51
|
Shin MJ, Kim DW, Choi YJ, Cha HJ, Lee SH, Lee S, Park J, Han KH, Eum WS, Choi SY. PEP-1-GLRX1 Protein Exhibits Anti-Inflammatory Effects by Inhibiting the Activation of MAPK and NF-κB Pathways in Raw 264.7 Cells. BMB Rep 2020. [PMID: 31964467 PMCID: PMC7061214 DOI: 10.5483/bmbrep.2020.53.2.180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glutaredoxin 1 (GLRX1) has been recognized as an important regulator of redox signaling. Although GLRX1 plays an essential role in cell survival as an antioxidant protein, the function of GLRX1 protein in inflammatory response is still under investigation. Therefore, we wanted to know whether transduced PEP-1-GLRX1 protein inhibits lipopolysaccharide (LPS)- and 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced inflammation. In LPS-exposed Raw 264.7 cells, PEP-1-GLRX1 inhibited cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), activation of mitogen activated protein kinases (MAPKs) and nuclear factor-kappaB (NF-βB) expression levels. In a TPA-induced mouse-ear edema model, topically applied PEP-1-GLRX1 transduced into ear tissues and significantly ameliorated ear edema. Our data reveal that PEP-1-GLRX1 attenuates inflammation in vitro and in vivo, suggesting that PEP-1-GLRX1 may be a potential therapeutic protein for inflammatory diseases.
Collapse
Affiliation(s)
- Min Jea Shin
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Korea
| | - Yeon Joo Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Hyun Ju Cha
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Sung Ho Lee
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
- Genesen Inc., Seoul 06181, Korea
| | - Sunghou Lee
- Department of Green Chemical Engineering, Sangmyung University, Cheonan 31066, Korea
| | - Jinseu Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Kyu Hyung Han
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Won Sik Eum
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
52
|
New 2-amino-pyridinyl-N-acylhydrazones: Synthesis and identification of their mechanism of anti-inflammatory action. Biomed Pharmacother 2020; 123:109739. [PMID: 31918210 DOI: 10.1016/j.biopha.2019.109739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/06/2019] [Accepted: 12/08/2019] [Indexed: 12/18/2022] Open
Abstract
AIMS The main aim of this paper was the synthesis and the evaluation of the anti-inflammatory activity of LASSBio-1828 (an amino-pyridinyl-N-acylhydrazone) and its respective hydrochloride, based on a p38α MAPK inhibitor (LASSBio-1824) previously synthesized by our group. MAIN METHODS The compounds were tested regarding their cell viability effect and on acute models of inflammation such as formalin-induced licking test, cell migration and inflammatory mediators quantification. KEY FINDINGS Treatment with the compounds inhibited p38α, reduced inflammatory pain, cell migration and inflammatory mediators that participate on the MAPK pathway such as TNF-α and IL-1β. SIGNIFICANCE Taken together, these results suggest that the synthesis of the corresponding hydrochloride of LASSBio-1828 enhanced its potency as a p38 inhibitor, and also that this compound could be considered a good anti-inflammatory drug candidate after further studies.
Collapse
|
53
|
TRIM59 expression is regulated by Sp1 and Nrf1 in LPS-activated macrophages through JNK signaling pathway. Cell Signal 2019; 67:109522. [PMID: 31883458 DOI: 10.1016/j.cellsig.2019.109522] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/23/2019] [Accepted: 12/23/2019] [Indexed: 12/19/2022]
Abstract
Activated macrophages play an important role in many inflammatory diseases including septic shock and atherosclerosis. TRIM59 has been showed to participate in many pathological processes, such as inflammation, cytotoxicity and tumorigenesis. However, the molecular mechanisms controlling its expression in activated macrophages are not fully understood. Here we report that TRIM59 expression is regulated by Sp1 and Nrf1 in LPS-activated macrophages. TRIM59 is highly expressed in macrophages, and markedly decreased by LPS stimuli in vivo and in vitro. TRIM59 promoter activity is also significantly suppressed by LPS and further analysis demonstrated that Sp1 and Nrf1 directly bound to the proximal promoter of TRIM59 gene. LPS treatment significantly decreased Sp1 expression, nuclear translocation and reduced its binding to the promoter, whereas increased Nrf1 expression, nuclear translocation and enhanced its binding to the promoter. Moreover, LPS-decreased TRIM59 expression was reversed by JNK inhibitor. Finally, TRIM59 level is significantly decreased during atherosclerosis progression. Taken together, our results demonstrated that TRIM59 expression was precisely regulated by Sp1 and Nrf1 in LPS-activated macrophages, which may be dependent on the activation of JNK signaling pathway and TRIM59 may be a potential therapeutic target for inflammatory diseases such as atherosclerosis.
Collapse
|
54
|
Lu C, Xie T, Guo X, Wu D, Li S, Li X, Lu Y, Wang X. Glucagon-like peptide-1 receptor agonist exendin-4 mitigates lipopolysaccharide-induced inflammatory responses in RAW264.7 macrophages. Int Immunopharmacol 2019; 77:105969. [DOI: 10.1016/j.intimp.2019.105969] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/02/2019] [Accepted: 10/07/2019] [Indexed: 02/06/2023]
|
55
|
Dihydroberberine, a hydrogenated derivative of berberine firstly identified in Phellodendri Chinese Cortex, exerts anti-inflammatory effect via dual modulation of NF-κB and MAPK signaling pathways. Int Immunopharmacol 2019; 75:105802. [DOI: 10.1016/j.intimp.2019.105802] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/11/2019] [Accepted: 07/31/2019] [Indexed: 01/13/2023]
|
56
|
Zhou J, Gu X, Fan X, Zhou Y, Wang H, Si N, Yang J, Bian B, Zhao H. Anti-inflammatory and Regulatory Effects of Huanglian Jiedu Decoction on Lipid Homeostasis and the TLR4/MyD88 Signaling Pathway in LPS-Induced Zebrafish. Front Physiol 2019; 10:1241. [PMID: 31616320 PMCID: PMC6775191 DOI: 10.3389/fphys.2019.01241] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/10/2019] [Indexed: 12/14/2022] Open
Abstract
Huanglian Jiedu decoction (HLJDD) has been used in the clinical treatment of inflammatory conditions. To clarify the mechanism of its comprehensive anti-inflammatory activities, the correlation between lipid homeostasis and the TLR4/MyD88 signaling pathway in zebrafish was established in the present study. In the lipopolysaccharide (LPS)-induced inflammation in zebrafish model, RT-PCR assays of five inflammatory cytokines and six targeted proteins were measured. Lipidomics analysis was conducted to identify potential lipid markers. HLJDD displayed strong efficacies, with a 61% anti-inflammatory rate at a concentration of 50 μg/mL. The activation of TLR4/MyD88 played an essential role in the inflammatory process. All protein indexes in the HLJDD group exhibited a tendency to reverse back to normal levels. Moreover, 79 potential pathological lipid biomarkers were identified. Compared with the model group, 61 therapeutic lipid biomarkers were detected in HLJDD group. Most perturbations of lipids were ameliorated by HLJDD, mainly through the glycerophospholipid metabolic pathway. In the visual network study, the corresponding lipoproteins such as PLA2, SGMS, and SMDP were observed as important intermediates between lipid homeostasis and the TLR4/MyD88 signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Baolin Bian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haiyu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
57
|
Su J, Guo K, Huang M, Liu Y, Zhang J, Sun L, Li D, Pang KL, Wang G, Chen L, Liu Z, Chen Y, Chen Q, Huang L. Fucoxanthin, a Marine Xanthophyll Isolated From Conticribra weissflogii ND-8: Preventive Anti-Inflammatory Effect in a Mouse Model of Sepsis. Front Pharmacol 2019; 10:906. [PMID: 31555126 PMCID: PMC6722224 DOI: 10.3389/fphar.2019.00906] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/18/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Fucoxanthin (FX), a xanthophyll pigment which occurs in marine brown algae with remarkable biological properties, has been proven to be safe for consumption by animals. Although FX has various pharmacological effects including anti-inflammatory, anti-tumor, anti-obesity, antioxidant, anti-diabetic, anti-malarial, and anti-lipid, in vivo protective effect against sepsis has not been reported. In this study, we aimed at evaluation the efficacy of the FX in a model of sepsis mouse. Methods: FX was successfully isolated from Conticribra weissflogii ND-8 for the first time. The FX was identified by thin-layer chromatography (TLC), high-performance liquid chromatography-mass spectrometry (HPLC-MS), and nuclear magnetic resonance (NMR). Animals were randomly divided into 9 groups, including Sham group (mouse received an intraperitoneal injection of normal saline 1.0 ml/kg), FX-treated (0.1-1.0 ml/kg), Lipopolysaccharide (LPS)-treated (20 mg/kg), FX+LPS-treated (0.1-10.0 mg/kg and 20 mg/kg, respectively), and urinastatin groups (104 U/kg). Nuclear factor (NF)-κB activation could be potential treatment for sepsis. NF-κB signaling components were determined by western-blotting. IL-6, IL-1β, TNF-α production, and NF-κB activation were evaluated by ELISA and immunofluorescent staining in vitro. Results: FX was found to decrease the expression of inflammatory cytokines including IL-6, IL-1β, and TNF-α, in a prophylactic manner in the LPS-induced sepsis mouse model. Meanwhile, FX significantly inhibits phosphorylation of the NF-κB signaling pathway induced by LPS at the cellular level and reduces the nuclear translocation of NF-κB. The IC50 for suppressing the expression of NF-κB was 11.08 ± 0.78 μM in the THP1-Lucia™ NF-κB cells. Furthermore, FX also inhibits the expression of inflammatory factors in a dose-dependent manner with the IC50 inhibition of IL-6 production was 2.19 ± 0.70 μM in Raw267.4 macrophage cells. It is likely that the molecules with the ability of targeting NF-κB activation and inflammasome assembly, such as fucoxanthin, are interesting subjects to be used for treating sepsis.
Collapse
Affiliation(s)
- Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Kai Guo
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Min Huang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Yixuan Liu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Jie Zhang
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Lijun Sun
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China.,Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Daliang Li
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Ka-Lai Pang
- Institute of Marine Biology and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Guangce Wang
- Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Long Chen
- Division of Neurocritical Care, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhiyu Liu
- Fisheries Research Institute of Fujian, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Key Laboratory of Cultivation and High value Utilization of Marine Organisms in Fujian Province, Xiamen, China
| | - Youqiang Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Luqiang Huang
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| |
Collapse
|
58
|
Effect of pioglitazone and simvastatin in lipopolysaccharide-induced amyloidogenesis and cognitive impairment in mice: possible role of glutamatergic pathway and oxidative stress. Behav Pharmacol 2019; 30:5-15. [PMID: 29659380 DOI: 10.1097/fbp.0000000000000407] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neuroinflammation and β-amyloid (Aβ) deposition in the brain are well known characteristics of neurodegeneration. Diabetes and hypercholesterolemia are the main risk factors leading to memory loss and cognitive impairment. Recently, it was found that statins and thiazolidinediones have promising anti-inflammatory and neuroprotective effects that could delay neurodegeneration and neuronal loss in diabetic and hypercholesterolemic patients. The aim of the present study was to investigate the protective effect of simvastatin, pioglitazone, and their combination in lipopolysaccharide (LPS)-induced neuroinflammation and amyloidogenesis. Mice were divided into five groups: group 1 received 0.9% saline, group 2 received LPS (0.8 mg/kg in saline), group 3 received LPS (0.8 mgl kg)+simvastatin (5 mg/kg in saline), group 4 received LPS (0.8 mg/kg)+pioglitazone (20 mg/kg in saline), group 5 receiving LPS (0.8 mg/kg)+simvastatin (5 mg/kg)+pioglitazone (20 mg/kg). Y-maze and novel object recognition were used to assess the spatial and nonspatial behavioral changes. Nitric oxide levels and glutamate levels were measured to elucidate the anti-glutamatergic and anti-inflammatory effects of the tested drugs. Immunohistochemistry was performed to detect the presence of Aβ1-42 in the mice brain. LPS impaired memory, and increased Aβ deposition, nitric oxide, and glutamate brain levels. Both drugs produced a significant improvement in all parameters. We conclude that simvastatin and pioglitazone may have a protective effect against cognitive impairment induced by LPS, through targeting the glutamatergic and inflammatory pathways, especially in patients having hypercholesterolemia and diabetes.
