51
|
Li X, Shang X, Sun L. Tacrolimus reduces atherosclerotic plaque formation in ApoE -/- mice by inhibiting NLRP3 inflammatory corpuscles. Exp Ther Med 2020; 19:1393-1399. [PMID: 32010314 PMCID: PMC6966157 DOI: 10.3892/etm.2019.8340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/04/2019] [Indexed: 12/16/2022] Open
Abstract
Effect of tacrolimus on atherosclerotic plaques and its influence on Nod-like receptor protein 3 (NLRP3) inflammatory pathway were studied by establishing the mouse model of atherosclerosis. The mice were divided into 3 groups: C57BL/6 mouse group (WT group), ApoE-/- mouse group (ApoE-/- group) and ApoE-/- mouse + tacrolimus intervention group (ApoE-/- + Tac group). The area of atherosclerotic plaques and the pathological morphologic changes were observed. The NLRP3, interleukin-1β (IL-1β), IL-18, NLRP3 inflammatory corpuscles, pro-inflammatory factors IL-1β and IL-18 in the aorta were analyzed. The area of atherosclerotic plaques in ApoE-/- mice was increased significantly, and it was significantly reduced after tacrolimus intervention. After tacrolimus intervention, the arterial intima became obviously thinner and no obvious cholesterol crystals were observed. The macrophage infiltration in atherosclerotic plaques was significantly increased, and the content of smooth muscle cells was also increased. The levels of serum IL-1β, IL-18 and NLRP3 in ApoE-/- mice were significantly increased, and they remarkably declined after tacrolimus intervention. ROS content in atherosclerotic plaques was increased in ApoE-/- mice, and it remarkably declined after tacrolimus intervention. The protein content of NLRP3, ASC, Casp-1, IL-1β and IL-18 in the aorta in ApoE-/- mice was remarkably increased, and they were inhibited to some extent after tacrolimus intervention. In conclusion, it is speculated that tacrolimus may reduce the formation of AS through inhibiting ROS in macrophages and activation of NLRP3 inflammatory corpuscles and reducing the release of IL-1β and IL-18.
Collapse
Affiliation(s)
- Xiao Li
- Department of Cardiology, The Third People's Hospital of Qingdao, Qingdao, Shandong 266041, P.R. China
| | - Xingfu Shang
- Department of Cardiology, The Third People's Hospital of Qingdao, Qingdao, Shandong 266041, P.R. China
| | - Lu Sun
- Department of Cardiology, The Third People's Hospital of Qingdao, Qingdao, Shandong 266041, P.R. China
| |
Collapse
|
52
|
Abedimanesh N, Motlagh B, Abedimanesh S, Bathaie SZ, Separham A, Ostadrahimi A. Effects of crocin and saffron aqueous extract on gene expression of SIRT1, AMPK, LOX1, NF-κB, and MCP-1 in patients with coronary artery disease: A randomized placebo-controlled clinical trial. Phytother Res 2019; 34:1114-1122. [PMID: 31797473 DOI: 10.1002/ptr.6580] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 11/02/2019] [Accepted: 11/14/2019] [Indexed: 01/01/2023]
Abstract
This trial evaluated the potential impacts of saffron aqueous extract (SAE) and its main carotenoid on some of the atherosclerosis-related gene expression and serum levels of oxidized low-density cholesterol (ox-LDL) and Monocyte chemoattractant protein 1 (MCP-1) in patients with coronary artery disease (CAD). Participants of this randomized controlled trial included 84 CAD patients who categorized into three groups: Group 1 received crocin (30 mg/day), Group 2 SAE (30 mg/day), and Group 3 placebo for 8 weeks. Gene expression of Sirtuin 1 (SIRT1), 5'-adenosine monophosphate-activated protein kinase (AMPK), Lectin-like oxidized LDL receptor 1 (LOX1), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and MCP-1 in peripheral blood mononuclear cells assessed by real-time PCR. Furthermore, serum ox-LDL and MCP-1 levels measured at the beginning and end of the intervention. Compared with the placebo group, gene expression of SIRT1 and AMPK increased significantly in the crocin group (p = .001), and the expression of LOX1 and NF-κB decreased significantly (p = .016 and .004, respectively). Serum ox-LDL levels decreased significantly in the crocin group after the intervention (p = .002) while MCP-1 levels decreased both in crocin and SAE groups (p = .001). Crocin may have beneficial effects on CAD patients by increasing the gene expression of SIRT1 and AMPK and decreasing the expression of LOX1 and NF-κB.
