Wang
- Shanghai Research Center for Model Organisms, Shanghai, China
| | - Hua Ren
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
- Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Min Qian
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
- Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
93
|
Muhammad SA, Fatima N. In silico analysis and molecular docking studies of potential angiotensin-converting enzyme inhibitor using quercetin glycosides. Pharmacogn Mag 2015; 11:S123-6. [PMID: 26109757 PMCID: PMC4461951 DOI: 10.4103/0973-1296.157712] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/26/2014] [Accepted: 05/27/2015] [Indexed: 11/04/2022] Open
Abstract
The purpose of this study was to analyze the inhibitory action of quercetin glycosides by computational docking studies. For this, natural metabolite quercetin glycosides isolated from buckwheat and onions were used as ligand for molecular interaction. The crystallographic structure of molecular target angiotensin-converting enzyme (ACE) (peptidyl-dipeptidase A) was obtained from PDB database (PDB ID: 1O86). Enalapril, a well-known brand of ACE inhibitor was taken as the standard for comparative analysis. Computational docking analysis was performed using PyRx, AutoDock Vina option based on scoring functions. The quercetin showed optimum binding affinity with a molecular target (angiotensin-converting-enzyme) with the binding energy of -8.5 kcal/mol as compared to the standard (-7.0 kcal/mol). These results indicated that quercetin glycosides could be one of the potential ligands to treat hypertension, myocardial infarction, and congestive heart failure.
Collapse
Affiliation(s)
- Syed Aun Muhammad
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Nighat Fatima
- Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| |
Collapse
|
94
|
Wang J, Jin RG, Xiao L, Wang QJ, Yan TH. Anti-asthma effects of synthetic salidroside through regulation of Th1/Th2 balance. Chin J Nat Med 2015; 12:500-4. [PMID: 25053548 DOI: 10.1016/s1875-5364(14)60078-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Indexed: 10/25/2022]
Abstract
AIM The aim of the study was to investigate the effect and mechanism of action of synthetic salidroside in an ovalbumin (OVA)-induced asthma model in mice. METHOD BALB/c mice were sensitized with an intraperitoneal injection of ovalbumin (OVA) to induce a mouse model of asthma in paracmasis. The mice were treated with dexamethasone as the positive control. At the end of the study, respiratory reactivity was detected, the numbers of various kinds of white blood cells in the bronchoalveolar lavage fluid (BALF) were counted, and the levels of IL-4 and INF-γ in BALF were determined. Quantitative PCR was used to detect the mRNA contents of IL-4 and INF-γ in lung tissue. Histologic examination was performed to observe inflammatory cellular infiltration. RESULTS Salidroside treatment virtually eliminated airway hyper-reactivity, markedly reduced the eosinophil percent, obviously reduced the levels of IL-4 and raised INF-γ in the bronchoalveolar lavage fluid (BALF) compared with the sham-treated group. Quantitative PCR on the mRNA content of IL-4 and INF-γ provided confirmation. Lung histologic observations showed that salidroside reduced inflammation and edema. These effects were equivalent to the effects of dexamethasone. CONCLUSION Synthetic salidroside exhibits an anti-asthma effect which is related to the regulation of Th1/Th2 balance. This provides a new possibility for treatment of allergic asthma.