Collapse
|
59
|
Zhang X, Gao T, Wang Y. Geniposide alleviates lipopolysaccharide (LPS)-induced inflammation by downregulation of miR-27a in rat pancreatic acinar cell AR42J. Biol Chem 2019; 400:1059-1068. [PMID: 30897061 DOI: 10.1515/hsz-2018-0422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/15/2019] [Indexed: 01/17/2023]
Abstract
Pancreatitis is a disease caused by inflammation of pancreatic acinar cells. Geniposide (GEN) possesses anti-inflammation activities. Hence, we investigated the effects of GEN on lipopolysaccharide (LPS)-stimulated AR42J cells. AR42J cells were stimulated by LPS and then treated with GEN and/or transfected with miR-27a mimic or negative control. Cell viability and cell apoptosis were detected using the Cell Counting Kit-8 and flow cytometry, respectively. All related proteins were measured by Western blot. The expression of miR-27a was detected by quantitative real time-polymerase chain reaction (qRT-PCR). Moreover, the expression of inflammatory cytokines interleukin-6 (IL-6) and monocyte chemoattractant protein (MCP)-1 was analyzed by qRT-PCR and Western blot. LPS significantly decreased cell viability, and enhanced cell apoptosis and IL-6, MCP-1 expression. Then GEN administration alleviated inflammatory injury by increasing cell viability, while reducing apoptosis, and IL-6 and MCP-1 expression. GEN downregulated miR-27a expression which was induced by LPS. Transfection with miR-27a mimic partially eliminated the protective effects of GEN. The phosphorylation of JNK and c-Jun was downregulated by GEN while upregulated by miR-27a overexpression. GEN alleviates LPS-induced AR42J cell injury as evidenced by promoting cell growth, and upregulation of IL-6 and MCP-1. This process might be modulated by down-regulating miR-27a and inactivation of JNK pathway.
Collapse
Affiliation(s)
- Xiaofen Zhang
- Department of Critical Care Medicine, Jining No. 1 People's Hospital, No. 6 Jiankang Road, Jining 272000, China
- Affiliated Jining No. 1 People's Hospital of Jining Medical University, Jining Medical University, Jining 272000, China
| | - Taishan Gao
- Department of Critical Care Medicine, Jining No. 1 People's Hospital, No. 6 Jiankang Road, Jining 272000, China
| | - Yanhua Wang
- Department of Critical Care Medicine, Jining No. 1 People's Hospital, No. 6 Jiankang Road, Jining 272000, China
| |
Collapse
|
60
|
RTA 408 Inhibits Interleukin-1β-Induced MMP-9 Expression via Suppressing Protein Kinase-Dependent NF-κB and AP-1 Activation in Rat Brain Astrocytes. Int J Mol Sci 2019; 20:ijms20112826. [PMID: 31185608 PMCID: PMC6600142 DOI: 10.3390/ijms20112826] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/03/2019] [Accepted: 06/07/2019] [Indexed: 12/20/2022] Open
Abstract
Neuroinflammation is characterized by the elevated expression of various inflammatory proteins, including matrix metalloproteinases (MMPs), induced by various pro-inflammatory mediators, which play a critical role in neurodegenerative disorders. Interleukin-1β (IL-1β) has been shown to induce the upregulation of MMP-9 through nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX)-reactive oxygen species (ROS)-dependent signaling pathways. N-(2-cyano-3,12-dioxo-28-noroleana-1,9(11)-dien-17-yl)-2-2-difluoropropanamide (RTA 408), a novel synthetic triterpenoid, has been shown to possess anti-oxidant and anti-inflammatory properties in various types of cells. Here, we evaluated the effects of RTA 408 on IL-1β-induced inflammatory responses by suppressing MMP-9 expression in a rat brain astrocyte (RBA-1) line. IL-1β-induced MMP-9 protein and mRNA expression, and promoter activity were attenuated by RTA 408. The increased level of ROS generation in RBA-1 cells exposed to IL-1β was attenuated by RTA 408, as determined by using 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA) and CellROX. In addition, the inhibitory effects of RTA 408 on MMP-9 expression resulted from the suppression of the IL-1β-stimulated activation of Pyk2 (proline-rich tyrosine kinase), platelet-derived growth factor receptor β (PDGFRβ), Akt, ROS, and mitogen-activated protein kinases (MAPKs). Pretreatment with RTA 408 attenuated the IL-1β-induced c-Jun phosphorylation, mRNA expression, and promoter activity. IL-1β-stimulated nuclear factor-κB (NF-κB) p65 phosphorylation, translocation, and promoter activity were also attenuated by RTA 408. Furthermore, IL-1β-induced glial fibrillary acidic protein (GFAP) protein and mRNA expression, and cell migration were attenuated by pretreatment with RTA 408. These results provide new insights into the mechanisms by which RTA 408 attenuates IL-1β-mediated inflammatory responses and exerts beneficial effects for the management of brain diseases.
Collapse
|
61
|
Luo G, Kong J, Chi-Yan Cheng B, Zhao H, Fu XQ, Yan LS, Ding Y, Liu YL, Pan SY, Zhang SF, Zhang Y. Xiao Qing Long Tang essential oil exhibits inhibitory effects on the release of pro-inflammatory mediators by suppressing NF-κB, AP-1, and IRF3 signalling in the lipopolysaccharide-stimulated RAW264.7 cells. RSC Adv 2019; 9:12977-12989. [PMID: 35520778 PMCID: PMC9063779 DOI: 10.1039/c9ra01448a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/10/2019] [Indexed: 11/25/2022] Open
Abstract
Xiao Qing Long Tang (literally “Minor blue dragon decoction” in Chinese), a traditional Chinese formula, is prescribed to treat respiratory diseases. However, only few studies have been reported on its anti-inflammatory mechanisms. In this study, we investigated the inhibitory effects of Xiao Qing Long Tang essential oil on inflammatory mediators and explored the mechanisms of action of XQEO in the lipopolysaccharide (LPS)-stimulated RAW264.7 cells. XQEO was prepared via steam distillation and characterized by GC-MS analysis. MTT and Griess assays were used to measure cell viability and NO production, respectively. The mRNA expression and the production of LPS-induced pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, and IL-10) and chemokines (MCP-1, Rantes, and MIP-1α) were determined by real-time PCR and enzyme-linked immunosorbent assay, respectively. Furthermore, we determined the protein levels of the components of NF-κB, AP-1 and IRF3 signalling by Western blotting. Immunofluorescence assay was used to estimate the nuclear translocation of NF-κB, AP-1 and IRF3. The results showed that XQEO inhibited the secretion of NO and PGE2 and down-regulated the mRNA and protein levels of iNOS and COX-2. We also found that XQEO suppressed the LPS-induced overproduction of pro-inflammatory mediators. Moreover, XQEO inhibited the phosphorylation of NF-κB/p65, AP-1/c-Jun, and IRF3 by suppressing their upstream kinases, such as MAPKs, TBK1, Akt, IKKα/β, and IκB, reducing the LPS-induced NF-κB, AP-1 and IRF3 translocation to the nucleus. These findings suggest that XQEO effectively suppresses the production of pro-inflammatory mediators possibly through the inhibition of NF-κB, AP-1, and IRF3 signalling in the LPS-stimulated RAW264.7 cells. Xiao Qing Long Tang essential oil suppresses the production of inflammatory mediators via blocking NF-κB, AP-1, and IRF3 signalling in the lipopolysaccharide-stimulated RAW264.7 cells.![]()
Collapse
Affiliation(s)
- Gan Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine Beijing China .,Beijing Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission Beijing 102400 China
| | - Jing Kong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine Beijing China
| | - Brian Chi-Yan Cheng
- College of Professional and Continuing Education, Hong Kong Polytechnic University Hung Hom Hong Kong.,Quality Healthcare Medical Services Kowloon Bay Hong Kong
| | - Hui Zhao
- School of Traditional Chinese Medicine, Capital Medical University Beijing China
| | - Xiu-Qiong Fu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University Kowloon Tong Hong Kong
| | - Li-Shan Yan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine Beijing China
| | - Yu Ding
- School of Chinese Materia Medica, Beijing University of Chinese Medicine Beijing China
| | - Yan-Ling Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine Beijing China
| | - Si-Yuan Pan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine Beijing China
| | - Shuo-Feng Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine Beijing China
| | - Yi Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine Beijing China
| |
Collapse
|
62
|
Diverse Pharmacological Activities and Potential Medicinal Benefits of Geniposide. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:4925682. [PMID: 31118959 PMCID: PMC6500620 DOI: 10.1155/2019/4925682] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/19/2019] [Indexed: 12/25/2022]
Abstract
Geniposide is a well-known iridoid glycoside compound and is an essential component of a wide variety of traditional phytomedicines, for example, Gardenia jasminoides Elli (Zhizi in Chinese), Eucommia ulmoides Oliv. (Duzhong in Chinese), Rehmannia glutinosa Libosch. (Dihuang in Chinese), and Achyranthes bidentata Bl. (Niuxi in Chinese). It is also the main bioactive component of Gardeniae Fructus, the dried ripe fruit of Gardenia jasminoides Ellis. Increasing pharmacological evidence supports multiple medicinal properties of geniposide including neuroprotective, antidiabetic, hepatoprotective, anti-inflammatory, analgesic, antidepressant-like, cardioprotective, antioxidant, immune-regulatory, antithrombotic, and antitumoral effects. It has been proposed that geniposide may be a drug or lead compound for the prophylaxis and treatment of several diseases, such as Alzheimer's disease, Parkinson's disease, diabetes and diabetic complications, ischemia and reperfusion injury, and hepatic disorders. The aim of the present review is to give a comprehensive summary and analysis of the pharmacological properties of geniposide, supporting its use as a medicinal agent.
Collapse
|
63
|
Antioxidative Property and Molecular Mechanisms Underlying Geniposide-Mediated Therapeutic Effects in Diabetes Mellitus and Cardiovascular Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7480512. [PMID: 31089416 PMCID: PMC6476013 DOI: 10.1155/2019/7480512] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/07/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023]
Abstract
Geniposide, an iridoid glucoside, is a major component in the fruit of Gardenia jasminoides Ellis (Gardenia fruits). Geniposide has been experimentally proved to possess multiple pharmacological actions involving antioxidative stress, anti-inflammatory, antiapoptosis, antiangiogenesis, antiendoplasmic reticulum stress (ERS), etc. In vitro and in vivo studies have further identified the value of geniposide in a spectrum of preclinical models of diabetes mellitus (DM) and cardiovascular disorders. The antioxidative property of geniposide should be attributed to the result of either the inhibition of numerous pathological processes or the activation of various proteins associated with cell survival or a combination of both. In this review, we will summarize the available knowledge on the antioxidative property and protective effects of geniposide in DM and cardiovascular disease in the literature and discuss antioxidant mechanisms as well as its potential applications in clinic.
Collapse
|
64
|
Kim DW, Shin MJ, Choi YJ, Kwon HJ, Lee SH, Lee S, Park J, Han KH, Eum WS, Choi SY. Tat-ATOX1 inhibits inflammatory responses via regulation of MAPK and NF-κB pathways. BMB Rep 2019. [PMID: 30545441 PMCID: PMC6330941 DOI: 10.5483/bmbrep.2018.51.12.248] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Antioxidant 1 (ATOX1) protein has been reported to exhibit various protective functions, including antioxidant and chaperone. However, the effects of ATOX1 on the inflammatory response has not been fully elucidated. Thus, we prepared cell permeable Tat-ATOX1 and studied the effects on lipopolysaccharide (LPS)- and 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced inflammation. Experimental results showed that transduced Tat-ATOX1 protein significantly suppressed LPS-induced intracellular reactive oxygen species (ROS). Also, Tat-ATOX1 protein markedly inhibited LPS- and TPA-induced inflammatory responses by decreasing cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) and further inhibited phosphorylation of mitogen activated protein kinases (MAPKs; JNK, ERK and p38) and the nuclear factor-kappaB (NF-κB) signaling pathway. These results indicate that the Tat-ATOX1 protein has a pivotal role in inflammation via inhibition of inflammatory responses, suggesting Tat-ATOX1 protein may offer a therapeutic strategy for inflammation.