Collapse
Affiliation(s)
- Nasim Abedimanesh
- Department of Nutrition, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Behrooz Motlagh
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Saeed Abedimanesh
- Faculty of Medical Sciences, Department of Clinical Biochemistry, Tarbiat Modares University, Tehran, Iran
| | - S Zahra Bathaie
- Faculty of Medical Sciences, Department of Clinical Biochemistry, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Separham
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Ostadrahimi
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
53
|
Jang S, Min S. Amelioration of colitis in mice by
Leuconostoc lactis
EJ‐1 by M1 to M2 macrophage polarization. Microbiol Immunol 2019; 64:133-142. [DOI: 10.1111/1348-0421.12752] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/06/2019] [Accepted: 10/16/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Se‐Eun Jang
- Department of Food and NutritionEulji University Seongnam Gyeonggi‐do Republic of Korea
| | - Sung‐Won Min
- Life Science LabSG Medical Songpa‐gu Republic of Korea
| |
Collapse
|
54
|
Yang S, Yuan HQ, Hao YM, Ren Z, Qu SL, Liu LS, Wei DH, Tang ZH, Zhang JF, Jiang ZS. Macrophage polarization in atherosclerosis. Clin Chim Acta 2019; 501:142-146. [PMID: 31730809 DOI: 10.1016/j.cca.2019.10.034] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/23/2019] [Accepted: 10/23/2019] [Indexed: 12/20/2022]
Abstract
Atherosclerosis is a chronic inflammatory response that increases the risk of cardiovascular diseases. An in-depth study of the pathogenesis of atherosclerosis is critical for the treatment of atherosclerotic cardiovascular disease. The development of atherosclerosis involves many cells, such as endothelial cells, vascular smooth muscle cells, macrophages, and others. The considerable effects of macrophages in atherosclerosis are inextricably linked to macrophage polarization and the resulting phenotype. Moreover, the significant impact of macrophages on atherosclerosis depend not only on the function of the different macrophage phenotypes but also on the relative ratio of different phenotypes in the plaque. Research on atherosclerosis therapy indicates that the reduced plaque size and enhanced stability are partly due to modulating macrophage polarization. Therefore, regulating macrophage polarization and changing the proportion of macrophage phenotypes in plaques is a new therapeutic approach for atherosclerosis. This review provides a new perspective for atherosclerosis therapy by summarizing the relationship between macrophage polarization and atherosclerosis, as well as treatment targeting macrophage polarization.
Collapse
Affiliation(s)
- Sai Yang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Hou-Qin Yuan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Ya-Meng Hao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Zhong Ren
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Shun-Lin Qu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Lu-Shan Liu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Dang-Heng Wei
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Zhi-Han Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Ji-Feng Zhang
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, 2800 Plymouth Rd, NCRC Bldg26-357S, Ann Arbor, MI 48109, USA
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, University of South China, Hengyang City, Hunan Province, 421001, PR China.
| |
Collapse
|
55
|
Crocin inhibits titanium particle-induced inflammation and promotes osteogenesis by regulating macrophage polarization. Int Immunopharmacol 2019; 76:105865. [PMID: 31476694 DOI: 10.1016/j.intimp.2019.105865] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/16/2019] [Accepted: 08/23/2019] [Indexed: 12/24/2022]
Abstract
Wear particle-induced periprosthetic inflammatory osteolysis and resultant aseptic loosening are major causes of orthopedic implant failure, for which there are no effective treatments other than revision surgery. Crocin, a carotenoid compound derived from crocus flowers, has anti-inflammatory properties, but its immunomodulatory function and role in particle-induced osteolysis are not well characterized. Here we report the effect of crocin on titanium (Ti) particle-induced macrophage polarization and osteogenic differentiation. We found that crocin induced anti-inflammatory (M2) macrophage polarization and attenuated Ti particle-induced inflammation by promoting the expression of anti-inflammatory cytokines in vitro as well as in vivo in a mouse air-pouch model. Additionally, crocin pre-treated macrophages promoted osteogenic differentiation of co-cultured mouse bone mesenchymal stem cells (BMSCs). These effects were mediated via inhibition of p38 and c-Jun N-terminal kinase signaling. Our results indicate that crocin suppresses Ti particle-induced inflammation and enhances osteogenic differentiation of BMSCs by inducing M2 macrophage polarization, highlighting its therapeutic potential for preventing wear particle-induced osteolysis.
