51
|
Tiniakou E, Costenbader KH, Kriegel MA. Sex-specific environmental influences on the development of autoimmune diseases. Clin Immunol 2013; 149:182-91. [PMID: 23507400 DOI: 10.1016/j.clim.2013.02.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 02/12/2013] [Accepted: 02/13/2013] [Indexed: 10/27/2022]
Abstract
Sex differences in autoimmune diseases are evolutionarily tied to the fact that the female immune system is confronted with intense alterations during menstrual cycles, pregnancy and childbirth. These events may be associated with breaches in the mucosal epithelial layers that are shielding us from environmental factors. Associations between environmental agents and autoimmune diseases have been described extensively in prior studies. Little evidence, however, exists for sex-specific environmental effects on autoimmune diseases. In this review, we summarize studies involving this often-neglected aspect. We give examples of environmental factors that may influence the sex bias in autoimmunity. We conclude that most studies do not give insight into sex-specific environmental effects due to the influence of gender-selective social, occupational or other exposures. Prospective studies are needed in order to determine true sex-biased environmental influences. Finally, humanized murine models might aid in better understanding the mechanisms involved in sex-specific environmental effects on autoimmune diseases.
Collapse
Affiliation(s)
- Eleni Tiniakou
- Department of Immunobiology, Yale University School of Medicine, CT 06510, USA
| | | | | |
Collapse
|
52
|
Cui Z, Zhou Y, Li H, Zhang Y, Zhang S, Tang S, Guo X. Complex sputum microbial composition in patients with pulmonary tuberculosis. BMC Microbiol 2012; 12:276. [PMID: 23176186 PMCID: PMC3541192 DOI: 10.1186/1471-2180-12-276] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Accepted: 11/05/2012] [Indexed: 12/20/2022] Open
Abstract
Background An increasing number of studies have implicated the microbiome in certain diseases, especially chronic diseases. In this study, the bacterial communities in the sputum of pulmonary tuberculosis patients were explored. Total DNA was extracted from sputum samples from 31 pulmonary tuberculosis patients and respiratory secretions of 24 healthy participants. The 16S rRNA V3 hyper-variable regions were amplified using bar-coded primers and pyro-sequenced using Roche 454 FLX. Results The results showed that the microbiota in the sputum of pulmonary tuberculosis patients were more diverse than those of healthy participants (p<0.05). The sequences were classified into 24 phyla, all of which were found in pulmonary tuberculosis patients and 17 of which were found in healthy participants. Furthermore, many foreign bacteria, such as Stenotrophomonas, Cupriavidus, Pseudomonas, Thermus, Sphingomonas, Methylobacterium, Diaphorobacter, Comamonas, and Mobilicoccus, were unique to pulmonary tuberculosis patients. Conclusions This study concluded that the microbial composition of the respiratory tract of pulmonary tuberculosis patients is more complicated than that of healthy participants, and many foreign bacteria were found in the sputum of pulmonary tuberculosis patients. The roles of these foreign bacteria in the onset or development of pulmonary tuberculosis shoud be considered by clinicians.
Collapse
Affiliation(s)
- Zelin Cui
- Department of Medical Microbiology and Parasitology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
53
|
Zeeuwen PLJM, Boekhorst J, van den Bogaard EH, de Koning HD, van de Kerkhof PMC, Saulnier DM, van Swam II, van Hijum SAFT, Kleerebezem M, Schalkwijk J, Timmerman HM. Microbiome dynamics of human epidermis following skin barrier disruption. Genome Biol 2012; 13:R101. [PMID: 23153041 PMCID: PMC3580493 DOI: 10.1186/gb-2012-13-11-r101] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 10/01/2012] [Accepted: 11/15/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Recent advances in sequencing technologies have enabled metagenomic analyses of many human body sites. Several studies have catalogued the composition of bacterial communities of the surface of human skin, mostly under static conditions in healthy volunteers. Skin injury will disturb the cutaneous homeostasis of the host tissue and its commensal microbiota, but the dynamics of this process have not been studied before. Here we analyzed the microbiota of the surface layer and the deeper layers of the stratum corneum of normal skin, and we investigated the dynamics of recolonization of skin microbiota following skin barrier disruption by tape stripping as a model of superficial injury. RESULTS We observed gender differences in microbiota composition and showed that bacteria are not uniformly distributed in the stratum corneum. Phylogenetic distance analysis was employed to follow microbiota development during recolonization of injured skin. Surprisingly, the developing neo-microbiome at day 14 was more similar to that of the deeper stratum corneum layers than to the initial surface microbiome. In addition, we also observed variation in the host response towards superficial injury as assessed by the induction of antimicrobial protein expression in epidermal keratinocytes. CONCLUSIONS We suggest that the microbiome of the deeper layers, rather than that of the superficial skin layer, may be regarded as the host indigenous microbiome. Characterization of the skin microbiome under dynamic conditions, and the ensuing response of the microbial community and host tissue, will shed further light on the complex interaction between resident bacteria and epidermis.