Collapse
Affiliation(s)
- Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Korea
| | - Min Jea Shin
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Yeon Joo Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Hyun Jung Kwon
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Sung Ho Lee
- R&D Center, Lumieye Genetics Co., Ltd., Seoul 06198, Korea
| | - Sunghou Lee
- Department of Green Chemical Engineering, Sangmyung University, Cheonan 31066, Korea
| | - Jinseu Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Kyu Hyung Han
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Won Sik Eum
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
65
|
Ye J, Ye C, Huang Y, Zhang N, Zhang X, Xiao M. Ginkgo biloba sarcotesta polysaccharide inhibits inflammatory responses through suppressing both NF-κB and MAPK signaling pathway. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:2329-2339. [PMID: 30338529 DOI: 10.1002/jsfa.9431] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/28/2018] [Accepted: 10/14/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Polysaccharides, common components of natural products extensively studied as dietary supplements and functional foods, have been found to have various activities. In the present study, a water-soluble polysaccharide, namely GBSP3a, was isolated and purified from G. biloba sarcotesta. The anti-inflammatory activity of GBSP3a in lipopolysaccharide (LPS)-induced RAW264.7 macrophages and the potential underlying molecular mechanisms were then assessed. RESULTS GBSP3a exerted its anti-inflammatory effect by remarkably inhibiting the secretion of pro-inflammatory mediators and cytokines, including nitric oxide (NO), prostaglandin E2 (PGE2 ), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) in LPS-stimulated RAW264.7 macrophages. Excessive mRNA and protein expression levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were dose-dependently inhibited by GBSP3a in LPS-stimulated RAW264.7 cells. Further research suggested that the anti-inflammatory effect of GBSP3a can be attributed to the modulation of the NF-κB and MAPK signaling pathways. CONCLUSION GBSP3a exhibits anti-inflammatory activity and exerts its anti-inflammatory effect probably through suppressing both NF-κB and MAPK signaling pathway, indicating that GBSP3a could be used for the development of anti-inflammatory agent or nutraceuticals. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jing Ye
- Department of Chemical Engineering and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, China
- Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen, China
| | - Changqing Ye
- Department of Chemical Engineering and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, China
| | - Yayan Huang
- Department of Chemical Engineering and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, China
| | - Na Zhang
- Department of Chemical Engineering and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, China
- Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen, China
| | - Xueqin Zhang
- Department of Chemical Engineering and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, China
- Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen, China
| | - Meitian Xiao
- Department of Chemical Engineering and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, China
- Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen, China
| |
Collapse
|
66
|
Zhang Y, Chi-Yan Cheng B, Xie R, Xu B, Gao XY, Luo G. Re-Du-Ning inhalation solution exerts suppressive effect on the secretion of inflammatory mediators via inhibiting IKKα/β/IκBα/NF-κB, MAPKs/AP-1, and TBK1/IRF3 signaling pathways in lipopolysaccharide stimulated RAW 264.7 macrophages. RSC Adv 2019; 9:8912-8925. [PMID: 35517648 PMCID: PMC9062024 DOI: 10.1039/c9ra00060g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/05/2019] [Indexed: 12/28/2022] Open
Abstract
Background: Re-Du-Ning inhalation solution (RIS) is a novel preparation derived from the Re-Du-Ning injection, which has been clinically used to treat respiratory diseases such as pneumonia for more than twenty years in China. However, scant reports have been issued on its anti-inflammatory mechanisms. Aim: we investigated the suppressive effect of RIS on inflammatory mediators and explored the underlying mechanism of action. Methods: RIS freeze dried powder was characterized by HPLC analysis. Lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage was selected as the cell model. The cell viability was determined by using the MTT assay. Moreover, the production of nitric oxide (NO) was measured by the Griess reaction. The protein secretions from inflammatory mediators were determined by the enzyme-linked immunosorbent assay (ELISA). The protein levels and enzyme activities were examined by Western blotting. The nuclear translocation of nuclear factor-kappa B (NF-κB), AP-1, and IRF3 was further explored by immunofluorescence assay. Results: the viability of the RAW 264.7 cells was not significantly changed after 24 h incubation with RIS concentration up to 400 μg mL-1. The RIS remarkably reduced the production of NO and prostaglandin E2 (PGE2), and downregulated the expression of iNOS and COX-2. The concentrations of cytokines (IL-1β, IL-6, and TNF-α) and chemokines (MCP-1, CCL-5, and MIP-1α) in the culture medium were significantly decreased by the RIS treatment. Furthermore, the phosphorylation of IκB-α, IKKα/β, TBK1, ERK, p38, JNK, NF-κB, AP-1, and IRF3 was downregulated by the RIS treatment. The nuclear translocation of NF-κB, AP-1, and IRF3 was also inhibited after the RIS treatment. Conclusion: the suppressive effect of RIS is associated with the regulated NF-κB, AP-1, and IRF3 and their upstream proteins. This study provides a pharmacological basis for the application of RIS in the treatment of inflammatory disorders.
Collapse
Affiliation(s)
- Yi Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine Beijing 100102 China
| | - Brian Chi-Yan Cheng
- College of Professional and Continuing Education, Hong Kong Polytechnic University Hong Kong 999077 China
- Quality Healthcare Medical Services Hong Kong 999077 China
| | - Ran Xie
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science Beijing 100700 China
| | - Bing Xu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine Beijing 100102 China
| | - Xiao Yan Gao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine Beijing 100102 China
| | - Gan Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine Beijing 100102 China
| |
Collapse
|
67
|
Abekura F, Park J, Kwak CH, Ha SH, Cho SH, Chang YC, Ha KT, Chang HW, Lee YC, Chung TW, Kim CH. Esculentoside B inhibits inflammatory response through JNK and downstream NF-κB signaling pathway in LPS-triggered murine macrophage RAW 264.7 cells. Int Immunopharmacol 2019; 68:156-163. [PMID: 30639961 DOI: 10.1016/j.intimp.2019.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 12/24/2018] [Accepted: 01/03/2019] [Indexed: 01/02/2023]
Abstract
Natural compound esculentoside B (EsB), (2S,4aR,6aR,6aS,6bR,8aR,9R,10R,11S,12aR,14bS)-11-hydroxy-9-(hydroxymethyl)-2 methoxycarbonyl-2,6a,6b,9,12a-pentamethyl-10-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxy-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylic acid with molecular weight of 664.833, isolated from roots of Phytolacca acinosa Roxb has been widely used as a constituent of traditional Chinese medicine (TCM). However, the anti-inflammatory capacity of EsB has not been reported yet. Therefore, the objective of this study was to investigate anti-inflammatory activities of EsB in LPS-treated macrophage RAW 264.7 cells. EsB could inhibit nitric oxide (NO) production. EsB also suppressed gene and protein expression levels of inducible isoform of NO synthase (NOS) and cyclooxygenase-2 in a dose-dependent manner. In addition, EsB decreased gene expression and protein secretion levels of pro-inflammatory cytokines such as IL-1β, TNF-α, and IL-6. EsB remarkably suppressed nuclear translocation of nuclear factor kappa-B (NF-κB) from cytosolic space. Phosphorylation of IκB was also inhibited by EsB. Moreover, EsB specifically down-regulated phospho-c-Jun N-terminal kinase (p-JNK), but not p-p38 or phospho-extracellular signal-regulated kinase 1/2 (p-ERK1/2). Taken together, these results suggest that EsB has inhibitory effect on inflammatory response by inactivating NF-κB and p-JNK. It could be used as a new modulatory drug for effective treatment of inflammation-related diseases.
Collapse
Affiliation(s)
- Fukushi Abekura
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, Sungkyunkwan University, Seoburo 2066, Jangan-Gu, Suwon, Gyunggi-Do 16419, Republic of Korea
| | - Junyoung Park
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, Sungkyunkwan University, Seoburo 2066, Jangan-Gu, Suwon, Gyunggi-Do 16419, Republic of Korea
| | - Choong-Hwan Kwak
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, Sungkyunkwan University, Seoburo 2066, Jangan-Gu, Suwon, Gyunggi-Do 16419, Republic of Korea; Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan City, Gyeongsangnam-Do, Republic of Korea
| | - Sun-Hyung Ha
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, Sungkyunkwan University, Seoburo 2066, Jangan-Gu, Suwon, Gyunggi-Do 16419, Republic of Korea
| | - Seung-Hak Cho
- Division of Enteric Diseases, Center for Infectious Diseases Research, Korea National Institute of Health, Heungdeok-gu, Cheongju 363-951, Republic of Korea
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea.
| | - Ki-Tae Ha
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan City, Gyeongsangnam-Do, Republic of Korea.
| | - Hyeun-Wook Chang
- College of Pharmacy, Yeungnam University, Gyeongsan 701-947, Republic of Korea
| | - Young-Choon Lee
- Faculty of Medicinal Biotechnology, Dong-A University, Saha-Gu, Busan, Republic of Korea.
| | - Tae-Wook Chung
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan City, Gyeongsangnam-Do, Republic of Korea
| | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, Sungkyunkwan University, Seoburo 2066, Jangan-Gu, Suwon, Gyunggi-Do 16419, Republic of Korea.
| |
Collapse
|
68
|
Tongluojiunao, a traditional Chinese medication with neuroprotective ability: A review of the cellular, molecular and physiological mediators of TLJN’s effectiveness. Biomed Pharmacother 2019; 111:485-495. [DOI: 10.1016/j.biopha.2018.12.082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/16/2018] [Accepted: 12/17/2018] [Indexed: 11/17/2022] Open
|
69
|
Hsiao HB, Wu JB, Lin WC. Anti-arthritic and anti-inflammatory effects of (-)-Epicatechin-3-O-β-d-allopyranoside, a constituent of Davallia formosana. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 52:12-22. [PMID: 30599891 DOI: 10.1016/j.phymed.2018.09.192] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 06/04/2018] [Accepted: 09/17/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND (-)-Epicatechin-3-O-β-d-allopyranoside (ECAP) is isolated from the popular Chinese herbal medicine Davallia formosana, which has been used to treat bone diseases including bone fracture, arthritis, and osteoporosis. PURPOSE To investigate the antiarthritic and the anti-inflammatory effect of ECAP on a mouse model of collagen-induced arthritis (CIA) and in vitro. METHODS Male DBA/1 J mice were immunized by administering an intradermal injection of 100 µg of type II collagen in Freund's complete adjuvant. The control groups (vehicle) and ECAP were administered orally at doses of 1 ml/kg (H2O), 50 and 100 mg/ml/kg once a day from Day 22 to Day 42 after primary immunization. Paw swelling, arthritis severity score, and histological changes were examined. Enzyme-linked immunosorbent assay was used to measure the levels of cytokines, including tumor necrosis factor alpha (TNF-α), interleukin (IL)-10, IL-17, IL-4, and interferon-γ (IFN-γ), in splenocytes. Furthermore, the anti-inflammatory activities of ECAP were investigated in vitro by measuring nitric oxide (NO) levels in lipopolysaccharide (LPS)-activated RAW264.7 macrophages. RESULTS In the CIA model, the oral administration of ECAP ameliorated paw edema and reduced the arthritis severity score and disease incidence. Histopathological examination demonstrated that ECAP treatment effectively protected the bone and cartilage of knee joints from erosion, lesion formation, and deformation compared with the vehicle treatment. ECAP also reduced IL-1β and MMP-9 expression in inflamed joints. Compared with the vehicle-treated mice with CIA, the reduced severity of the disease in ECAP-treated mice was associated with decreased levels of TNF-α and IL-17 and increased levels of IL-10 and IL-4 in the supernatants of splenocyte cultures. Flow cytometry analysis demonstrated that ECAP increased the population of CD4+CD25+ regulatory T cells, thereby inhibiting the B cell population. Anticollagen IgG1 and IgG2a levels decreased in the serum of ECAP-treated mice. ECAP suppressed LPS-induced NO production in RAW264.7 macrophages. CONCLUSION The administration of ECAP effectively suppressed inflammation and inflammatory pain and adjuvant-induced arthritis, indicating its therapeutic potential in the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Hung-Bo Hsiao
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Jin-Bin Wu
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Wen-Chuan Lin
- School of Pharmacy, China Medical University, Taichung, Taiwan.
