51
|
Zhou S, You H, Qiu S, Yu D, Bai Y, He J, Cao H, Che Q, Guo J, Su Z. A new perspective on NAFLD: Focusing on the crosstalk between peroxisome proliferator-activated receptor alpha (PPARα) and farnesoid X receptor (FXR). Biomed Pharmacother 2022; 154:113577. [PMID: 35988420 DOI: 10.1016/j.biopha.2022.113577] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 11/19/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is primarily caused by abnormal lipid metabolism and the accumulation of triglycerides in the liver. NAFLD is also associated with hepatic steatosis and nutritional and energy imbalances and is a chronic liver disease associated with a number of factors. Nuclear receptors play a key role in balancing energy and nutrient metabolism, and the peroxisome proliferator-activated receptor alpha (PPARα) and farnesoid X receptor (FXR) regulate lipid metabolism genes, controlling hepatocyte lipid utilization and regulating bile acid (BA) synthesis and transport. They play an important role in lipid metabolism and BA homeostasis. At present, PPARα and FXR are the most promising targets for the treatment of NAFLD among nuclear receptors. This review focuses on the crosstalk mechanisms and transcriptional regulation of PPARα and FXR in the pathogenesis of NAFLD and summarizes PPARα and FXR drugs in clinical trials, laying a theoretical foundation for the targeted treatment of NAFLD and the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Shipeng Zhou
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Huimin You
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shuting Qiu
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Dawei Yu
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd, Science City, Guangzhou 510663, China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
52
|
Kim K, Ginsberg HN, Choi SH. New, Novel Lipid-Lowering Agents for Reducing Cardiovascular Risk: Beyond Statins. Diabetes Metab J 2022; 46:517-532. [PMID: 35929170 PMCID: PMC9353557 DOI: 10.4093/dmj.2022.0198] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022] Open
Abstract
Statins are the cornerstone of the prevention and treatment of atherosclerotic cardiovascular disease (ASCVD). However, even under optimal statin therapy, a significant residual ASCVD risk remains. Therefore, there has been an unmet clinical need for novel lipid-lowering agents that can target low-density lipoprotein cholesterol (LDL-C) and other atherogenic particles. During the past decade, several drugs have been developed for the treatment of dyslipidemia. Inclisiran, a small interfering RNA that targets proprotein convertase subtilisin/kexin type 9 (PCSK9), shows comparable effects to that of PCSK9 monoclonal antibodies. Bempedoic acid, an ATP citrate lyase inhibitor, is a valuable treatment option for the patients with statin intolerance. Pemafibrate, the first selective peroxisome proliferator-activated receptor alpha modulator, showed a favorable benefit-risk balance in phase 2 trial, but the large clinical phase 3 trial (PROMINENT) was recently stopped for futility based on a late interim analysis. High dose icosapent ethyl, a modified eicosapentaenoic acid preparation, shows cardiovascular benefits. Evinacumab, an angiopoietin-like 3 (ANGPTL3) monoclonal antibody, reduces plasma LDL-C levels in patients with refractory hypercholesterolemia. Novel antisense oligonucleotides targeting apolipoprotein C3 (apoC3), ANGPTL3, and lipoprotein(a) have significantly attenuated the levels of their target molecules with beneficial effects on associated dyslipidemias. Apolipoprotein A1 (apoA1) is considered as a potential treatment to exploit the athero-protective effects of high-density lipoprotein cholesterol (HDL-C), but solid clinical evidence is necessary. In this review, we discuss the mode of action and clinical outcomes of these novel lipid-lowering agents beyond statins.