Collapse
Affiliation(s)
- Patrick LJM Zeeuwen
- Nijmegen Centre for Molecular Life Sciences (NCMLS), Radboud University Nijmegen Medical Centre, PO BOX 9101, 6500 HB Nijmegen, The Netherlands
- Nijmegen Institute for Infection, Inflammation and Immunity (N4i), Radboud University Nijmegen Medical Centre, PO BOX 9101, 6500 HB Nijmegen, The Netherlands
| | - Jos Boekhorst
- Nijmegen Centre for Molecular Life Sciences (NCMLS), Radboud University Nijmegen Medical Centre, PO BOX 9101, 6500 HB Nijmegen, The Netherlands
- Centre for Molecular and Biomolecular Informatics (CMBI), Radboud University Nijmegen Medical Centre, PO BOX 9101, 6500 HB Nijmegen, The Netherlands
- NIZO Food Research B.V., Kernhemseweg 2, 6718 ZB, Ede, The Netherlands
| | - Ellen H van den Bogaard
- Nijmegen Centre for Molecular Life Sciences (NCMLS), Radboud University Nijmegen Medical Centre, PO BOX 9101, 6500 HB Nijmegen, The Netherlands
- Nijmegen Institute for Infection, Inflammation and Immunity (N4i), Radboud University Nijmegen Medical Centre, PO BOX 9101, 6500 HB Nijmegen, The Netherlands
| | - Heleen D de Koning
- Nijmegen Centre for Molecular Life Sciences (NCMLS), Radboud University Nijmegen Medical Centre, PO BOX 9101, 6500 HB Nijmegen, The Netherlands
- Nijmegen Institute for Infection, Inflammation and Immunity (N4i), Radboud University Nijmegen Medical Centre, PO BOX 9101, 6500 HB Nijmegen, The Netherlands
| | - Peter MC van de Kerkhof
- Nijmegen Institute for Infection, Inflammation and Immunity (N4i), Radboud University Nijmegen Medical Centre, PO BOX 9101, 6500 HB Nijmegen, The Netherlands
| | | | - Iris I van Swam
- NIZO Food Research B.V., Kernhemseweg 2, 6718 ZB, Ede, The Netherlands
| | - Sacha AFT van Hijum
- Nijmegen Centre for Molecular Life Sciences (NCMLS), Radboud University Nijmegen Medical Centre, PO BOX 9101, 6500 HB Nijmegen, The Netherlands
- Centre for Molecular and Biomolecular Informatics (CMBI), Radboud University Nijmegen Medical Centre, PO BOX 9101, 6500 HB Nijmegen, The Netherlands
- NIZO Food Research B.V., Kernhemseweg 2, 6718 ZB, Ede, The Netherlands
| | - Michiel Kleerebezem
- NIZO Food Research B.V., Kernhemseweg 2, 6718 ZB, Ede, The Netherlands
- Wageningen University, Host-Microbe Interactomics Group, De Elst 1, 6708 WD, Wageningen, The Netherlands
| | - Joost Schalkwijk
- Nijmegen Centre for Molecular Life Sciences (NCMLS), Radboud University Nijmegen Medical Centre, PO BOX 9101, 6500 HB Nijmegen, The Netherlands
- Nijmegen Institute for Infection, Inflammation and Immunity (N4i), Radboud University Nijmegen Medical Centre, PO BOX 9101, 6500 HB Nijmegen, The Netherlands
| | - Harro M Timmerman
- NIZO Food Research B.V., Kernhemseweg 2, 6718 ZB, Ede, The Netherlands
| |
Collapse
|
54
|
Candela M, Rampelli S, Turroni S, Severgnini M, Consolandi C, De Bellis G, Masetti R, Ricci G, Pession A, Brigidi P. Unbalance of intestinal microbiota in atopic children. BMC Microbiol 2012; 12:95. [PMID: 22672413 PMCID: PMC3404014 DOI: 10.1186/1471-2180-12-95] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 06/06/2012] [Indexed: 12/20/2022] Open
Abstract
Background Playing a strategic role in the host immune function, the intestinal microbiota has been recently hypothesized to be involved in the etiology of atopy. In order to investigate the gastrointestinal microbial ecology of atopic disease, here we performed a pilot comparative molecular analysis of the faecal microbiota in atopic children and healthy controls. Results Nineteen atopic children and 12 healthy controls aged 4–14 years were enrolled. Stools were collected and the faecal microbiota was characterized by means of the already developed phylogenetic microarray platform, HTF-Microbi.Array, and quantitative PCR. The intestinal microbiota of atopic children showed a significant depletion in members of the Clostridium cluster IV, Faecalibacterium prausnitzii, Akkermansia muciniphila and a corresponding increase of the relative abundance of Enterobacteriaceae. Conclusion Depleted in key immunomodulatory symbionts, the atopy-associated microbiota can represent an inflammogenic microbial consortium which can contribute to the severity of the disease. Our data open the way to the therapeutic manipulation of the intestinal microbiota in the treatment of atopy by means of pharmaceutical probiotics.