| |
Collapse
|
70
|
Zhang Y, Cheng BCY, Li C, Tao Y, Yu C, Liu X, Gao X, Luo G. Characterization and comparison of Re-Du-Ning aerosol particles generated by different jet nebulizers. RSC Adv 2019; 9:30292-30301. [PMID: 35530199 PMCID: PMC9072082 DOI: 10.1039/c9ra06177k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/18/2019] [Indexed: 01/04/2023] Open
Abstract
Inhalation therapy is the first-line therapy for the treatment of respiratory diseases. Re-Du-Ning inhalation solution (RIS) is an aerosol derivative from the Re-Du-Ning injection and has been clinically used to treat respiratory diseases like pneumonia for more than twenty years in China. However, the aerosolization and inhalation performances of RIS using different nebulizers have not been characterized, which may affect the therapeutic effects of RIS on respiratory diseases. We investigated the inhalation performances of RIS using five different nebulizers utilizing Spraytec, breath simulator of BRS 2000 and NGI techniques. We tested 5 different types of jet nebulizer, using RIS and an adult breathing pattern, to determine the difference in aerosol delivery over time. The particle size distribution of RIS was monitored by a Spraytec laser particle sizer. Fine particle fraction (FPF) and mass median aerodynamic diameter (MMAD) for RIS were measured using NGI. Aerosol deposited on the filter was analysed using HPLC. Nebulization time was much longer for the Pari Boy SX (red) nebulizer than for the other nebulizers, with the minimum delivery rate (DR) and the maximum total delivered dose (TDD) and total exhalation dose (TED). Nebulization time for Pari Boy SX (blue) was the lowest, with the highest DR and the lowest TDD and TED. Furthermore, the aerodynamic particle size of RIS was much larger for the Pari blue and Pari LC Plus than other nebulizers. Pari red produced the smallest aerodynamic particle size of RIS in these five nebulizers. In addition, a good linear relationship was found between MMAD and D50 in these five nebulizers. The results demonstrated that Pari Boy SX (red) delivered most slowly and produced the smallest aerodynamic particle size of the RIS aerosols, which may be applied to manage lower respiratory diseases. Moreover, Pari LC Plus and Pari Boy SX (blue) emitted quickly and generated larger aerodynamic particle size of RIS aerosols, which could be used to treat upper respiratory diseases. A good linear relationship between MMAD and D50 showed Spraytec could be a reliable technique for the development, evaluation and quality control of aerosol particles of inhalation solution preparations. Delivery dose uniformity determination by BRS 2000 breath simulator and realtime particle size distribution monitoring by Spraytec.![]()
Collapse
Affiliation(s)
- Yi Zhang
- School of Chinese Materia Medica
- Beijing University of Chinese Medicine
- Beijing 100102
- China
| | - Brian Chi-Yan Cheng
- College of Professional and Continuing Education
- Hong Kong Polytechnic University
- China
- Quality Healthcare Medical Services
- China
| | - Cui Li
- China Institute of Chinese Materia Medica
- China Academy of Chinese Medical Science
- Beijing 100700
- China
| | - Yonghua Tao
- Increase Pharm (Tianjin) Institute Co., Ltd
- Tianjin 300382
- China
| | - Chanjuan Yu
- School of Chinese Materia Medica
- Beijing University of Chinese Medicine
- Beijing 100102
- China
- Interdisciplinary Research Center on Multi-omics of TCM
| | - Xinyue Liu
- School of Chinese Materia Medica
- Beijing University of Chinese Medicine
- Beijing 100102
- China
- Interdisciplinary Research Center on Multi-omics of TCM
| | - Xiaoyan Gao
- School of Chinese Materia Medica
- Beijing University of Chinese Medicine
- Beijing 100102
- China
- Interdisciplinary Research Center on Multi-omics of TCM
| | - Gan Luo
- School of Chinese Materia Medica
- Beijing University of Chinese Medicine
- Beijing 100102
- China
- Interdisciplinary Research Center on Multi-omics of TCM
| |
Collapse
|
71
|
Cheng S, Zhou F, Xu Y, Liu X, Zhang Y, Gu M, Su Z, Zhao D, Zhang L, Jia Y. Geniposide regulates the miR-101/MKP-1/p38 pathway and alleviates atherosclerosis inflammatory injury in ApoE -/- mice. Immunobiology 2018; 224:296-306. [PMID: 30630636 DOI: 10.1016/j.imbio.2018.12.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 01/04/2023]
Abstract
Atherosclerosis (AS) is the common pathological basis of chronic cardiovascular diseases and is associated with inflammation and lipid metabolism dysfunction. Geniposide, the main active ingredient of Gardenia jasminoides Ellis fruit, exhibits a variety of anti-inflammatory and anti-oxidative functions; however, its role in AS remains unclear. The aim of this study was to investigate the mechanisms of geniposide in alleviating inflammation and thereby attenuating the development of AS. ApoE-/- mice were fed a high fat diet to induce AS and were treated with geniposide (50 mg/kg) for 12 weeks. Blood glucose and lipid levels were measured by biochemical analysis. H&E, Masson and Oil red O staining were performed to observe morphological changes and lipid deposition in the aorta and liver. Serum inflammatory cytokines were detected by ELISA. Dual-luciferase reporter gene assay was used to verify the target relationship between microRNA-101 (miR-101) and mitogen-activated protein kinase phosphatase-1 (MKP-1). The levels of miR-101, p-p38, and MKP-1 in the aorta were detected by qPCR and western blotting. The anti-inflammatory effect of geniposide in vitro was investigated in the RAW264.7 macrophage cell line. A miR-101 mimic and an inhibitor were used to study the effect of miR-101 on regulating the expression of the target MKP-1 and the downstream inflammatory cytokines. Geniposide treatment reduced lipid levels and plaque size in the mouse model of AS. Geniposide downregulated miR-101 to upregulate MKP-1 and suppress the production of inflammatory factors in vitro and in vivo. Geniposide suppressed the levels of inflammatory factors in the presence of the miR-101 mimic, whereas no obvious effect was observed in the miR-101 inhibitor group. We concluded that geniposide reduced the plaque size and alleviated inflammatory injury in ApoE-/- mice and RAW264.7 cells. The specific anti-inflammatory mechanism was related to the miR-101/ MKP-1/p38 signaling pathway.
Collapse
Affiliation(s)
- Saibo Cheng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China; Laboratory of Molecular Biology, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Fenghua Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Yuling Xu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China; Laboratory of Molecular Biology, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Xiaoyu Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China; Laboratory of Molecular Biology, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Yu Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Minhua Gu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Zhijie Su
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Dandan Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Lei Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Yuhua Jia
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
72
|
Hepatorenal protective effects of medicinal herbs in An-Gong-Niu-Huang Wan (AGNH) against cinnabar- and realgar-induced oxidative stress and inflammatory damage in mice. Food Chem Toxicol 2018; 119:445-456. [DOI: 10.1016/j.fct.2017.11.054] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 11/25/2017] [Accepted: 11/28/2017] [Indexed: 02/07/2023]
|
73
|
Yodkeeree S, Ooppachai C, Pompimon W, Limtrakul (Dejkriengkraikul) P. O-Methylbulbocapnine and Dicentrine Suppress LPS-Induced Inflammatory Response by Blocking NF-κB and AP-1 Activation through Inhibiting MAPKs and Akt Signaling in RAW264.7 Macrophages. Biol Pharm Bull 2018; 41:1219-1227. [DOI: 10.1248/bpb.b18-00037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Supachai Yodkeeree
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University
- Center for Research and Development of Natural Products for Health, Chiang Mai University
| | - Chanatip Ooppachai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University
- Center for Research and Development of Natural Products for Health, Chiang Mai University
| | - Wilart Pompimon
- Laboratory of Natural Products, Department of Chemistry, Faculty of Science, Lampang Rajabhat University
| | - Pornngarm Limtrakul (Dejkriengkraikul)
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University
- Center for Research and Development of Natural Products for Health, Chiang Mai University
| |
Collapse
|
74
|
He J, Lu X, Wei T, Dong Y, Cai Z, Tang L, Liu M. Asperuloside and Asperulosidic Acid Exert an Anti-Inflammatory Effect via Suppression of the NF-κB and MAPK Signaling Pathways in LPS-Induced RAW 264.7 Macrophages. Int J Mol Sci 2018; 19:E2027. [PMID: 30002289 PMCID: PMC6073666 DOI: 10.3390/ijms19072027] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 06/26/2018] [Accepted: 07/10/2018] [Indexed: 12/13/2022] Open
Abstract
Hedyotis diffusa is a folk herb that is used for treating inflammation-related diseases in Asia. Previous studies have found that iridoids in H. diffusa play an important role in its anti-inflammatory activity. This study aimed to investigate the anti-inflammatory effect and potential mechanism of five iridoids (asperuloside (ASP), asperulosidic acid (ASPA), desacetyl asperulosidic acid (DAA), scandoside methyl ester (SME), and E-6-O-p-coumaroyl scandoside methyl ester (CSME)) that are presented in H. diffusa using lipopolysaccharide (LPS)-induced RAW 264.7 cells. ASP and ASPA significantly decreased the production of nitric oxide (NO), prostaglandin E₂ (PGE₂), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) in parallel with the inhibition of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), TNF-α, and IL-6 mRNA expression in LPS-induced RAW 264.7 cells. ASP treatment suppressed the phosphorylation of the inhibitors of nuclear factor-kappaB alpha (IκB-α), p38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK). The inhibitory effect of ASPA was similar to that of ASP, except for p38 phosphorylation. In summary, the anti-inflammatory effects of ASP and ASPA are related to the inhibition of inflammatory cytokines and mediators via suppression of the NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways, which provides scientific evidence for the potential application of H. diffusa.
Collapse
Affiliation(s)
- Jingyu He
- Bioengineering Research Centre, Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences, Guangzhou 511458, China.
| | - Xianyuan Lu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Ting Wei
- Bioengineering Research Centre, Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences, Guangzhou 511458, China.
| | - Yaqian Dong
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Zheng Cai
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Lan Tang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Menghua Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
75
|
Ren D, Wang P, Liu C, Wang J, Liu X, Liu J, Min W. Hazelnut protein-derived peptide LDAPGHR shows anti-inflammatory activity on LPS-induced RAW264.7 macrophage. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.04.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
76
|
Lee HH, Lee SG, Shin JS, Lee HY, Yoon K, Ji YW, Jang DS, Lee KT. p-Coumaroyl Anthocyanin Mixture Isolated from Tuber Epidermis of Solanum tuberosum Attenuates Reactive Oxygen Species and Pro-inflammatory Mediators by Suppressing NF-κB and STAT1/3 Signaling in LPS-Induced RAW264.7 Macrophages. Biol Pharm Bull 2018; 40:1894-1902. [PMID: 29093336 DOI: 10.1248/bpb.b17-00362] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously, we first reported the identification of four p-coumaroyl anthocyanins (petanin, peonanin, malvanin, and pelanin) from the tuber epidermis of colored potato (Solanum tuberosum L. cv JAYOUNG). In this study, we investigated the anti-oxidative and anti-inflammatory effects of a mixture of peonanin, malvanin, and pelanin (10 : 3 : 3; CAJY). CAJY displayed considerable radical scavenging capacity of 1, 1-diphenyl-2-picryl-hydrazyl (DPPH), increased mRNA levels of the catalytic and modulatory subunit of glutamate cysteine ligase, and subsequent cellular glutathione content. These increases preceded the inhibition of lipopolysaccharide (LPS)-induced intracellular reactive oxygen species (ROS) production. CAJY inhibited inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in a concentration-dependent manner at the protein, mRNA, and promoter activity levels. These inhibitions caused attendant decreases in the production of prostaglandin E2 (PGE2). CAJY suppressed the production and mRNA expression of tumor necrosis factor (TNF)-α and interleukin (IL)-6. Molecular data revealed that CAJY inhibited the transcriptional activity and translocation of nuclear factor κB (NF-κB) and phosphorylation of signal transducer and activator of transcription 1 (STAT1) and STAT3. Taken together, these results suggest that the anthocyanin mixture exerts anti-inflammatory effects in macrophages, at least in part by reducing ROS production and inactivating NF-κB and STAT 1/3.