Collapse
|
56
|
LI TT, WANG ZB, LI Y, CAO F, YANG BY, KUANG HX. The mechanisms of traditional Chinese medicine underlying the prevention and treatment of atherosclerosis. Chin J Nat Med 2019; 17:401-412. [DOI: 10.1016/s1875-5364(19)30048-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Indexed: 02/07/2023]
|
57
|
Qian C, Yun Z, Yao Y, Cao M, Liu Q, Hu S, Zhang S, Luo D. Heterogeneous macrophages: Supersensors of exogenous inducing factors. Scand J Immunol 2019; 90:e12768. [PMID: 31002413 PMCID: PMC6852148 DOI: 10.1111/sji.12768] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/01/2019] [Accepted: 04/11/2019] [Indexed: 12/14/2022]
Abstract
As heterogeneous immune cells, macrophages mount effective responses to various internal and external changes during disease progression. Macrophage polarization, rather than macrophage heterogenization, is often used to describe the functional differences between macrophages. While macrophage polarization partially contributes to heterogeneity, it does not completely explain the concept of macrophage heterogeneity. At the same time, there are abundant and sophisticated endogenous and exogenous substances that can affect macrophage heterogeneity. While the research on endogenous factors has been systematically reviewed, the findings on exogenous factors have not been well summarized. Hence, we reviewed the characteristics and inducing factors of heterogeneous macrophages to reveal their functional plasticity as well as their targeting manoeuvreability. In the process of constructing and analysing a network organized by disease-related cells and molecules, paying more attention to heterogeneous macrophages as mediators of this network may help to explore a novel entry point for early prevention of and intervention in disease.
Collapse
Affiliation(s)
- Caiyun Qian
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Zehui Yun
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Yudi Yao
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Minghua Cao
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Qiang Liu
- School of Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Song Hu
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Shuhua Zhang
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People's Hospital, Affiliated to Nanchang University, Nanchang, Jiangxi, China
| | - Daya Luo
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, China.,Affiliated Infectious Disease Hospital, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
58
|
Wang Y, Smith W, Hao D, He B, Kong L. M1 and M2 macrophage polarization and potentially therapeutic naturally occurring compounds. Int Immunopharmacol 2019; 70:459-466. [PMID: 30861466 DOI: 10.1016/j.intimp.2019.02.050] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 02/06/2023]
Abstract
Macrophages, as crucial cellular components of innate immunity, are characterized by possessing high plasticity and an abnormal ability to differentiate in response to numerous stimuli. Given this, macrophages show extreme heterogeneity under both physiological and pathological conditions. Typically, macrophages can be polarized into classically activated macrophages (M1) and alternatively activated macrophages (M2) depending on their environment. The relative functions of these two subtypes are almost exactly opposed to one another. Recent studies have suggested that some naturally occurring compounds can exert regulatory effects on the progression of macrophage polarization, which implies that they could be promising therapeutic tools to treat relevant diseases. Therefore, in our current review, we summarize recent studies on several naturally occurring compounds that may possess the ability to regulate macrophage polarization and explore the associated molecular mechanisms.
Collapse
Affiliation(s)
- Youhan Wang
- Department of Spine Surgery, Honghui-hospital, Xi'an Jiaotong Uinversity, School of Medicine, Xi'an, China; Shaanxi University of Chinese Medicine, Xian Yang, China
| | - Wanli Smith
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Dingjun Hao
- Department of Spine Surgery, Honghui-hospital, Xi'an Jiaotong Uinversity, School of Medicine, Xi'an, China
| | - Baorong He
- Department of Spine Surgery, Honghui-hospital, Xi'an Jiaotong Uinversity, School of Medicine, Xi'an, China
| | - Lingbo Kong
- Department of Spine Surgery, Honghui-hospital, Xi'an Jiaotong Uinversity, School of Medicine, Xi'an, China.