Collapse
Affiliation(s)
- Kyuho Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam,
Korea
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul,
Korea
| | - Henry N. Ginsberg
- Department of Preventive Medicine and Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY,
USA
| | - Sung Hee Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam,
Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul,
Korea
| |
Collapse
|
53
|
The Role of Mitochondria in Metabolic Syndrome–Associated Cardiomyopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9196232. [PMID: 35783195 PMCID: PMC9246605 DOI: 10.1155/2022/9196232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 12/03/2022]
Abstract
With the rapid development of society, the incidence of metabolic syndrome (MS) is increasing rapidly. Evidence indicated that patients diagnosed with MS usually suffered from cardiomyopathy, called metabolic syndrome–associated cardiomyopathy (MSC). The clinical characteristics of MSC included cardiac hypertrophy and diastolic dysfunction, followed by heart failure. Despite many studies on this topic, the detailed mechanisms are not clear yet. As the center of cellular metabolism, mitochondria are crucial for maintaining heart function, while mitochondria dysfunction plays a vital role through mechanisms such as mitochondrial energy deprivation, calcium disorder, and ROS (reactive oxygen species) imbalance during the development of MSC. Accordingly, in this review, we will summarize the characteristics of MSC and especially focus on the mechanisms related to mitochondria. In addition, we will update new therapeutic strategies in this field.
Collapse
|
54
|
Yamaguchi M, Asano T, Arisaka T, Mashima H, Irisawa A, Tamano M. Effects of pemafibrate on primary biliary cholangitis with dyslipidemia. Hepatol Res 2022; 52:522-531. [PMID: 35072975 DOI: 10.1111/hepr.13747] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/11/2022] [Accepted: 01/20/2022] [Indexed: 02/08/2023]
Abstract
AIM The purpose of this study was to examine the effect of pemafibrate (PEM) in primary biliary cholangitis (PBC) patients with dyslipidemia. METHODS Patients who were diagnosed with PBC between June 2018 and December 31, 2020 were included in the study if they also had dyslipidemia and their alkaline phosphatase (ALP) or gamma-glutamyl transferase (GGT) levels remained above the normal range despite taking 600 mg/day ursodeoxycholic acid (UDCA) for at least 6 months. Patients who were treated with UDCA alone were administered PEM as an add-on (PEM-add group), and patients who were treated with UDCA and bezafibrate (BEZ) for at least 6 months were given PEM instead of BEZ (PEM-switch group). Clinical parameters were compared in all patients, and the levels of ALP, GGT, the estimated glomerular filtration rate (eGFR), and creatinine (Cr) were compared between the PEM-add and PEM-switch groups. Improvement in cholangitis was also evaluated. RESULTS In the PEM-add group, both ALP and GGT improved in 40 of 46 patients (87.0%). In the PEM-switch group, both ALP and GGT improved in 15 of 29 patients (51.7%). In the PEM-switch group, however, significant improvement was seen in eGFR and Cr. CONCLUSIONS Administration of PEM is effective in PBC patients with dyslipidemia who are refractory to UDCA monotherapy. In patients using both UDCA and BEZ, there was an advantage in switching to PEM if they had renal damage; however, improvement of ALP and GGT occurred in about 50%.
Collapse
Affiliation(s)
- Mayumi Yamaguchi
- Department of Gastroenterology, Dokkyo Medical University Saitama Medical Center, Minami-Koshigaya, Koshigaya, Japan
| | - Takeharu Asano
- Department of Gastroenterology, Jichi Medical University Saitama Medical Center, Amanuma, Omiya-ku, Japan
| | - Takahiro Arisaka
- Department of Gastroenterology, Dokkyo Medical University, Kitakobayashi, Mibu, Japan
| | - Hirosato Mashima
- Department of Gastroenterology, Jichi Medical University Saitama Medical Center, Amanuma, Omiya-ku, Japan
| | - Atsushi Irisawa
- Department of Gastroenterology, Dokkyo Medical University, Kitakobayashi, Mibu, Japan
| | - Masaya Tamano
- Department of Gastroenterology, Dokkyo Medical University Saitama Medical Center, Minami-Koshigaya, Koshigaya, Japan
| |
Collapse
|
55
|
Zhang BH, Yin F, Qiao YN, Guo SD. Triglyceride and Triglyceride-Rich Lipoproteins in Atherosclerosis. Front Mol Biosci 2022; 9:909151. [PMID: 35693558 PMCID: PMC9174947 DOI: 10.3389/fmolb.2022.909151] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/06/2022] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease (CVD) is still the leading cause of death globally, and atherosclerosis is the main pathological basis of CVDs. Low-density lipoprotein cholesterol (LDL-C) is a strong causal factor of atherosclerosis. However, the first-line lipid-lowering drugs, statins, only reduce approximately 30% of the CVD risk. Of note, atherosclerotic CVD (ASCVD) cannot be eliminated in a great number of patients even their LDL-C levels meet the recommended clinical goals. Previously, whether the elevated plasma level of triglyceride is causally associated with ASCVD has been controversial. Recent genetic and epidemiological studies have demonstrated that triglyceride and triglyceride-rich lipoprotein (TGRL) are the main causal risk factors of the residual ASCVD. TGRLs and their metabolites can promote atherosclerosis via modulating inflammation, oxidative stress, and formation of foam cells. In this article, we will make a short review of TG and TGRL metabolism, display evidence of association between TG and ASCVD, summarize the atherogenic factors of TGRLs and their metabolites, and discuss the current findings and advances in TG-lowering therapies. This review provides information useful for the researchers in the field of CVD as well as for pharmacologists and clinicians.