Collapse
Affiliation(s)
- Hwi-Ho Lee
- Department of Pharmaceutical Biochemistry College of Pharmacy, Kyung Hee University.,Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University
| | - Suel-Gie Lee
- Department of Pharmaceutical Biochemistry College of Pharmacy, Kyung Hee University.,Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University
| | - Ji-Sun Shin
- Department of Pharmaceutical Biochemistry College of Pharmacy, Kyung Hee University
| | - Ho-Young Lee
- Department of Pharmaceutical Biochemistry College of Pharmacy, Kyung Hee University
| | - Kyungwon Yoon
- Department of Pharmaceutical Biochemistry College of Pharmacy, Kyung Hee University
| | - Yong Woo Ji
- Institute of Vision Research, Department of Opthalmology, Yonsei University
| | - Dae Sik Jang
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry College of Pharmacy, Kyung Hee University.,Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University
| |
Collapse
|
77
|
Chen L, Cao Y, Zhang H, Lv D, Zhao Y, Liu Y, Ye G, Chai Y. Network pharmacology-based strategy for predicting active ingredients and potential targets of Yangxinshi tablet for treating heart failure. JOURNAL OF ETHNOPHARMACOLOGY 2018; 219:359-368. [PMID: 29366769 DOI: 10.1016/j.jep.2017.12.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 11/14/2017] [Accepted: 12/11/2017] [Indexed: 05/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yangxinshi tablet (YXST) is an effective treatment for heart failure and myocardial infarction; it consists of 13 herbal medicines formulated according to traditional Chinese Medicine (TCM) practices. It has been used for the treatment of cardiovascular disease for many years in China. MATERIALS AND METHODS In this study, a network pharmacology-based strategy was used to elucidate the mechanism of action of YXST for the treatment of heart failure. Cardiovascular disease-related protein target and compound databases were constructed for YXST. A molecular docking platform was used to predict the protein targets of YXST. The affinity between proteins and ingredients was determined using surface plasmon resonance (SPR) assays. The action modes between targets and representative ingredients were calculated using Glide docking, and the related pathways were predicted using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. RESULTS A protein target database containing 924 proteins was constructed; 179 compounds in YXST were identified, and 48 compounds with high relevance to the proteins were defined as representative ingredients. Thirty-four protein targets of the 48 representative ingredients were analyzed and classified into two categories: immune and cardiovascular systems. The SPR assay and molecular docking partly validated the interplay between protein targets and representative ingredients. Moreover, 28 pathways related to heart failure were identified, which provided directions for further research on YXST. CONCLUSIONS This study demonstrated that the cardiovascular protective effect of YXST mainly involved the immune and cardiovascular systems. Through the research strategy based on network pharmacology, we analysis the complex system of YXST and found 48 representative compounds, 34 proteins and 28 related pathways of YXST, which could help us understand the underlying mechanism of YSXT's anti-heart failure effect. The network-based investigation could help researchers simplify the complex system of YXSY. It may also offer a feasible approach to decipher the chemical and pharmacological bases of other TCM formulas.
Collapse
Affiliation(s)
- Langdong Chen
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yan Cao
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Hai Zhang
- Department of Pharmacy, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Diya Lv
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yahong Zhao
- Central Research Institute, Shanghai Pharmaceuticals Holding Co. Ltd., Shanghai 201203, China
| | - Yanjun Liu
- Central Research Institute, Shanghai Pharmaceuticals Holding Co. Ltd., Shanghai 201203, China
| | - Guan Ye
- Central Research Institute, Shanghai Pharmaceuticals Holding Co. Ltd., Shanghai 201203, China.
| | - Yifeng Chai
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
78
|
Zhou J, Hu R, Jing S, Xue X, Tang W. Activated protein C inhibits lung injury induced by LPS via downregulating MAPK signaling. Exp Ther Med 2018; 16:931-936. [PMID: 30112046 DOI: 10.3892/etm.2018.6228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 04/30/2018] [Indexed: 12/25/2022] Open
Abstract
The aim of the present study was to investigate the effect and the underlying mechanism of activated protein C (APC) in lipopolysaccharide (LPS) induced lung injury, as well as the potential mechanism. According to the treatment, 50 rats were randomly divided into 5 groups: Control, model (LPS), low-dose group [LPS + 0.1 mg/kg recombined human activated protein C (rhAPC)], median-dose group (LPS + 0.3 mg/kg rhAPC) and high-dose group (LPS + 0.5 mg/kg rhAPC). Then, inflammation in the lung was assessed using hematoxylin and eosin (H&E) staining. Following the collection of bronchoalveolar lavage fluid (BALF), the number of leukocytes and neutrophils in BALF was counted, and superoxide dismutase (SOD) activity was assessed, as well as the expression levels of interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α using ELISA. Subsequently, the expression and phosphorylation of P-38, extracellular signal-regulated kinase (Erk)-1/2, and c-Jun N-terminal kinase (JNK) were estimated using western blotting. Based on H&E staining, rhAPC markedly suppressed inflammatory infiltration in the lung induced by LPS in a dose-dependent manner. In addition, rhAPC also significantly attenuated the accumulation of leptocytes and neutrophils, and the reduction of SOD in BALF induced by LPS in a dose-dependent manner. rhAPC also significantly attenuated the elevation of IL-1β, IL-6 and TNF-α in BALF induced by LPS in a dose-dependent manner. Further mechanistic analysis revealed that rhAPC treatment could evidently attenuate the phosphorylation levels of P-38, Erk1/2 and JNK in the lung induced by LPS in a dose-dependent manner. In conclusion, APC significantly alleviated the lung inflammation induced by LPS by downregulating the phosphorylation of P-38, ERK1/2 and JNK.
Collapse
Affiliation(s)
- Jianming Zhou
- Department of Thoracic Surgery, Southeast University Affiliated Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Ruoyu Hu
- Department of Thoracic Surgery, Southeast University Affiliated Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Shengjie Jing
- Department of Thoracic Surgery, Southeast University Affiliated Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Xin Xue
- Department of Thoracic Surgery, Southeast University Affiliated Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Wenhao Tang
- Department of Thoracic Surgery, Southeast University Affiliated Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
79
|
He J, Li J, Liu H, Yang Z, Zhou F, Wei T, Dong Y, Xue H, Tang L, Liu M. Scandoside Exerts Anti-Inflammatory Effect Via Suppressing NF-κB and MAPK Signaling Pathways in LPS-Induced RAW 264.7 Macrophages. Int J Mol Sci 2018; 19:E457. [PMID: 29401674 PMCID: PMC5855679 DOI: 10.3390/ijms19020457] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 02/07/2023] Open
Abstract
The iridoids of Hedyotis diffusa Willd play an important role in the anti-inflammatory process, but the specific iridoid with anti-inflammatory effect and its mechanism has not be thoroughly studied. An iridoid compound named scandoside (SCA) was isolated from H. diffusa and its anti-inflammatory effect was investigated in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. Its anti-inflammatory mechanism was confirmed by in intro experiments and molecular docking analyses. As results, SCA significantly decreased the productions of nitric oxide (NO), prostaglandin E₂ (PGE₂), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) and inhibited the levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), TNF-α and IL-6 messenger RNA (mRNA) expression in LPS-induced RAW 264.7 macrophages. SCA treatment suppressed the phosphorylation of inhibitor of nuclear transcription factor kappa-B alpaha (IκB-α), p38, extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK). The docking data suggested that SCA had great binding abilities to COX-2, iNOS and IκB. Taken together, the results indicated that the anti-inflammatory effect of SCA is due to inhibition of pro-inflammatory cytokines and mediators via suppressing the nuclear transcription factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways, which provided useful information for its application and development.
Collapse
Affiliation(s)
- Jingyu He
- Bioengineering Research Centre, Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences, Guangzhou 511458, China.
| | - Jiafeng Li
- Bioengineering Research Centre, Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences, Guangzhou 511458, China.
| | - Han Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Zichao Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Fenghua Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China.
| | - Ting Wei
- Bioengineering Research Centre, Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences, Guangzhou 511458, China.
| | - Yaqian Dong
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Hongjiao Xue
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Lan Tang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Menghua Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
80
|
Zhang X, Pi Z, Zheng Z, Liu Z, Song F. Comprehensive investigation of in-vivo ingredients and action mechanism of iridoid extract from Gardeniae Fructus by liquid chromatography combined with mass spectrometry, microdialysis sampling and network pharmacology. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1076:70-76. [PMID: 29406030 DOI: 10.1016/j.jchromb.2018.01.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/08/2018] [Accepted: 01/15/2018] [Indexed: 12/30/2022]
Abstract
Gardeniae Fructus is a widely used Traditional Chinese Medicines in treating various diseases. However, the absorbed components and metabolites of its main bioactive iridoid ingredients from iridoid extract of the fruits of Gardeniae Fructus in rat plasma need further study. In this study, a systematic method based on ultra-performance liquid chromatography-quadrupole-time-of-flight/mass spectrometry (UPLC-Q-TOF/MS) technique was developed to speculate the absorbed components and metabolites of iridoid extract in rat plasma after oral administration. A total of 19 compounds, including 9 prototype components and 10 metabolites were identified in plasma. 5 metabolites containing 4 new metabolites (M1, M2, M7, M10) were tentatively determined in rat plasma. Besides, Microdialysis-intensity-fading mass spectrometry (MD-IF-MS) method was originally employed to reveal the binding affinities with α-glucosidase for in-vivo prototype components and their metabolites. Finally, the absorbed constituents and the corresponding target proteins were used to generate compound-target network to find the related diseases and action pathways by a network pharmacology method. The results provide useful information for further study of pharmacology and in vivo mechanism of action of iridoid extract from the fruits of Gardeniae Fructus.
Collapse
Affiliation(s)
- Xueju Zhang
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zifeng Pi
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhong Zheng
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhiqiang Liu
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Fengrui Song
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
81
|
Bi Y, Xu L, Qiu L, Wang S, Liu X, Zhang Y, Chen Y, Zhang Y, Xu Q, Chang G, Chen G. Reticuloendotheliosis Virus Inhibits the Immune Response Acting on Lymphocytes from Peripheral Blood of Chicken. Front Physiol 2018; 9:4. [PMID: 29410628 PMCID: PMC5787092 DOI: 10.3389/fphys.2018.00004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/03/2018] [Indexed: 12/13/2022] Open
Abstract
Chicken reticuloendotheliosis virus (REV) causes the atrophy of immune organs and immuno-suppression. The pathogenic mechanisms of REV are poorly understood. The aim of this study was to use RNA sequencing to analyse the effect of REV on immunity and cell proliferation in chicken lymphocytes from peripheral blood in vitro. Overall, 2977 differentially expressed genes (DEGs) were examined from cells between infected with REV or no; 56 DEGs related to cell proliferation and 130 DEGs related to immunity were identified. MTT, Q-PCR, and FCM indicated that REV reduced the number of lymphocytes by inhibiting the transition of S/G1 phase through FOXO and p53 pathways. Similarly, REV infection would destroy the immune defense of lymphocytes through MAPK-AP1 via Toll-like receptor-, NOD-like receptor-, and salmonella infection pathways to reduce the secretion of IL8 and IL18. In addition, the reduction of lymphocytes also might be responsible for the lower levels of IL8 and IL18, and the rescue of lymphocytes would been activated still through FOXO and p53 pathways. Moreover, the immune response for REV in lymphocytes would activate by up-regulating the expression of NOD1, MYD88, and AP1 through Toll-like receptor-/NOD-like receptor/salmonella-MAPK-AP1 pathways. These results indicate that REV could affect lymphocytes from peripheral blood by inhibit the cell proliferation and the immune system. It also was revealed that NOD1, MYD88, and AP1 were the key genes to activate the immune response through Toll-like receptor-/NOD-like receptor/salmonella-MAPK-AP1 pathways. These findings establish the groundwork and provide new clues for deciphering the molecular mechanism underlying REV infection in chickens.
Collapse
Affiliation(s)
- Yulin Bi
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Lu Xu
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Lingling Qiu
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Shasha Wang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiangping Liu
- Department of Poultry Genetics and Breeding, Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China
| | - Yani Zhang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yang Chen
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yang Zhang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Qi Xu
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Guobin Chang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Guohong Chen
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
82
|
Wei H, Duan G, He J, Meng Q, Liu Y, Chen W, Meng Y. Geniposide attenuates epilepsy symptoms in a mouse model through the PI3K/Akt/GSK-3β signaling pathway. Exp Ther Med 2017; 15:1136-1142. [PMID: 29399113 DOI: 10.3892/etm.2017.5512] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 10/18/2017] [Indexed: 11/06/2022] Open
Abstract
Previous reports on the pharmacological actions of geniposide have indicated that it has anti-asthmatic, anti-inflammatory and analgesic effects in the liver and gallbladder, and therapeutic effects in neurological, cardiovascular and cerebrovascular diseases. The results of the current study demonstrate that geniposide attenuates epilepsy in a mouse model through the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/glycogen synthase kinase-3β (GSK-3β) signaling pathway. A mouse model of epilepsy was induced by maximal electric shock (50 mA, 50 Hz, 1 sec). Epilepsy mice were intragastrically administered with 0, 5, 10 or 20 mg/kg geniposide. Geniposide significantly reduced the incidence and significantly increased the latency of clonic seizures in epileptic mice compared with non-treated epileptic mice (both P<0.01). Geniposide treatment significantly inhibited cyclooxygenase-2 mRNA expression in epilepsy mice (P<0.01). Furthermore, geniposide significantly suppressed the protein expression of activator protein 1, increased the activation of Akt and increased the protein expression of GSK-3β and PI3K in epilepsy mice (all P<0.01). These results suggest that geniposide attenuates epilepsy in mice through the PI3K/Akt/GSK-3β signaling pathway.