Collapse
Affiliation(s)
- Jing Wang
- Department of Physiology and Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| | - Rong-Guang Jin
- Department of Physiology and Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| | - Lu Xiao
- Department of Physiology and Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| | - Qiu-Juan Wang
- Department of Physiology and Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| | - Tian-Hua Yan
- Department of Physiology and Pharmacology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
95
|
Ang LF, Yam MF, Fung YTT, Kiang PK, Darwin Y. HPLC method for simultaneous quantitative detection of quercetin and curcuminoids in traditional chinese medicines. J Pharmacopuncture 2015; 17:36-49. [PMID: 25780718 PMCID: PMC4332001 DOI: 10.3831/kpi.2014.17.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 10/16/2014] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVES Quercetin and curcuminoids are important bioactive compounds found in many herbs. Previously reported high performance liquid chromatography ultraviolet (HPLC-UV) methods for the detection of quercetin and curcuminoids have several disadvantages, including unsatisfactory separation times and lack of validation according the standard guidelines of the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. METHODS A rapid, specific, reversed phase, HPLC-UV method with an isocratic elution of acetonitrile and 2% v/v acetic acid (40% : 60% v/v) (pH 2.6) at a flow rate of 1.3 mL/minutes, a column temperature of 35°C, and ultraviolet (UV) detection at 370 nm was developed. The method was validated and applied to the quantification of different types of market available Chinese medicine extracts, pills and tablets. RESULTS The method allowed simultaneous determination of quercetin, bisdemethoxycurcumin, demethoxycurcumin and curcumin in the concentration ranges of 0.00488 ─ 200 μg/mL, 0.625 ─ 320 μg/mL, 0.07813 ─ 320 μg/mL and 0.03906 ─ 320 μg/mL, respectively. The limits of detection and quantification, respectively, were 0.00488 and 0.03906 μg/mL for quercetin, 0.62500 and 2.50000 μg/mL for bisdemethoxycurcumin, 0.07813 and 0.31250 μg/mL for demethoxycurcumin, and 0.03906 and 0.07813 μg/mL for curcumin. The percent relative intra day standard deviation (% RSD) values were 0.432 ─ 0.806 μg/mL, 0.576 ─ 0.723 μg/mL, 0.635 ─ 0.752 μg/mL and 0.655 ─ 0.732 μg/mL for quercetin, bisdemethoxycurcumin, demethoxycurcumin and curcumin, respectively, and those for intra day precision were 0.323 ─ 0.968 μg/mL, 0.805 ─ 0.854 μg/mL, 0.078 ─ 0.844 μg/mL and 0.275 ─ 0.829 μg/mL, respectively. The intra day accuracies were 99.589% ─ 100.821%, 98.588% ─ 101.084%, 9.289% ─ 100.88%, and 98.292% ─ 101.022% for quercetin, bisdemethoxycurcumin, demethoxycurcumin and curcumin, respectively, and the inter day accuracy were 99.665% ─ 103.06%, 97.669% ─ 103.513%, 99.569% ─ 103.617%, and 97.929% ─ 103.606%, respectively. CONCLUSION The method was found to be simple, accurate and precise and is recommended for routine quality control analysis of commercial Chinese medicine products containing the flour flavonoids as their principle components in the extracts.
Collapse
Affiliation(s)
- Lee Fung Ang
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Mun Fei Yam
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Yvonne Tan Tze Fung
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Peh Kok Kiang
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Yusrida Darwin
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| |
Collapse
|
96
|
Oliveira TT, Campos KM, Cerqueira-Lima AT, Cana Brasil Carneiro T, da Silva Velozo E, Ribeiro Melo ICA, Figueiredo EA, de Jesus Oliveira E, de Vasconcelos DFSA, Pontes-de-Carvalho LC, Alcântara-Neves NM, Figueiredo CA. Potential therapeutic effect of Allium cepa L. and quercetin in a murine model of Blomia tropicalis induced asthma. ACTA ACUST UNITED AC 2015; 23:18. [PMID: 25890178 PMCID: PMC4344790 DOI: 10.1186/s40199-015-0098-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 01/23/2015] [Indexed: 11/10/2022]
Abstract
BACKGROUND Asthma is an inflammatory condition characterized by airway hyperresponsiveness and chronic inflammation. The resolution of inflammation is an essential process to treat this condition. In this study we investigated the effect of Allium cepa L. extract (AcE) and quercetin (Qt) on cytokine and on smooth muscle contraction in vitro and its therapeutic potential in a murine model of asthma. METHODS AcE was obtained by maceration of Allium cepa L. and it was standardized in terms of quercetin concentration using high performance liquid chromatography (HPLC). In vitro, using AcE 10, 100 or 1000 μg/ml or Qt 3.5, 7.5, 15 μg/ml, we measured the concentration of cytokines in spleen cell culture supernatants, and the ability to relax tracheal smooth muscle from A/J mice. In vivo, Blomia tropicalis (BT)-sensitized A/J mice were treated with AcE 100, 1000 mg/kg or 30 mg/kg Qt. We measured cell influx in bronchoalveolar lavage (BAL), eosinophil peroxidase (EPO) in lungs, serum levels of Bt-specific IgE, cytokines levels in BAL, and lung histology. RESULTS We observed a reduction in the production of inflammatory cytokines, a relaxation of tracheal rings, and a reduction in total number of cells in BAL and EPO in lungs by treatment with AcE or Qt. CONCLUSION AcE and Qt have potential as antiasthmatic drugs, as they possess both immunomodulatory and bronchodilatory properties.