| |
Collapse
|
59
|
Wang SW, Bai YF, Weng YY, Fan XY, Huang H, Zheng F, Xu Y, Zhang F. Cinobufacini Ameliorates Dextran Sulfate Sodium-Induced Colitis in Mice through Inhibiting M1 Macrophage Polarization. J Pharmacol Exp Ther 2019; 368:391-400. [PMID: 30606760 DOI: 10.1124/jpet.118.254516] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/31/2018] [Indexed: 03/08/2025] Open
Abstract
Cinobufacini is a traditional Chinese medicine used clinically that has antitumor and anti-inflammatory effects. It improves colitis outcomes in the clinical setting, but the mechanism underlying its function yet to be uncovered. We investigated the protective effects and mechanisms of cinobufacini on colitis using a dextran sulfate sodium (DSS)-induced colitis mouse model, mainly focusing on the impact of macrophage polarization. Our results showed that cinobufacini dramatically ameliorated DSS-induced colitis in mice. Cinobufacini treatment reduced the infiltration of activated F4/80+ and/or CD68+ macrophages into the colon in DSS-induced colitis mice. More importantly, cinobufacini significantly decreased the quantity of M1 macrophages and the expression of proinflammatory cytokines such as interleukin-6, tumor necrosis factor α, and inducible nitric oxide synthase. Cinobufacini also increased the population of M2 macrophages and the expression of anti-inflammatory factors such as interleukin-10 and arginase-1 in DSS-induced colitis mice. Furthermore, our study demonstrated that cinobufacini inhibited M1 macrophage polarization in lipopolysaccharide-induced RAW 264.7 cells. Mechanistically, our in vivo and in vitro results showed that cinobufacini inhibition of M1 macrophage polarization may be associated with the suppression of nuclear factor κB activation. Our study suggests that cinobufacini could ameliorate DSS-induced colitis in mice by inhibiting M1 macrophage polarization.
Collapse
Affiliation(s)
- Si-Wei Wang
- Department of Core Facility (S.W., Fa.Z., Fe.Z.), Clinical Laboratory (Y.-B., Y.-W., X.-F., H.H., Fe. Z.), and Department of Urology (Y.X.), People's Hospital of Quzhou, Quzhou, People's Republic of China
| | - Yong-Feng Bai
- Department of Core Facility (S.W., Fa.Z., Fe.Z.), Clinical Laboratory (Y.-B., Y.-W., X.-F., H.H., Fe. Z.), and Department of Urology (Y.X.), People's Hospital of Quzhou, Quzhou, People's Republic of China
| | - Yuan-Yuan Weng
- Department of Core Facility (S.W., Fa.Z., Fe.Z.), Clinical Laboratory (Y.-B., Y.-W., X.-F., H.H., Fe. Z.), and Department of Urology (Y.X.), People's Hospital of Quzhou, Quzhou, People's Republic of China
| | - Xue-Yu Fan
- Department of Core Facility (S.W., Fa.Z., Fe.Z.), Clinical Laboratory (Y.-B., Y.-W., X.-F., H.H., Fe. Z.), and Department of Urology (Y.X.), People's Hospital of Quzhou, Quzhou, People's Republic of China
| | - Hui Huang
- Department of Core Facility (S.W., Fa.Z., Fe.Z.), Clinical Laboratory (Y.-B., Y.-W., X.-F., H.H., Fe. Z.), and Department of Urology (Y.X.), People's Hospital of Quzhou, Quzhou, People's Republic of China
| | - Fang Zheng
- Department of Core Facility (S.W., Fa.Z., Fe.Z.), Clinical Laboratory (Y.-B., Y.-W., X.-F., H.H., Fe. Z.), and Department of Urology (Y.X.), People's Hospital of Quzhou, Quzhou, People's Republic of China
| | - Yi Xu
- Department of Core Facility (S.W., Fa.Z., Fe.Z.), Clinical Laboratory (Y.-B., Y.-W., X.-F., H.H., Fe. Z.), and Department of Urology (Y.X.), People's Hospital of Quzhou, Quzhou, People's Republic of China
| | - Feng Zhang
- Department of Core Facility (S.W., Fa.Z., Fe.Z.), Clinical Laboratory (Y.-B., Y.-W., X.-F., H.H., Fe. Z.), and Department of Urology (Y.X.), People's Hospital of Quzhou, Quzhou, People's Republic of China
| |
Collapse
|
60
|
Li J, Xue H, Li T, Chu X, Xin D, Xiong Y, Qiu W, Gao X, Qian M, Xu J, Wang Z, Li G. Exosomes derived from mesenchymal stem cells attenuate the progression of atherosclerosis in ApoE -/- mice via miR-let7 mediated infiltration and polarization of M2 macrophage. Biochem Biophys Res Commun 2019; 510:565-572. [PMID: 30739785 DOI: 10.1016/j.bbrc.2019.02.005] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 02/01/2019] [Indexed: 12/20/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease of the vasculature. Exosomes derived from mesenchymal stem cells (MSCs) exert immunomodulatory and immunosuppressive effects; however, the MSCs-exosomes administration on atherosclerosis was unknown. Here, our ApoE-/- mice were fed a high-fat diet and received intravenous injections of exosomes from MSCs for 12 weeks. After tail-vein injection, MSCs-exosomes were capable of migrating to atherosclerotic plaque and selectively taking up