Collapse
Affiliation(s)
| | | | - Ya-Nan Qiao
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang, China
| |
Collapse
|
56
|
Association between Pemafibrate Therapy and Triglyceride to HDL-Cholesterol Ratio. J Clin Med 2022; 11:jcm11102820. [PMID: 35628945 PMCID: PMC9148088 DOI: 10.3390/jcm11102820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/10/2022] [Accepted: 05/15/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Pemafibrate is a novel selective peroxisome proliferator-activated receptor-α modulator, which was demonstrated to reduce serum triglyceride level with few drug-related adverse events in phase II and III clinical trials. However, its clinical implication in real-world practice remains unknown. Triglyceride/HDL-cholesterol ratio is a surrogate of small dense LDL-cholesterol, which is a newly proposed cardiovascular risk factor independent of LDL-cholesterol levels. Methods: Consecutive patients who received pemafibrate between April 2020 and September 2021 and continued therapy for at least 3 months were included in this retrospective analysis. The primary outcome was the trend in triglyceride/HDL-cholesterol ratio during the 3-month treatment period. The change in cardiovascular event rate between the one-year pre-treatment period and the on-treatment period was also analyzed. Results: A total of 19 patients (median age 63 years, 74% men) were included and continued pemafibrate therapy for 3 months without any drug-related adverse events. Sixteen were add-on and three were conversions from other fibrates. Triglyceride/HDL-cholesterol ratio decreased significantly from 5.85 (4.19, 16.1) to 3.14 (2.39, 4.62) (p < 0.001). The cardiovascular event rate decreased significantly from 0.632 events/year to 0.080 events/year (p < 0.001). Conclusions: Pemafibrate therapy might have the potential to lower triglyceride/HDL-cholesterol ratio and decrease cardiovascular events.
Collapse
|
57
|
Lange NF, Graf V, Caussy C, Dufour JF. PPAR-Targeted Therapies in the Treatment of Non-Alcoholic Fatty Liver Disease in Diabetic Patients. Int J Mol Sci 2022; 23:ijms23084305. [PMID: 35457120 PMCID: PMC9028563 DOI: 10.3390/ijms23084305] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 02/06/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPAR), ligand-activated transcription factors of the nuclear hormone receptor superfamily, have been identified as key metabolic regulators in the liver, skeletal muscle, and adipose tissue, among others. As a leading cause of liver disease worldwide, non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) cause a significant burden worldwide and therapeutic strategies are needed. This review provides an overview of the evidence on PPAR-targeted treatment of NAFLD and NASH in individuals with type 2 diabetes mellitus. We considered current evidence from clinical trials and observational studies as well as the impact of treatment on comorbid metabolic conditions such as obesity, dyslipidemia, and cardiovascular disease. Future areas of research, such as possible sexually dimorphic effects of PPAR-targeted therapies, are briefly reviewed.