Collapse
Affiliation(s)
- Hongtao Wei
- Department of Neurosurgery, The Second People's Hospital of Gansu Province, Lanzhou, Gansu 730000, P.R. China
| | - Guanghui Duan
- Department of Neurosurgery, The Second People's Hospital of Gansu Province, Lanzhou, Gansu 730000, P.R. China
| | - Jianxun He
- Department of Neurosurgery, The Second People's Hospital of Gansu Province, Lanzhou, Gansu 730000, P.R. China
| | - Qinglong Meng
- Department of Neurosurgery, The Second People's Hospital of Gansu Province, Lanzhou, Gansu 730000, P.R. China
| | - Yuxian Liu
- Department of Neurosurgery, The Second People's Hospital of Gansu Province, Lanzhou, Gansu 730000, P.R. China
| | - Wanqiang Chen
- Department of Neurosurgery, The Second People's Hospital of Gansu Province, Lanzhou, Gansu 730000, P.R. China
| | - Yongpeng Meng
- Department of Neurosurgery, The Second People's Hospital of Gansu Province, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
83
|
Design, Synthesis, and Biological Activity of Tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine Derivatives as Anti-Inflammatory Agents. Molecules 2017; 22:molecules22111960. [PMID: 29137170 PMCID: PMC6150211 DOI: 10.3390/molecules22111960] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 01/25/2023] Open
Abstract
We designed and synthesized 26 prototype compounds and studied their anti-inflammatory activity and underlying molecular mechanisms. The inhibitory effects of the compounds on the production of nitric oxide (NO), cytokines, inflammatory-related proteins, and mRNAs in lipopolysaccharide (LPS)-stimulated macrophages were determined by the Griess assay, Enzyme linked immunosorbent assay (ELISA), Western blot analysis, and Reverse transcription-Polymerase Chain Reaction (RT-PCR), respectively. Our results indicated that treatment with A2, A6 and B7 significantly inhibited the secretion of NO and inflammatory cytokines in RAW264.7 cells without demonstrable cytotoxicity. It was also found that A2, A6 and B7 strongly suppressed the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase enzyme COX-2, and prevented nuclear translocation of nuclear factor κB (NF-κB) p65 by inhibiting the degradation of p50 and IκBα. Furthermore, the phosphorylation of mitogen-activated protein kinase (MAPKs) in LPS-stimulated RAW264.7 cells was significantly inhibited by A2, A6 and B7. These findings suggest that A2, A6 and B7 may operate as an effective anti-inflammatory agent through inhibiting the activation of NF-κB and MAPK signaling pathways in macrophages. Moreover, rat paw swelling experiments showed that these compounds possess anti-inflammatory activity in vivo, with compound A6 exhibiting similar activities to the reference drug Indomethacin.
Collapse
|
84
|
Antioxidant and Anti-Inflammatory Effects of Herbal Formula SC-E3 in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:1725246. [PMID: 29234366 PMCID: PMC5662831 DOI: 10.1155/2017/1725246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 08/10/2017] [Accepted: 08/21/2017] [Indexed: 01/05/2023]
Abstract
SC-E3 is a novel herbal formula composed of five oriental medicinal herbs that are used to treat a wide range of inflammatory diseases in Korean traditional medicine. In this study, we sought to determine the effects of SC-E3 on free radical generation and inflammatory response in lipopolysaccharide- (LPS-) treated RAW 264.7 macrophages and the molecular mechanism involved. The ethanol extract of SC-E3 showed good free radical scavenging activity and inhibited LPS-induced reactive oxygen species generation. SC-E3 significantly inhibited the production of the LPS-induced inflammatory mediators, nitric oxide and prostaglandin E2, by suppressing the expressions of inducible nitric oxide synthase and cyclooxygenase-2, respectively. SC-E3 also prevented the secretion of the proinflammatory cytokines, IL-1β, TNF-α, and IL-6, and inhibited LPS-induced NF-κB activation and the mitogen-activated protein kinase (MAPK) pathway. Furthermore, SC-E3 induced the expression of heme oxygenase-1 (HO-1) by promoting the nuclear translocation and transactivation of Nrf2. Taken together, these results suggest that SC-E3 has potent antioxidant and anti-inflammatory effects and that these effects are due to the inhibitions of NF-κB and MAPK and the induction of Nrf2-mediated HO-1 expression in macrophages. These findings provide scientific evidence supporting the potential use of SC-E3 for the treatment and prevention of various inflammatory diseases.
Collapse
|
85
|
Yang B, Wang F, Cao H, Liu G, Zhang Y, Yan P, Li B. Caffeoylxanthiazonoside exerts cardioprotective effects during chronic heart failure via inhibition of inflammatory responses in cardiac cells. Exp Ther Med 2017; 14:4224-4230. [PMID: 29104638 PMCID: PMC5658723 DOI: 10.3892/etm.2017.5080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 06/05/2017] [Indexed: 01/02/2023] Open
Abstract
Caffeoylxanthiazonoside (CYT) is an active constituent isolated from the fruit of the Xanthium strumarium L plant. The aim of the present study was to investigate the cardioprotective effects of oral administration of CYT on chronic heart failure (CHF) and its underlying mechanisms. A rat model of CHF was first established, and cardiac function indices, including the heart/body weight index, left heart/body weight index, fractional shortening (FS), ejection fraction (EF), cardiac output (CO) and heart rate (HR), were subsequently determined by cardiac ultrasound. Serum levels of lactate dehydrogenase (LDH) and creatine kinase (CK), and the levels of pro-inflammatory cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β in heart tissues and cardiac microvascular endothelial cells (CMECs) were determined using ELISA. In addition, the protein expression levels of nuclear factor-κB (NF-κB) signaling pathway members were determined by western blotting in CMECs. The results demonstrated that oral administration of 10, 20, 40 mg/kg CYT significantly reduced cardiac hypertrophy and reversed FS, EF, CO and HR when compared with CHF model rats. In addition, CYT administration significantly decreased the levels of TNF-α, IL-6 and IL-1β in heart tissues, as well as serum LDH and CK levels. Furthermore, exposure of CMECs to 20, 40 and 80 µg/ml CYT significantly decreased the production of TNF-α, IL-1β and IL-6. The protein expression levels of cytoplasmic NF-κB p65 and IκB were upregulated, while nuclear NF-κB p65 was downregulated following treatment of CMECs with 20, 40 and 80 µg/ml CYT when compared with untreated CHF model controls. In conclusion, the results of the current study suggest that CYT demonstrates cardioprotective effects in CHF model rats by suppressing the expression of pro-inflammatory cytokines and the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Bin Yang
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi 030024, P.R. China
| | - Fei Wang
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi 030024, P.R. China
| | - Huili Cao
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi 030024, P.R. China
| | - Guifang Liu
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi 030024, P.R. China
| | - Yuean Zhang
- Department of Science and Education, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi 030024, P.R. China
| | - Ping Yan
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Bao Li
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
86
|
Zhu Y, Liu Z, Peng YP, Qiu YH. Interleukin-10 inhibits neuroinflammation-mediated apoptosis of ventral mesencephalic neurons via JAK-STAT3 pathway. Int Immunopharmacol 2017; 50:353-360. [PMID: 28753520 DOI: 10.1016/j.intimp.2017.07.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/28/2017] [Accepted: 07/19/2017] [Indexed: 01/15/2023]
Abstract
Neuroinflammation plays an important role in the pathogenesis of Parkinson's disease. Interleukin (IL)-10 is one of the most important and best anti-inflammatory cytokines. The objective of this report is to investigate whether IL-10 has any role in protecting ventral mesencephalic (VM) neurons in in vitro model of neuroinflammation. In this study, primary neuron-enriched culture was prepared from the VM tissues of E14 embryos of rats. The cells were pretreated with IL-10 (15 or 50ng/mL) for 1h followed by lipopolysaccharide (LPS, 50ng/mL) application. We found LPS induced neuronal apoptosis and loss while pretreatment with IL-10 reduced neuronal damage after exposure of LPS toxicity. Furthermore, signal transduction pathways related to IL-10 in VM neurons were studied in inflammatory condition. We used both shRNA and pharmacologic inhibition to determine the role of the IL-10 receptor (IL-10R) and its downstream signaling pathways in LPS-induced VM neuronal toxicity. Silence of the IL-10R gene in VM neurons abolished IL-10 mediated protection and the properties of anti-inflammatory and anti-apoptosis. IL-10 also induced phosphorylation of signal transducer and activator of transcription (STAT) 3 in VM neurons. Pretreatment with the specific Janus kinase (JAK) inhibitor reduced STAT3 phosphorylation and blocked IL-10 mediated protection against LPS. These findings suggest that IL-10 provides neuroprotection by acting via IL-10R and its down-stream JAK-STAT3 signal pathways in VM neurons.
Collapse
Affiliation(s)
- Yan Zhu
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Zhan Liu
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Yu-Ping Peng
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China.
| | - Yi-Hua Qiu
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China.
| |
Collapse
|
87
|
Xanthotoxin suppresses LPS-induced expression of iNOS, COX-2, TNF-α, and IL-6 via AP-1, NF-κB, and JAK-STAT inactivation in RAW 264.7 macrophages. Int Immunopharmacol 2017; 49:21-29. [PMID: 28550731 DOI: 10.1016/j.intimp.2017.05.021] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/16/2017] [Accepted: 05/19/2017] [Indexed: 12/22/2022]
Abstract
Although xanthotoxin has been reported to possess skin-protective and anti-oxidative properties, its anti-inflammatory capacity has not been studied to date. Therefore, we investigated this role as well as the molecular mechanisms of xanthotoxin in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. Xanthotoxin inhibited production of nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor (TNF-α), and interleukin-6 (IL-6) by the LPS-induced macrophages in a concentration-dependent manner. It also suppressed the LPS-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression at the protein levels and iNOS, COX-2, TNF-α, and IL-6 at the mRNA levels. At a molecular level, the effects were related to xanthotoxin-mediated attenuation of the LPS-induced transcriptional and DNA-binding activity of activator protein-1 (AP-1). This attenuation was associated with decreased phosphorylation of c-Fos, but not c-Jun. Xanthotoxin also displayed a suppressive effect on the transcriptional and DNA-binding activity of nuclear transcription factor kappa-B (NF-κB) by inhibiting p65 nuclear translocation. In addition, xanthotoxin significantly reduced the phosphorylation at signal transducers and activators of transcription 1 (STAT1, Ser 727 and Tyr 701) and STAT3 (Tyr 705), as well as Janus kinase (JAK) 1 and 2 in LPS-induced RAW 264.7 macrophages. Finally, xanthotoxin suppressed the LPS-induced phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 and p38 mitogen-activated protein kinase (MAPK). Taken together, these results indicate that xanthotoxin decreases NO, PGE2, TNF-α, and IL-6 production by downregulation of the NF-κB, AP-1, and JAK/STAT signaling pathways in LPS-induced RAW 264.7 macrophages.