residence near macrophages. MSCs-exosomes treatment decreased the atherosclerotic plaque area of ApoE-/- mice and greatly reduced the infiltration of macrophages in the plaque, associating induced macrophage polarization towards M2. In vitro, MSCs-exosomes treatment markedly inhibited LPS-induced M1 markers expression, while increased M2 markers expression in macrophages. Moreover, miR-let7 family was found to be highly enriched in MSCs-exosomes. Endogenous miR-let7 expression was found in the aortic root of ApoE-/- mice, and MSCs-exosomes treatment further up-regulated miR-let7 levels. In addition, inhibition of miR-let7 in U937 cells significantly inhibited the migration and M2 polarization via IGF2BP1 and HMGA2 pathway respectively in vitro. Our study demonstrates that MSCs-exosomes ameliorated atherosclerosis in ApoE-/- and promoted M2 macrophage polarization in the plaque through miR-let7/HMGA2/NF-κB pathway. In addition, MSCs-exosomes suppressed macrophage infiltration via miR-let7/IGF2BP1/PTEN pathway in the plaque. This finding extends our knowledge on MSCs-exosomes affect inflammation in atherosclerosis plaque and provides a potential method to prevent the atherosclerosis. Exosomes from MSCs hold promise as therapeutic agents to reduce the residual risk of coronary artery diseases.
Collapse
Affiliation(s)
- Jiangbing Li
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China; Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, 250012, PR China
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107#, Wenhua Xi Road, Jinan, Shandong Province, 250012, PR China; Institute of Brain and Brain-Inspired Science, Shandong Provincial Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, PR China
| | - Tingting Li
- Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, 250012, PR China
| | - Xili Chu
- Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, 250012, PR China
| | - Danqing Xin
- Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, 250012, PR China
| | - Ye Xiong
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107#, Wenhua Xi Road, Jinan, Shandong Province, 250012, PR China; Institute of Brain and Brain-Inspired Science, Shandong Provincial Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, PR China
| | - Wei Qiu
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107#, Wenhua Xi Road, Jinan, Shandong Province, 250012, PR China; Institute of Brain and Brain-Inspired Science, Shandong Provincial Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, PR China
| | - Xiao Gao
- Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, 250012, PR China; Department of Neurosurgery, Qilu Hospital of Shandong University, 107#, Wenhua Xi Road, Jinan, Shandong Province, 250012, PR China
| | - Mingyu Qian
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107#, Wenhua Xi Road, Jinan, Shandong Province, 250012, PR China; Institute of Brain and Brain-Inspired Science, Shandong Provincial Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, PR China
| | - Jiangye Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107#, Wenhua Xi Road, Jinan, Shandong Province, 250012, PR China; Institute of Brain and Brain-Inspired Science, Shandong Provincial Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, PR China
| | - Zhen Wang
- Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, 250012, PR China.
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107#, Wenhua Xi Road, Jinan, Shandong Province, 250012, PR China; Institute of Brain and Brain-Inspired Science, Shandong Provincial Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, PR China.
| |
Collapse
|
61
|
Abstract
Cardiovascular disease is one of the leading causes of death and disability in the world. Atherosclerosis, characterized by lipid accumulation and chronic inflammation in the vessel wall, is the main feature of cardiovascular disease. Although the amounts of fruits and vegetables present in the diets vary by country, diets, worldwide, contain large amounts of spices; this may have positive or negative effects on the initiation and development of atherosclerosis. In this review, we focused on the potential protective effects of specific nutrients from spices, such as pepper, ginger, garlic, onion, cinnamon and chili, in atherosclerosis and atherosclerotic cardiovascular disease. The mechanisms, epidemiological analysis, and clinical studies focusing on a variety of spices are covered in this review. Based on the integrated information, we aimed to raise specific recommendations for people with different dietary styles for the prevention of atherosclerotic cardiovascular disease through dietary habit adjustments.