Collapse
Affiliation(s)
- Marco Candela
- Department of Pharmaceutical Sciences, University of Bologna, Bologna, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Candela M, Biagi E, Maccaferri S, Turroni S, Brigidi P. Intestinal microbiota is a plastic factor responding to environmental changes. Trends Microbiol 2012; 20:385-91. [PMID: 22672911 DOI: 10.1016/j.tim.2012.05.003] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/02/2012] [Accepted: 05/10/2012] [Indexed: 12/20/2022]
Abstract
Traditionally regarded as stable through the entire lifespan, the intestinal microbiota has now emerged as an extremely plastic entity, capable of being reconfigured in response to different environmental factors. In a mutualistic context, these microbiome fluctuations allow the host to rapidly adjust its metabolic and immunologic performances in response to environmental changes. Several circumstances can disturb this homeostatic equilibrium, inducing the intestinal microbiota to shift from a mutualistic configuration to a disease-associated profile. A mechanistic comprehension of the dynamics involved in this process is needed to deal more rationally with the role of the human intestinal microbiota in health and disease.
Collapse
Affiliation(s)
- Marco Candela
- Department of Pharmaceutical Sciences, University of Bologna, Bologna, Italy.
| | | | | | | | | |
Collapse
|
56
|
Cellular and humoral mechanisms involved in the control of tuberculosis. Clin Dev Immunol 2012; 2012:193923. [PMID: 22666281 PMCID: PMC3362816 DOI: 10.1155/2012/193923] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 03/06/2012] [Accepted: 03/06/2012] [Indexed: 02/08/2023]
Abstract
Mycobacterium tuberculosis (Mtb) infection is a major international public health problem. One-third of the world's population is thought to have latent tuberculosis, a condition where individuals are infected by the intracellular bacteria without active disease but are at risk for reactivation, if their immune system fails. Here, we discuss the role of nonspecific inflammatory responses mediated by cytokines and chemokines induced by interaction of innate receptors expressed in macrophages and dendritic cells (DCs). We also review current information regarding the importance of several cytokines including IL-17/IL-23 in the development of protective cellular and antibody-mediated protective responses against Mtb and their influence in containment of the infection. Finally, in this paper, emphasis is placed on the mechanisms of failure of Mtb control, including the immune dysregulation induced by the treatment with biological drugs in different autoimmune diseases. Further functional studies, focused on the mechanisms involved in the early host-Mtb interactions and the interplay between host innate and acquired immunity against Mtb, may be helpful to improve the understanding of protective responses in the lung and in the development of novel therapeutic and prophylactic tools in TB.
Collapse
|
57
|
Abstract
PURPOSE OF REVIEW The increase in incidence and prevalence of allergic disease remains a mystery and cannot be explained solely by genetic factors. The hygiene hypothesis provides the strongest epidemiological explanation for the rise in allergic disease. This review evaluates the recent epidemiological and mechanistic research in the role of infectious agents in the pathogenesis of or protection from allergic disease. RECENT FINDINGS Recent literature has extended the epidemiological findings of the protective effect of being born and reared in a farm environment and associates an increased diversity of organisms in house-dust samples with protection from allergic disease. Furthermore, human and animal studies provide increasing evidence for the role of both the innate and adaptive immune systems, including regulatory cells, as mediators of this protective effect. SUMMARY There is evidence that exposure to some infectious organisms can protect from atopy, whereas other infections appear to promote allergic diseases. The timing of exposure to infection and the properties of the infectious agent, in addition to the genetic susceptibility of the host, play an important role in the future development of allergic disease.