Collapse
|
88
|
Huang S, Ma Y, Sun D, Fan J, Cai S. In vitro
DNA damage protection and anti-inflammatory effects of Tartary buckwheats (Fagopyrum tataricum
L. Gaertn) fermented by filamentous fungi. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13474] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Shiqi Huang
- Yunnan Institute of Food Safety; Kunming University of Science and Technology; Kunming Yunnan Province 650500 China
| | - Yanli Ma
- College of Food Science and Technology; Hebei Agricultural University; Baoding Hebei Province 071001 China
| | - Dan Sun
- Yunnan Institute of Food Safety; Kunming University of Science and Technology; Kunming Yunnan Province 650500 China
| | - Jian Fan
- Yunnan Institute of Food Safety; Kunming University of Science and Technology; Kunming Yunnan Province 650500 China
| | - Shengbao Cai
- Yunnan Institute of Food Safety; Kunming University of Science and Technology; Kunming Yunnan Province 650500 China
| |
Collapse
|
89
|
Xu B, Li YL, Xu M, Yu CC, Lian MQ, Tang ZY, Li CX, Lin Y. Geniposide ameliorates TNBS-induced experimental colitis in rats via reducing inflammatory cytokine release and restoring impaired intestinal barrier function. Acta Pharmacol Sin 2017; 38:688-698. [PMID: 28260798 DOI: 10.1038/aps.2016.168] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/12/2016] [Indexed: 12/16/2022]
Abstract
Geniposide is an iridoid glycosides purified from the fruit of Gardenia jasminoides Ellis, which is known to have antiinflammatory, anti-oxidative and anti-tumor activities. The present study aimed to investigate the effects of geniposide on experimental rat colitis and to reveal the related mechanisms. Experimental rat colitis was induced by rectal administration of a TNBS solution. The rats were treated with geniposide (25, 50 mg·kg-1·d-1, ig) or with sulfasalazine (SASP, 100 mg·kg-1·d-1, ig) as positive control for 14 consecutive days. A Caco-2 cell monolayer exposed to lipopolysaccharides (LPS) was used as an epithelial barrier dysfunction model. Transepithelial electrical resistance (TER) was measured to evaluate intestinal barrier function. In rats with TNBS-induced colitis, administration of geniposide or SASP significantly increased the TNBS-decreased body weight and ameliorated TNBS-induced experimental colitis and related symptoms. Geniposide or SASP suppressed inflammatory cytokine (TNF-α, IL-1β, and IL-6) release and neutrophil infiltration (myeloperoxidase activity) in the colon. In Caco-2 cells, geniposide (25-100 μg/mL) ameliorated LPS-induced endothelial barrier dysfunction via dose-dependently increasing transepithelial electrical resistance (TER). The results from both in vivo and in vitro studies revealed that geniposide down-regulated NF-κB, COX-2, iNOS and MLCK protein expression, up-regulated the expression of tight junction proteins (occludin and ZO-1), and facilitated AMPK phosphorylation. Both AMPK siRNA transfection and AMPK overexpression abrogated the geniposide-reduced MLCK protein expression, suggesting that geniposide ameliorated barrier dysfunction via AMPK-mediated inhibition of the MLCK pathway. In conclusion, geniposide ameliorated TNBS-induced experimental rat colitis by both reducing inflammation and modulating the disrupted epithelial barrier function via activating the AMPK signaling pathway.
Collapse
|
90
|
Samuchiwal SK, Balestrieri B, Raff H, Boyce JA. Endogenous prostaglandin E 2 amplifies IL-33 production by macrophages through an E prostanoid (EP) 2/EP 4-cAMP-EPAC-dependent pathway. J Biol Chem 2017; 292:8195-8206. [PMID: 28341741 DOI: 10.1074/jbc.m116.769422] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/14/2017] [Indexed: 11/06/2022] Open
Abstract
When activated through toll-like receptors (TLRs), macrophages generate IL-33, an IL-1 family member that induces innate immune responses through ST2 signaling. LPS, a TLR4 ligand, induces macrophages to generate prostaglandin E2 (PGE2) through inducible COX-2 and microsomal PGE2 synthase 1 (mPGES-1) (1). We demonstrate that IL-33 production by bone marrow-derived murine macrophages (bmMFs) requires the generation of endogenous PGE2 and the intrinsic expression of EP2 receptors to amplify NF-κB-dependent, LPS-induced IL-33 expression via exchange protein activated by cAMP (EPAC). Compared with WT cells, bmMFs lacking either mPGES-1 or EP2 receptors displayed reduced LPS-induced IL-33 levels. A selective EP2 agonist and, to a lesser extent, EP4 receptor agonist potentiated LPS-induced IL-33 generation from both mPGES-1-null and WT bmMFs, whereas EP1 and EP3 receptor agonists were inactive. The effects of PGE2 depended on cAMP, were mimicked by an EPAC-selective agonist, and were attenuated by EPAC-selective antagonism and knockdown. LPS-induced p38 MAPK and NF-κB activations were necessary for both IL-33 production and PGE2 generation, and exogenous PGE2 partly reversed the suppression of IL-33 production caused by p38 MAPK and NF-κB inhibition. Mice lacking mPGES-1 showed lower IL-33 levels and attenuated lung inflammation in response to repetitive Alternaria inhalation challenges. Cumulatively, our data demonstrate that endogenous PGE2, EP2 receptors, and EPAC are prerequisites for maximal LPS-induced IL-33 expression and that exogenous PGE2 can amplify IL-33 production via EP2 and EP4 receptors. The ubiquitous induction of mPGES-1-dependent PGE2 may be crucial for innate immune system activation during various IL-33 driven pathologic disorders.
Collapse
Affiliation(s)
- Sachin K Samuchiwal
- Department of Medicine, Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, Massachusetts 02115; Harvard Medical School, Boston, Massachusetts 02115
| | - Barbara Balestrieri
- Department of Medicine, Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, Massachusetts 02115; Harvard Medical School, Boston, Massachusetts 02115
| | - Hannah Raff
- Department of Medicine, Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, Massachusetts 02115
| | - Joshua A Boyce
- Department of Medicine, Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, Massachusetts 02115; Harvard Medical School, Boston, Massachusetts 02115.
| |
Collapse
|
91
|
Dong L, Zhang Y, Wang X, Dong YX, Zheng L, Li YJ, Ni JM. In vivo and in vitro anti-inflammatory effects of ethanol fraction from Periploca forrestii Schltr. Chin J Integr Med 2017; 23:528-534. [PMID: 28283936 DOI: 10.1007/s11655-017-2803-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To determine the anti-inflflammatory effects of an ethanol fraction of Periploca forrestii Schltr. (EFPF) and to investigate the potential mechanisms underlying in vivo and in vitro models. METHODS The antiinflflammatory effects of EFPF were evaluated using the xylene-induced mouse ear edema and carrageenan-induced rat paw edema models in vivo. In vitro, RAW264.7 cells were exposed to 0-800 μg/mL EFPF and the cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Then cells were treated with different concentrations of EFPF (100-400 μg/mL) and stimulated with lipopolysaccharide (LPS, 1 μg/mL) for 24 h. The supernatant was analyzed for nitric oxide (NO) using the Griess reagent, and the levels of inflflammatory mediators and cytokines were determined using enzyme-linked immunosorbent assays for prostaglandin E2 (PGE2), tumor necrosis factor α (TNF-α), interleukin (IL) 6, and IL-10. The protein expressions of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), nuclear factor κB (NF-κB), and mitogen-activated protein kinases (MAPKs) including extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK were examined by Western blot. RESULTS Compared with the control group, EFPF signifificantly reduced mouse ear edema and rat paw edema rate (P<0.05 or P<0.01). Compared with the LPS group, EFPF signifificantly inhibited the LPS-stimulated production of NO, PGE2, TNF-α and IL-6 (P<0.05 or P<0.01), and increased the IL-10 production (P<0.05). EFPF also signifificantly inhibited LPS-induced protein expressions of iNOS and COX-2, suppressed the phosphorylation and degradation of inhibitor of NF-κB-α, decreased p65 level, and inhibited the phosphorylation of p38, ERK1/2 and JNK P<0.05 or P<0.01). CONCLUSION EFPF exerted anti-inflflammatory effect by reducing protein expressions of iNOS and COX-2 and the production of the inflflammation factors, including TNF-α, IL-6, NO and PGE2, mainly through inhibition of LPS-mediated stimulation of NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Li Dong
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yun Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xia Wang
- Engineering Research Center for the Development and Application of Ethnic Medicine and Chinese Medicine (Ministry of Education), Guizhou Medical University, Guiyang, 550004, China
| | - Yong-Xi Dong
- Engineering Research Center for the Development and Application of Ethnic Medicine and Chinese Medicine (Ministry of Education), Guizhou Medical University, Guiyang, 550004, China
| | - Lin Zheng
- Engineering Research Center for the Development and Application of Ethnic Medicine and Chinese Medicine (Ministry of Education), Guizhou Medical University, Guiyang, 550004, China
| | - Yong-Jun Li
- Engineering Research Center for the Development and Application of Ethnic Medicine and Chinese Medicine (Ministry of Education), Guizhou Medical University, Guiyang, 550004, China
| | - Jing-Man Ni
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
92
|
Wang K, Coyle ME, Mansu S, Zhang AL, Xue CC. Gentiana scabraBunge. Formula for Herpes Zoster: Biological Actions of Key Herbs and Systematic Review of Efficacy and Safety. Phytother Res 2017; 31:375-386. [DOI: 10.1002/ptr.5769] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/29/2016] [Accepted: 12/21/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Kaiyi Wang
- China-Australia International Research Centre for Chinese Medicine (CAIRCCM), School of Health and Biomedical Sciences; RMIT University; Bundoora Campus Melbourne VIC 3083 Australia
| | - Meaghan E. Coyle
- China-Australia International Research Centre for Chinese Medicine (CAIRCCM), School of Health and Biomedical Sciences; RMIT University; Bundoora Campus Melbourne VIC 3083 Australia
- Guangdong Provincial Academy of Chinese Medical Sciences; Guangdong China
| | - Suzi Mansu
- China-Australia International Research Centre for Chinese Medicine (CAIRCCM), School of Health and Biomedical Sciences; RMIT University; Bundoora Campus Melbourne VIC 3083 Australia
| | - Anthony Lin Zhang
- China-Australia International Research Centre for Chinese Medicine (CAIRCCM), School of Health and Biomedical Sciences; RMIT University; Bundoora Campus Melbourne VIC 3083 Australia
| | - Charlie Changli Xue
- China-Australia International Research Centre for Chinese Medicine (CAIRCCM), School of Health and Biomedical Sciences; RMIT University; Bundoora Campus Melbourne VIC 3083 Australia
- Guangdong Provincial Academy of Chinese Medical Sciences; Guangdong China
| |
Collapse
|
93
|
Sun LL, Wu H, Zhang YZ, Wang R, Wang WY, Wang W, Li SP, Dai L, Zhang ZR. Design, synthesis and preliminary evaluation of the anti-inflammatory of the specific selective targeting druggable enzymome cyclooxygenase-2 (COX-2) small molecule. PHARMACEUTICAL BIOLOGY 2016; 54:2505-2514. [PMID: 27098007 DOI: 10.3109/13880209.2016.1160939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
CONTEXT Development of a reliable and selective anti-inflammatory agent of cyclooxygenase-2 (COX-2), induced or up-regulated by inflammatory/injury stimulus such as IL-1β, TNF-α and LPS in the various types of organs, tissues and cells, with low side effects is a long-standing medicinal chemistry problem with significant social implications. OBJECTIVE To target druggable enzymome COX-2 by exploiting NSAIDs and genipin (GEP) in anti-inflammatory infection. MATERIALS AND METHODS The compound aspirin GEP ester (AGE) was designed by computer-assisted screening, synthesized in the esterification of the acylate derivative and the methylate derivative with Et3N, and evaluated with 20, 40 and 60 mg/kg from days 18 to 24 after immunization in collagen-induced arthritis (CIA) rats by the sequential enzymatic experiments, western-blot analysis and pathological observation methods. RESULTS AGE exhibited higher binding affinity with COX-1 and displayed the lowest estimated free energy with COX-2 than other ligands built by hanging NSAIDs with GEP, and was characterized by 1H NMR, 13C NMR and HRMS. AGE was competed against COX-2 with molecule-dependent potencies and selectivity (IC50: 0.36 mM; selectivity index: 275) in the sequential enzymatic experiments and decreased the expression of COX-2 in peripheral blood lymphocytes of CIA rats. AGE (40 and 60 mg/kg) could significantly relieve the secondary hind paw swelling and arthritis index, along with observing AGE attenuated histopathological changes of fibroblast like synovial tissue (FLST) and mesenteric lymph node lymphocytes (MLNL) in CIA rats. DISCUSSION AND CONCLUSION AGE pharmacophore reported herein may be an effective strategy to develop a novel anti-inflammatory agent and potential inhibitor of COX-2.