Collapse
Affiliation(s)
| | - Keina Maciele Campos
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Christapher PV, Parasuraman S, Christina JMA, Asmawi MZ, Vikneswaran M. Review on Polygonum minus. Huds, a commonly used food additive in Southeast Asia. Pharmacognosy Res 2015; 7:1-6. [PMID: 25598627 PMCID: PMC4285636 DOI: 10.4103/0974-8490.147125] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 07/17/2014] [Accepted: 12/17/2014] [Indexed: 11/08/2022] Open
Abstract
Polygonum minus (Polygonaceae), generally known as ‘kesum’ in Malaysia is among the most commonly used food additive, flavoring agent and traditionally used to treat stomach and body aches. Raw or cooked leaves of P. minus are used in digestive disorders in the form of a decoction and the oil is used for dandruff. The pharmacological studies on P. minus have demonstrated antioxidant, in vitro LDL oxidation inhibition, antiulcer activity, analgesic activity, anti-inflammatory activity, in vitro antiplatelet aggregation activity, antimicrobial activity, digestive enhancing property and cytotoxic activity. The spectroscopic studies of essential oil of P. minus showed the presence of about 69 compounds, which are responsible for the aroma. The phytochemical studies showed presence of flavonoids and essential oils. This review is an effort to update the botanical, phytochemical, pharmacological and toxicological data of the plant P. minus.
Collapse
Affiliation(s)
- Parayil Varghese Christapher
- Unit of Pharmacology, Faculty of Pharmacy, AIMST University, Semeling, Bedong ; School of Pharmaceutical Sciences, University Sains Malaysia, Pulau Pinang, Malaysia
| | | | | | - Mohd Zaini Asmawi
- School of Pharmaceutical Sciences, University Sains Malaysia, Pulau Pinang, Malaysia
| | | |
Collapse
|
98
|
Seyedrezazadeh E, Kolahian S, Shahbazfar AA, Ansarin K, Pour Moghaddam M, Sakhinia M, Sakhinia E, Vafa M. Effects of the flavanone combination hesperetin-naringenin, and orange and grapefruit juices, on airway inflammation and remodeling in a murine asthma model. Phytother Res 2015; 29:591-8. [PMID: 25640915 DOI: 10.1002/ptr.5292] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/11/2014] [Accepted: 12/05/2014] [Indexed: 12/15/2022]
Abstract
We investigated whether flavanones, hesperetin-naringenin, orange, and grapefruit juices reduce airway inflammation and remodeling in murine chronic asthma model. To establish chronic asthma, mice received house dust mite (HDM) for 3 days in 2 weeks, followed by twice per week for 4 weeks. Concurrently, during the last 4 weeks, mice received hesperetin plus naringenin (HN), orange plus grapefruit juice (OGJ), orange juice (OJ), or grapefruit juice (GJ); whereas the asthmatic control (AC) group and non-asthmatic control (NC) group consumed water ad libitum. In histopathological examination, no goblet cells metaplasia was observed in the HN, OJ, and GJ groups; also, intra-alveolar macrophages decreased compared with those of the AC group. Hesperetin plus naringenin significantly decreased subepithelial fibrosis, smooth muscle hypertrophy in airways, and lung atelectasis compared with the AC group. Also, there was a reduction of subepithelial fibrosis in airways in OJ and GJ groups compared with AC group, but it was not noticed in OGJ group. In bronchoalveolar lavage fluid, macrophages numbers decreased in OJ and OGJ groups, whereas eosinophil numbers were increased in OJ group compared with NC group. Our finding revealed that hesperetin plus naringenin ameliorate airway structural remodeling more than orange juice and grapefruit juice in murine model of HDM-induced asthma.