Collapse
|
58
|
Abstract
Chronic obstructive pulmonary disease (COPD) and inflammatory bowel diseases (IBDs) are chronic inflammatory diseases of mucosal tissues that affect the respiratory and gastrointestinal tracts, respectively. They share many similarities in epidemiological and clinical characteristics, as well as in inflammatory pathologies. Importantly, both conditions are accompanied by systemic comorbidities that are largely overlooked in both basic and clinical research. Therefore, consideration of these complications may maximize the efficacy of prevention and treatment approaches. Here, we examine both the intestinal involvement in COPD and the pulmonary manifestations of IBD. We also review the evidence for inflammatory organ cross-talk that may drive these associations, and discuss the current frontiers of research into these issues.
Collapse
|
59
|
Maazi H, Shirinbak S, Bloksma N, Nawijn MC, van Oosterhout AJM. Iron administration reduces airway hyperreactivity and eosinophilia in a mouse model of allergic asthma. Clin Exp Immunol 2011; 166:80-6. [PMID: 21910724 DOI: 10.1111/j.1365-2249.2011.04448.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The prevalence of allergic diseases has increased dramatically during the last four decades and is paralleled by a striking increase in iron intake by infants in affluent societies. Several studies have suggested a link between increased iron intake and the marked increase in prevalence of allergic diseases. We hypothesized that the increased iron intake by infants offers an explanation for the increased prevalence of allergic disease in industrialized societies during the past four decades. A well-established mouse model of ovalbumin (OVA)-driven allergic asthma was used to test the effects of differences in iron intake and systemic iron levels on the manifestations of allergic asthma. Surprisingly, iron supplementation resulted in a significant decrease in airway eosinophilia, while systemic iron injections lead to a significant suppression of both allergen-induced airway eosinophilia and hyperreactivity compared to placebo. In contrast, mice fed on an iron-deprived diet did not show any difference in developing experimentally induced allergic asthma when compared to those fed on an iron-sufficient control diet. In contrast to our hypothesis, airway manifestations of allergic asthma are suppressed by both increased levels of iron intake and systemic iron administrations in the mouse model.
Collapse
Affiliation(s)
- H Maazi
- Laboratory of Allergology and Pulmonary Diseases, Department of Pathology and Medical Biology, GRIAC Research Institute, University Medical Center Groningen (UMCG), University of Groningen, Groningen, the Netherlands
| | | | | | | | | |
Collapse
|
60
|
Duvallet E, Semerano L, Assier E, Falgarone G, Boissier MC. Interleukin-23: a key cytokine in inflammatory diseases. Ann Med 2011; 43:503-11. [PMID: 21585245 DOI: 10.3109/07853890.2011.577093] [Citation(s) in RCA: 204] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Interleukin-23 (IL-23) is a pro-inflammatory cytokine composed of two subunits, p19 and p40. The p40 subunit is shared with IL-12. IL-23 and IL-12 have different receptors and different effects. Whereas IL-12 induces development of Th1 cells, which produce interferon-γ, IL-23 is involved in differentiation of Th17 cells in a pro-inflammatory context and especially in the presence of TGF-β and IL-6. Activated Th17 cells produce IL-17A, IL-17F, IL-6, IL-22, TNF-α, and GM-CSF. Inflammatory macrophages express IL-23R and are activated by IL-23 to produce IL-1, TNF-α, and IL-23 itself. These effects identify IL-23 as a central cytokine in autoimmunity and a highly promising treatment target for inflammatory diseases. IL-23 is found in the skin of patients with psoriasis, in the bowel wall of patients with chronic inflammatory bowel disease, and in synovial membrane of patients with rheumatoid arthritis. IL-23 is involved in osteoclastogenesis, independently from IL-17, via induction of RANKL expression. Debate continues to surround the role for IL-23 in the pathophysiology of inflammatory joint diseases (rheumatoid arthritis and spondyloarthritis). Ustekinumab, which inhibits IL-12 and IL-23 by blocking p40, has been found effective in cutaneous psoriasis and psoriatic arthritis, as well as in Crohn's disease. Treatments that specifically target IL-23 (antibodies to p19) are being developed.
Collapse
|
61
|
Abstract
The microbiome is a complex community of Bacteria, Archaea, Eukarya, and viruses that infect humans and live in our tissues. It contributes the majority of genetic information to our metagenome and, consequently, influences our resistance and susceptibility to diseases, especially common inflammatory diseases, such as type 1 diabetes, ulcerative colitis, and Crohn's disease. Here we discuss how host-gene-microbial interactions are major determinants for the development of these multifactorial chronic disorders and, thus, for the relationship between genotype and phenotype. We also explore how genome-wide association studies (GWAS) on autoimmune and inflammatory diseases are uncovering mechanism-based subtypes for these disorders. Applying these emerging concepts will permit a more complete understanding of the etiologies of complex diseases and underpin the development of both next-generation animal models and new therapeutic strategies for targeting personalized disease phenotypes.