Collapse
Affiliation(s)
- Naomi F. Lange
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, 3012 Bern, Switzerland
- Correspondence: (N.F.L.); (J.-F.D.)
| | - Vanessa Graf
- Department of Diabetes, Endocrinology, Clinical Nutrition, and Metabolism, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland;
| | - Cyrielle Caussy
- Univ Lyon, CarMen Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69495 Pierre-Bénite, France;
- Département Endocrinologie, Diabète et Nutrition, Hôpital Lyon Sud, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
| | - Jean-François Dufour
- Centre des Maladies Digestives, 1003 Lausanne, Switzerland
- Swiss NASH Foundation, 3011 Bern, Switzerland
- Correspondence: (N.F.L.); (J.-F.D.)
| |
Collapse
|
58
|
Liu Y, Chen S, Yu L, Deng Y, Li D, Yu X, Chen D, Lu Y, Liu S, Chen R. Pemafibrate attenuates pulmonary fibrosis by inhibiting myofibroblast differentiation. Int Immunopharmacol 2022; 108:108728. [PMID: 35397395 DOI: 10.1016/j.intimp.2022.108728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/26/2022] [Accepted: 03/18/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND OBJECTIVE Idiopathic pulmonary fibrosis is a chronic progressive disease associated with substantial morbidity and mortality despite advances in medical therapy. Increasing evidence suggests that peroxisome proliferator-activated receptors (PPARs) play important roles in the fibrosis-related diseases and their agonists may become effective therapeutic targets. Pemafibrate is a selective PPARα agonist, but the efficacy against pulmonary fibrosis and mechanisms involved have not been systematically evaluated. Thus, the aims of this study were to explore the role of PPARα in the pulmonary fibrosis and to assess the effect of pemafibrate in vivo and in vitro. METHODS The effects of pemafibrate were evaluated in bleomycin-challenged murine pulmonary fibrosis model and transforming growth factor-beta 1 (TGF-β1) stimulated lung fibroblasts. RESULTS Bleomycin instillation induced body weight loss, declined lung function, pulmonary fibrosis, and extensive collagen deposition in the mice, accompanied with decreased pulmonary expression of PPARα, all of which were partially improved by pemafibrate at a dose of 2 mg/kg. Besides, pemafibrate effectively inhibits TGF-β1-induced myofibroblast differentiation and extracellular matrix (ECM) production in vivo and in vitro. Furthermore, we showed that pemafibrate not only inhibited pulmonary expression of NLRP3 and cleaved caspase-1 in bleomycin-inhaled mice, but also repressed activation of NLRP3/caspase-1 axis in TGF-β1 stimulated lung fibroblasts. CONCLUSION Our data suggest that pemafibrate exerts a marked protection against from the development of pulmonary fibrosis, which could constitute a novel candidate for the treatment for pulmonary fibrosis.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, China; Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shuyu Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, China; Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Li Yu
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, China
| | - Yao Deng
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, China
| | - Difei Li
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, China
| | - Xiu Yu
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, China
| | - Dandan Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, China
| | - Ye Lu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shengming Liu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Rongchang Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, China.