Collapse
Affiliation(s)
- Ensiyeh Seyedrezazadeh
- School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Park EJ, Kim JY, Jeong MS, Park KY, Park KH, Lee MW, Joo SS, Seo SJ. Effect of topical application of quercetin-3-O-(2″-gallate)-α-l-rhamnopyranoside on atopic dermatitis in NC/Nga mice. J Dermatol Sci 2015; 77:166-72. [PMID: 25617237 DOI: 10.1016/j.jdermsci.2014.12.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 11/11/2014] [Accepted: 12/22/2014] [Indexed: 02/01/2023]
Abstract
BACKGROUND Quercetin-3-O-(2″-gallate)-α-l-rhamnopyranoside (QGR) is a new quercetin derivative which is isolated from the leaves of Acer ginnala Maxim, a native plant of Korea. Quercetin has several biological effects including antioxidative, anti-inflammatory, and anti-allergic effects. However, the topical effect of QGR on atopic dermatitis (AD) like skin lesion in NC/Nga mice has not been studied. OBJECTIVE To evaluate the anti-inflammatory and anti-allergic effect of QGR in a murine model of atopic dermatitis. METHODS We measured inducible nitric oxide synthase (iNOS) and cyclooxygenase -2(COX-2) level in RAW264.7 cell with QGR treatment. And after induction of AD like skin lesions with Dermatophagoides farina (Df) ointment, mice were treated with QGR and control drugs. Clinical scores, interleukin (IL) 4, 5, and 13, serum IgE, eosinophil levels, iNOS and COX-2 level were evaluated. RESULTS Results show that mRNA level of iNOS and COX-2 in vitro were decreased after QGR treatment. Topical QGR markedly decreased the iNOS and COX-2 mRNA expressions in the skin. QGR also significantly suppressed the increase in the level of total plasma IgE and eosinophils. In addition, topical application of QGR down-regulated the expressions of the cytokines, IL-4,5 and 13, which were induced by Df ointment stimulation. CONCLUSIONS In the present study, we showed that topical application of QGR ameliorated Df-induced AD-like inflammatory responses in NC/Nga mice. These results demonstrate that QGR might be beneficial in the treatment of AD.
Collapse
Affiliation(s)
- Eun Joo Park
- College of Medicine, Department of Dermatology, Hallym University College of Medicine, Anyang, South Korea
| | - Ji-Yun Kim
- Institute of Atopic Dermatitis, Department of Dermatology, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Mi Sook Jeong
- Institute of Atopic Dermatitis, Department of Dermatology, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Kui Young Park
- Institute of Atopic Dermatitis, Department of Dermatology, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Kwan Hee Park
- College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Min Won Lee
- College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Seong Soo Joo
- Division of Marine Molecular Biotechnology, Gangneung-Wonju National University, Gangneung, South Korea
| | - Seong Jun Seo
- Institute of Atopic Dermatitis, Department of Dermatology, Chung-Ang University College of Medicine, Seoul, South Korea.
| |
Collapse
|
100
|
Wang WR, Li A, Mei W, Zhu RR, Li K, Sun XY, Qian YC, Wang SL. Dexamethasone sodium phosphate intercalated layered double hydroxides and their therapeutic efficacy in a murine asthma model. RSC Adv 2015. [DOI: 10.1039/c4ra09977j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Schematic diagram showing the intercalation of Dexa into the MgAl–LDH interlayers.
Collapse
Affiliation(s)
- Wen-Rui Wang
- Research Center for Translational Medicine at East Hospital
- School of Life Science and Technology
- Tongji University
- Shanghai
- PR China
| | - Ang Li
- Research Center for Translational Medicine at East Hospital
- School of Life Science and Technology
- Tongji University
- Shanghai
- PR China
| | - Wei Mei
- Research Center for Translational Medicine at East Hospital
- School of Life Science and Technology
- Tongji University
- Shanghai
- PR China
| | - Rong-Rong Zhu
- Research Center for Translational Medicine at East Hospital
- School of Life Science and Technology
- Tongji University
- Shanghai
- PR China
| | - Kun Li
- Research Center for Translational Medicine at East Hospital
- School of Life Science and Technology
- Tongji University
- Shanghai
- PR China
| | - Xiao-Yu Sun
- Research Center for Translational Medicine at East Hospital
- School of Life Science and Technology
- Tongji University
- Shanghai
- PR China
| | - Ye-Chang Qian
- Department of Respiratory Medicine
- Shanghai Baoshan Central Hospital
- Shanghai
- PR China
| | - Shi-Long Wang
- Research Center for Translational Medicine at East Hospital
- School of Life Science and Technology
- Tongji University
- Shanghai
- PR China
| |
Collapse
|