Collapse
Affiliation(s)
- Herbert W Virgin
- Department of Pathology and Immunology, Midwest Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | |
Collapse
|
62
|
Sun Y, Sundell J. Early daycare attendance increase the risk for respiratory infections and asthma of children. J Asthma 2011; 48:790-6. [PMID: 21838620 DOI: 10.3109/02770903.2011.604884] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVES To study the impact of daycare attendance on airways infections and "allergic" symptoms of children aged 1-8 years in Northeast Texas. METHODS Self-administrated questionnaires were distributed to parents through Women, Infants and Children offices, daycare centers, elementary schools, clinic centers, hospitals, and churches. The health outcomes consisted of "allergic" symptoms, and respiratory tract disorders. Questions on child care included; type of daycare settings (proxy for the number of children in daycare), time spent at daycare centers per week, and age of entry to a daycare center. RESULTS A total of 3766 children participated in this study, giving a response rate of 71%. Daycare attendance was associated with more frequent respiratory tract infections and "allergic" symptoms, compared to home care. A dose-response relationship between time spent at daycare centers and prevalence of respiratory tract disorders and asthma and allergies was observed. Earlier age exposure at daycare centers was a risk factor for rhinitis up to 7-8 years. CONCLUSIONS Daycare attendance had a substantial negative influence on health status of children aged 1-8 years in Northeast Texas.
Collapse
Affiliation(s)
- Yuexia Sun
- Texas Institute of Allergy, Indoor Environment and Energy (TxAIRE), University of Texas at Tyler, State College, PA, USA.
| | | |
Collapse
|
63
|
|
64
|
Current World Literature. Curr Opin Neurol 2011; 24:300-7. [DOI: 10.1097/wco.0b013e328347b40e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
65
|
|
66
|
Abstract
PURPOSE OF REVIEW Host-microbe dialogue is involved not only in maintenance of mucosal homeostasis but also in the pathogenesis of several infectious, inflammatory, and neoplastic disorders of the gut. This has led to a resurgence of interest in the colonic microbiota in health and disease. Recent landmark findings are addressed here. RECENT FINDINGS Reciprocal signalling between the immune system and the microbiota plays a pivotal role in linking alterations in gut microbiota with risk of metabolic disease in the host, notably insulin resistance, obesity, and chronic low-grade inflammation. Loss of ancestral indigenous organisms consequent upon a modern lifestyle may contribute to an increased frequency of various metabolic and immuno-allergic diseases. The potential to address this underpins the science of pharmabiotics. SUMMARY Advances in understanding host-microbe interactions within the gut can inform rational probiotic or pharmabiotic selection criteria. In addition, the gut microbiota may be a repository for drug discovery as well as a therapeutic target.
Collapse
|
67
|
Ehlers S, Kaufmann SHE. 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: lifestyle changes affecting the host-environment interface. Clin Exp Immunol 2010; 160:10-4. [PMID: 20415845 PMCID: PMC2841829 DOI: 10.1111/j.1365-2249.2010.04120.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In industrialized nations and high-income regions of the world, the decline of infectious diseases is paralleled by an increase in allergic, autoimmune and chronic inflammatory diseases (AACID). Changes in lifestyle in westernized societies, which impact individually and collectively on intestinal microbiota, may – at least in part – account for the AACID pandemic. Many disease genes that contribute to AACID encode pattern recognition and signalling molecules in barrier-associated cells. Interactions between gene products and environmental factors depend highly upon the host's state of maturation, the composition of the skin and gut microflora, and exposure to pollutants, antibiotics and nutrients. Inflammatory stress responses, if regulated appropriately, ensure immunity, health and relative longevity; when they are dysregulated, they can no longer be terminated appropriately and thus precipitate AACID. The 99th Dahlem Conference brought together experts of various disciplines (genetics, evolution biology, molecular biology, structural biology, cell biology, immunology, microbiology, nutrition science, epidemiology and clinical medicine) to discuss the multi-faceted relationships between infection, immunity and inflammation in barrier organs and the development of AACID. In Clinical and Experimental Immunology we are presenting a compilation of background papers that formed the basis of discussions. Controversial viewpoints and gaps in current knowledge were examined and new concepts for prevention and treatment of CID were formulated.
Collapse
Affiliation(s)
- S Ehlers
- Cluster of Excellence Inflammation at Interfaces, Research Center Borstel, Borstel, Germany.
| | | |
Collapse
|