| |
Collapse
|
59
|
Ginsberg HN, Hounslow NJ, Senko Y, Suganami H, Bogdanski P, Ceska R, Kalina A, Libis RA, Supryadkina TV, Hovingh GK. Efficacy and Safety of K-877 (Pemafibrate), a Selective PPARα Modulator, in European Patients on Statin Therapy. Diabetes Care 2022; 45:898-908. [PMID: 35238894 DOI: 10.2337/dc21-1288] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/29/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE High plasma triglyceride (TG) is an independent risk factor for cardiovascular disease. Fibrates lower TG levels through peroxisome proliferator-activated receptor α (PPARα) agonism. Currently available fibrates, however, have relatively low selectivity for PPARα. The aim of this trial was to assess the safety, tolerability, and efficacy of K-877 (pemafibrate), a selective PPARα modulator, in statin-treated European patients with hypertriglyceridemia. RESEARCH DESIGN AND METHODS A total of 408 statin-treated adults were recruited from 68 European sites for this phase 2, randomized, double-blind, placebo-controlled trial. They had fasting TG between 175 and 500 mg/dL and HDL-cholesterol (HDL-C) ≤50 mg/dL for men and ≤55 mg/dL for women. Participants were randomly assigned to receive placebo or one of six pemafibrate regimens: 0.05 mg twice a day, 0.1 mg twice a day, 0.2 mg twice a day, 0.1 mg once daily, 0.2 mg once daily, or 0.4 mg once daily. The primary end points were TG and non-HDL-C level lowering at week 12. RESULTS Pemafibrate reduced TG at all doses (adjusted P value <0.001), with the greatest placebo-corrected reduction from baseline to week 12 observed in the 0.2-mg twice a day treatment group (54.4%). Reductions in non-HDL-C did not reach statistical significance. Reductions in TG were associated with improvements in other markers for TG-rich lipoprotein metabolism, including reductions in apoB48, apoCIII, and remnant cholesterol and an increase in HDL-C levels. Pemafibrate increased LDL-cholesterol levels, whereas apoB100 was unchanged. Pemafibrate was safe and well-tolerated, with only minor increases in serum creatinine and homocysteine concentrations. CONCLUSIONS Pemafibrate is effective, safe, and well-tolerated for the reduction of TG in European populations with hypertriglyceridemia despite statin treatment.
Collapse
Affiliation(s)
- Henry N Ginsberg
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | | | | | | | - Pawel Bogdanski
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Richard Ceska
- Department of Internal Medicine, Charles University and University General Hospital, Prague, Czech Republic
| | - Akos Kalina
- Hungarian Defense Forces Medical Centre, Budapest, Hungary
| | | | | | - G Kees Hovingh
- Department of Vascular Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| |
Collapse
|
60
|
Abstract
INTRODUCTION Dyslipidemia therapeutics have primarily focused on lowering levels of low-density lipoprotein cholesterol. However, many patients continue to experience cardiovascular events, despite effective lowering of LDL-C. This has prompted efforts to target additional risk factors to achieve more effective prevention of cardiovascular disease. Emerging evidence suggests that triglyceride rich lipoproteins play a causal role in atherosclerosis, highlighting the potential for specific therapeutic lowering. AREAS COVERED (1) Evidence to support the causal role of triglyceride rich lipoproteins in atherosclerotic cardiovascular disease. (2) Use of existing lipid modifying therapies to target triglyceride rich lipoproteins. (3) Development of novel therapeutic agents that target triglyceride rich lipoproteins and their potential impact on cardiovascular risk. EXPERT OPINION/COMMENTARY Evidence from preclinical, observational and genetic studies highlight the role of triglyceride rich lipoproteins in the causal pathway of atherosclerotic cardiovascular disease. A number of existing agents have the potential to reduce residual cardiovascular risk associated with hypertriglyceridemia. However, emerging agents have the potential to substantially and preferentially lower triglyceride levels beyond contemporary therapeutics. How they will modulate cardiovascular risk will ultimately be determined by large clinical outcomes trials. They do provide the opportunity to substantially influence the way we target dyslipidemia in the prevention of cardiovascular disease.
Collapse
Affiliation(s)
- Kristen J Bubb
- Biomedicine Discovery Institute, Clayto, VIC, Australia.,Monash Cardiovascular Research Centre, Victorian Heart Institute, Monash University, Clayton, VIC, Australia
| | - Adam J Nelson
- Monash Cardiovascular Research Centre, Victorian Heart Institute, Monash University, Clayton, VIC, Australia
| | - Stephen J Nicholls
- Monash Cardiovascular Research Centre, Victorian Heart Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
61
|
Fibrates: A Possible Treatment Option for Patients with Abdominal Aortic Aneurysm? Biomolecules 2022; 12:biom12010074. [PMID: 35053222 PMCID: PMC8773940 DOI: 10.3390/biom12010074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/02/2022] [Accepted: 01/03/2022] [Indexed: 02/04/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a life-threatening disease; however, there is no established treatment for patients with AAA. Fibrates are agonists of peroxisome proliferator-activated receptor alpha (PPARα) that are widely used as therapeutic agents to treat patients with hypertriglyceridemia. They can regulate the pathogenesis of AAA in multiple ways, for example, by exerting anti-inflammatory and anti-oxidative effects and suppressing the expression of matrix metalloproteinases. Previously, basic and clinical studies have evaluated the effects of fenofibrate on AAA. In this paper, we summarize the results of these studies and discuss the problems associated with using fenofibrate as a therapeutic agent for patients with AAA. In addition, we discuss a new perspective on the regulation of AAA by PPARα agonists.