Collapse
Affiliation(s)
- Liang-Liang Sun
- a College of Pharmacy, Anhui University of Chinese Medicine , Key Laboratory of Modernized Chinese Medicine in Anhui Province , Hefei , Anhui , P.R. China
| | - Hong Wu
- a College of Pharmacy, Anhui University of Chinese Medicine , Key Laboratory of Modernized Chinese Medicine in Anhui Province , Hefei , Anhui , P.R. China
| | - Ya-Zhong Zhang
- b Anhui Institute for Drug Control , Hefei , Anhui , P.R. China
| | - Rong Wang
- a College of Pharmacy, Anhui University of Chinese Medicine , Key Laboratory of Modernized Chinese Medicine in Anhui Province , Hefei , Anhui , P.R. China
| | - Wen-Yu Wang
- a College of Pharmacy, Anhui University of Chinese Medicine , Key Laboratory of Modernized Chinese Medicine in Anhui Province , Hefei , Anhui , P.R. China
| | - Wei Wang
- a College of Pharmacy, Anhui University of Chinese Medicine , Key Laboratory of Modernized Chinese Medicine in Anhui Province , Hefei , Anhui , P.R. China
| | - Shu-Ping Li
- a College of Pharmacy, Anhui University of Chinese Medicine , Key Laboratory of Modernized Chinese Medicine in Anhui Province , Hefei , Anhui , P.R. China
| | - Li Dai
- a College of Pharmacy, Anhui University of Chinese Medicine , Key Laboratory of Modernized Chinese Medicine in Anhui Province , Hefei , Anhui , P.R. China
| | - Zheng-Rong Zhang
- a College of Pharmacy, Anhui University of Chinese Medicine , Key Laboratory of Modernized Chinese Medicine in Anhui Province , Hefei , Anhui , P.R. China
| |
Collapse
|
94
|
Cnidilide, an alkylphthalide isolated from the roots of Cnidium officinale , suppresses LPS-induced NO, PGE 2 , IL-1β, IL-6 and TNF-α production by AP-1 and NF-κB inactivation in RAW 264.7 macrophages. Int Immunopharmacol 2016; 40:146-155. [DOI: 10.1016/j.intimp.2016.08.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/16/2016] [Accepted: 08/19/2016] [Indexed: 01/03/2023]
|
95
|
Hu X, Zhang X, Jin G, Shi Z, Sun W, Chen F. Geniposide reduces development of streptozotocin-induced diabetic nephropathy via regulating nuclear factor-kappa B signaling pathways. Fundam Clin Pharmacol 2016; 31:54-63. [PMID: 27521287 DOI: 10.1111/fcp.12231] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/14/2016] [Accepted: 08/11/2016] [Indexed: 12/20/2022]
Abstract
Renal pathology was a commonly seen complication in patients with diabetes. Geniposide (GPO) was previously demonstrated to modulate glucose metabolism in diabetes. This study was to investigate effects of GPO in streptozotocin-induced diabetic rats and its underlying mechanism. Renal function in diabetic rats was evaluated by levels of serum creatinine (Scr), blood urea nitrogen (BUN), and urinary albumin. Renal inflammation was appraised by inflammatory cells infiltration and pro-inflammatory cytokines production. Renal monocytes, T lymphocytes infiltration, and intercellular adhesion molecule-1 (ICAM-1) expression were quantitated by immunohistochemistry. Moreover, renal nuclear factor-kappa B (NF-κB) was assayed by Western blotting. Diabetic rats showed renal dysfunction as evidenced by increased levels of Scr, BUN, urinary albumin, and elevator renal index. Histological examination revealed significant glomerular basement membrane (GBM) thickening. However, GPO notably improved renal function and diabetes-induced GBM changes. Additionally, diabetic rats showed noteworthy renal inflammation,as reflected by enhancement of monocytes and T lymphocytes infiltration, increased expression of ICAM-1, tumor necrosis factor-α, interleukin-1 (IL-1), and IL-6. Interestingly, the level of monocytes infiltration positively correlated with the severity of GBM. Further study indicated diabetic rats displayed increased activation of NF-κB, indicated by increased expression of NF-κB p65, IKKα, and p-IκBα in renal tissue. However, all the changes in renal inflammation and NF-κB pathway were obviously reversed in GPO-treated diabetic rats. Our works indicate GPO ameliorates structural and functional abnormalities of kidney in diabetic rats, which is associated with its suppression of NF-κB-mediated inflammatory response.
Collapse
Affiliation(s)
- Xiaolei Hu
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, Anhui, China
| | - Xiaomei Zhang
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, Anhui, China
| | - Guoxi Jin
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, Anhui, China
| | - Zhaoming Shi
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, Anhui, China
| | - Weihua Sun
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, Anhui, China
| | - Fengling Chen
- Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| |
Collapse
|
96
|
Sun Z, Park SY, Hwang E, Zhang M, Seo SA, Lin P, Yi TH. Thymus vulgaris alleviates UVB irradiation induced skin damage via inhibition of MAPK/AP-1 and activation of Nrf2-ARE antioxidant system. J Cell Mol Med 2016; 21:336-348. [PMID: 27641753 PMCID: PMC5264136 DOI: 10.1111/jcmm.12968] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 08/03/2016] [Indexed: 12/21/2022] Open
Abstract
Solar ultraviolet (UV) radiation-induced reactive oxidative species is mainly responsible for the development of photoageing. Rosmarinic acid was one of the main bioactive components detected in Thymus vulgaris (TV) we extracted. In this study, UVB-induced skin damages have been shown to be ameliorated by treatment with TV in hairless mice (HR-1) skin, demonstrated by decreased matrix metalloproteinases (MMPs) and increased collagen production. However, the underlying molecular mechanism on which TV acted was unclear. We examined the photoprotective effects of TV against UVB and elucidated the molecular mechanism in normal human dermal fibroblasts. Thymus vulgaris remarkably prevented the UVB-induced reactive oxygen species and lactate dehydrogenase. Dose-dependent increase in glutathione, NAD(P)H: quinone oxidoreductase1 and heme oxygenase-1, by TV was confirmed by increased nuclear accumulation of Nrf2. Furthermore, 5-Methoxyindole-2-carboxylic acid was introduced as a specific inhibitor of dihydrolipoyl dehydrogenase (DLD). We demonstrated that Nrf2 expression was regulated by DLD, which was a tricarboxylic acid cycle-associated protein that decreased after UVB exposure. Besides, TV significantly diminished UVB induced phosphorylation of mitogen activated protein kinases pathway, containing extracellular signal-regulated kinase, Jun N-terminal kinase and p38, which consequently reduced phosphorylated c-fos and c-jun. Our results suggest that TV is a potential botanical agent for use against UV radiation-induced oxidative stress mediated skin damages.
Collapse
Affiliation(s)
- Zhengwang Sun
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University Global Campus, Yongin-si, Gyeonggi-do, Korea
| | - Sang Yong Park
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University Global Campus, Yongin-si, Gyeonggi-do, Korea
| | - Eunson Hwang
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University Global Campus, Yongin-si, Gyeonggi-do, Korea
| | - Mengyang Zhang
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University Global Campus, Yongin-si, Gyeonggi-do, Korea
| | - Seul A Seo
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University Global Campus, Yongin-si, Gyeonggi-do, Korea
| | - Pei Lin
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University Global Campus, Yongin-si, Gyeonggi-do, Korea
| | - Tae-Hoo Yi
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University Global Campus, Yongin-si, Gyeonggi-do, Korea
| |
Collapse
|
97
|
Matrine Exerts a Strong Anti-Arthritic Effect on Type II Collagen-Induced Arthritis in Rats by Inhibiting Inflammatory Responses. Int J Mol Sci 2016; 17:ijms17091410. [PMID: 27571073 PMCID: PMC5037690 DOI: 10.3390/ijms17091410] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/18/2016] [Accepted: 08/22/2016] [Indexed: 12/12/2022] Open
Abstract
To investigate anti-arthritic effects of matrine isolated from the roots of S. flavescens on type II collagen-induced arthritis (CIA) in rats and to explore its related potential mechanisms, CIA rats were established and administered with matrine (20, 40 or 80 mg/kg/days, for 30 days). Subsequently, blood was collected to determine serum levels of TNF-α, IL-1β, IL-6, IL-8, IL-17A, IL-10, MMP-2, MMP-3 and MMP-9, and hind paws and knee joints were collected for histopathological examination. Furthermore, indices of the thymus and spleen were determined, and synovial tissues were collected to determine the protein expressions of p-IκB, IκB, Cox-2 and iNOS. Our results indicated that matrine significantly suppressed inflammatory reactions and synovial tissue destruction. Matrine inhibited paw swelling, arthritis indices and weight loss in CIA rats. Additionally, matrine decreased the levels of TNF-α, IL-1β, IL-6, IL-8, IL-17A, MMP-2, MMP-3 and MMP-9. Matrine also down-regulated expressions of p-IκB, Cox-2, and iNOS but up-regulated IκB in synovial tissues in CIA rats. The results suggested matrine possesses an anti-arthritic effect in CIA rats via inhibiting the release of pro-inflammatory cytokines and proteins that promote the NF-κB pathway.
Collapse
|
98
|
Du R, Wang JL, Wang YL. Role of RhoA/MERK1/ERK1/2/iNOS signaling in ocular ischemic syndrome. Graefes Arch Clin Exp Ophthalmol 2016; 254:2217-2226. [DOI: 10.1007/s00417-016-3456-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/18/2016] [Accepted: 07/27/2016] [Indexed: 10/21/2022] Open
|
99
|
Jin SE, Kim OS, Yoo SR, Seo CS, Kim Y, Shin HK, Jeong SJ. Anti-inflammatory effect and action mechanisms of traditional herbal formula Gamisoyo-san in RAW 264.7 macrophages. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:219. [PMID: 27422559 PMCID: PMC4946171 DOI: 10.1186/s12906-016-1197-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 07/07/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Gamisoyo-san (GMSYS) is a traditional herbal formula used to treat insomnia, dysmenorrhea, and infertility in Korea. The purpose of this study was to investigate the anti-inflammatory effect and action mechanisms of GMSYS in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. METHODS The anti-inflammatory effects of GMSYS were investigated using nitric oxide (NO) assay and ELISAs for prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6). The anti-inflammatory action mechanisms of GMSYS were evaluated using Western blotting for inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and activation of nuclear transcription factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs). RESULTS GMSYS significantly inhibited the LPS-induced production of NO, PGE2, TNF-α, and IL-6 compared with the vehicle-treated cells. GMSYS consistently downregulated the expression of iNOS and COX-2 mRNA induced by LPS. In addition, pretreatment with GMSYS suppressed the LPS-induced activation of NF-κB and MAPKs such as p38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK). CONCLUSIONS Our results indicate that the anti-inflammatory effects of GMSYS in RAW 264.7 macrophages are associated with inhibition of the release of inflammatory mediators and cytokines through the suppression of MAPK and NF-κB activation. These findings suggest that GMSYS may be a useful therapeutic candidate for the prevention or treatment of inflammatory diseases.
Collapse
|
100
|
The Anti-Inflammatory Effects and Mechanisms of Eupafolin in Lipopolysaccharide-Induced Inflammatory Responses in RAW264.7 Macrophages. PLoS One 2016; 11:e0158662. [PMID: 27414646 PMCID: PMC4945065 DOI: 10.1371/journal.pone.0158662] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 06/20/2016] [Indexed: 12/22/2022] Open
Abstract
Eupafolin is a flavone isolated from Artemisia princeps Pampanini (family Asteraceae). The aim of this study was to examine the anti-inflammatory effects of eupafolin in lipopolysaccharide (LPS)-treated RAW264.7 macrophages and LPS-induced mouse skin and lung inflammation models and to identify the mechanism underlying these effects. Eupafolin decreased the LPS-induced release of inflammatory mediators (iNOS, COX-2 and NO) and proinflammatory cytokines (IL-6 and TNF-α) from the RAW264.7 macrophages. Eupafolin inhibited the LPS-induced phosphorylation of p38 MAPK, ERK1/2, JNK, AKT and p65 and the nuclear translocation of p65 and c-fos. These effects were mainly mediated by the inhibition of JNK. In the mouse paw and lung models, eupafolin effectively suppressed the LPS-induced edema formation and down-regulated iNOS and COX-2 expression. These results demonstrated that eupafolin exhibits anti-inflammatory properties and suggested that eupafolin can be developed as an anti-inflammatory agent.
Collapse
|