Collapse
|
62
|
Sung YY, Kim HK. Crocin Ameliorates Atopic Dermatitis Symptoms by down Regulation of Th2 Response via Blocking of NF-κB/STAT6 Signaling Pathways in Mice. Nutrients 2018; 10:nu10111625. [PMID: 30400140 PMCID: PMC6266819 DOI: 10.3390/nu10111625] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/04/2018] [Accepted: 10/22/2018] [Indexed: 01/29/2023] Open
Abstract
Crocin, a major constituent of Gardenia jasminoides, is a natural colorant carotenoid compound that has been reported to have anti-inflammatory effects. This study investigated the therapeutic effects of crocin on mice with atopic dermatitis induced by Dermatophagoides farinae crude extract, which is a common environmental allergen in house dust that causes atopic dermatitis in humans. Crocin application ameliorated Dermatophagoides farinae crude extract-induced atopic dermatitis symptoms by inhibiting the dermatitis severity score, ear thickness, and serum immunoglobulin E levels in NC/Nga mice. The increases in epidermal thickness and dermal inflammatory cells (eosinophil and mast cells) infiltrations observed on the dorsal back skin of atopic dermatitis control mice were inhibited in a dose-dependent manner by topical application of crocin in atopic dermatitis treatment mice. Crocin inhibited the Dermatophagoides farinae crude extract-induced increase of thymus and activation-regulated chemokines, interleukin (IL)-4, and IL-13 on the dorsal skin of mice. Crocin also inhibited Dermatophagoides farinae crude extract-induced activation of nuclear factor-κB (NF-κB) and signal transducer and activator of transcription (STAT) 6. These results show that crocin ameliorates atopic dermatitis symptoms by down regulation of the Th2 cells-mediated immune response via blocking of NF-κB/STAT6 signaling pathways.
Collapse
Affiliation(s)
- Yoon-Young Sung
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea.
| | - Ho Kyoung Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea.
| |
Collapse
|
63
|
Tong L, Qi G. Crocin prevents platelet‑derived growth factor BB‑induced vascular smooth muscle cells proliferation and phenotypic switch. Mol Med Rep 2018; 17:7595-7602. [PMID: 29620234 PMCID: PMC5983945 DOI: 10.3892/mmr.2018.8854] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 03/29/2018] [Indexed: 12/18/2022] Open
Abstract
The phenotypic switch of vascular smooth muscle cells (VSMCs) is a major initiating factor for atherosclerotic cardiovascular diseases. Platelet-derived growth factor-BB (PDGF-BB) initiates a number of biological processes that contribute to VSMC proliferation and phenotypic switch. Crocin, a component of saffron, has been reported to inhibit atheromatous plaque formation. However, the effects of crocin on PDGF-BB-induced VSMC proliferation and phenotypic switch remain unclear. The aim of the present study was to investigate the role of crocin on PDGF-BB-induced VSMCs proliferation and phenotypic switch and its underlying mechanisms. Cell proliferation and markers of VSMCs phenotypic switch were measured using a Cell Counting Kit-8 assay and western blot analysis, respectively. The signaling pathways involved in the effects of crocin on VSMCs were validated by western blot analysis with or without the use of specific pathway inhibitors. Crocin significantly inhibited PDGF-BB-induced VSMCs proliferation compared with the PDGF-BB only group (P<0.05). In addition, crocin significantly abrogated the PDGF-BB-induced increase in contractile protein α-smooth muscle actin, calponin and decrease in synthetic proteins osteopontin (OPN) in a concentration dependent manner (P<0.05). In addition, crocin slowed PDGF-BB-induced Janus kinase (JAK)-signal transducer and activator of transcription 3 (STAT3) and extracellular signal-regulated kinase (ERK)/Kruppel-like factor 4 (KLF4) signaling activation in VSMCs. By applying the JAK inhibitor (AG490) and ERK1/2 inhibitor (U0126), the results suggested that the crocin inhibited PDGF-BB-induced VSMCs phenotypic switch through the JAK/STAT3 and ERK/KLF4 signaling pathways. These results suggested that crocin may effectively prevent PDGF-BB-induced VSMCs proliferation and phenotypic switch and may be a promising candidate for the therapy of atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Lijian Tong
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Guoxian Qi
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|