Collapse
|
62
|
Hassan RM, Ali IH, Abdel-Maksoud MS, Abdallah HMI, El Kerdawy AM, Sciandra F, Ghannam IAY. Design and synthesis of novel quinazolinone-based fibrates as PPARα agonists with antihyperlipidemic activity. Arch Pharm (Weinheim) 2021; 355:e2100399. [PMID: 34958132 DOI: 10.1002/ardp.202100399] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 11/11/2022]
Abstract
Aiming to discover new antihyperlipidemic agents, a new set of quinazolinone-fibrate hybrids 9a-r bearing the essential features for peroxisome proliferator-activated receptor-α (PPARα) agonistic activity was synthesized and the structures were confirmed by different spectral data. All the target compounds were screened for their PPARα agonistic activity. Compounds 9o and 9q exhibited potent activity, with EC50 values better than that of fenofibrate by 8.7- and 27-fold, respectively. Molecular docking investigations were performed for all the newly synthesized compounds in the active site of the PPARα receptor to study their interactions and energies in the receptor. Moreover, the antihyperlipidemic and antioxidant activities of compounds 9o and 9q were determined using Triton WR-1339-induced hyperlipidemic rats. Compound 9q exhibited effective hypolipidemic activity in a dose-dependent manner, where it significantly reduced the serum levels of total cholesterol, triglycerides, low-density lipoprotein cholesterol, and very-low-density lipoprotein cholesterol and increased the level of high-density lipoprotein cholesterol. Furthermore, it possesses a powerful antioxidant profile where it significantly elevated the levels of reduced glutathione as well as the total antioxidant capacity and significantly decreased the malondialdehyde level. The histopathological studies revealed that compound 9q improved the aortic architecture and hepatic steatosis. These findings support that compound 9q could be a promising lead compound for the development of new antihyperlipidemic agents.
Collapse
Affiliation(s)
- Rasha M Hassan
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), Dokki, Giza, Egypt
| | - Islam H Ali
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Mohammed S Abdel-Maksoud
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), Dokki, Giza, Egypt
| | - Heba M I Abdallah
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Ahmed M El Kerdawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Department of Organic and Pharmaceutical Chemistry, School of Pharmacy, Newgiza University (NGU), Newgiza, Cairo, Egypt
| | - Francesca Sciandra
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta"-SCITEC (CNR) Sede di Roma, Roma, Italy
| | - Iman A Y Ghannam
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
63
|
Montaigne D, Butruille L, Staels B. PPAR control of metabolism and cardiovascular functions. Nat Rev Cardiol 2021; 18:809-823. [PMID: 34127848 DOI: 10.1038/s41569-021-00569-6] [Citation(s) in RCA: 507] [Impact Index Per Article: 126.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 12/22/2022]
Abstract
Peroxisome proliferator-activated receptor-α (PPARα), PPARδ and PPARγ are transcription factors that regulate gene expression following ligand activation. PPARα increases cellular fatty acid uptake, esterification and trafficking, and regulates lipoprotein metabolism genes. PPARδ stimulates lipid and glucose utilization by increasing mitochondrial function and fatty acid desaturation pathways. By contrast, PPARγ promotes fatty acid uptake, triglyceride formation and storage in lipid droplets, thereby increasing insulin sensitivity and glucose metabolism. PPARs also exert antiatherogenic and anti-inflammatory effects on the vascular wall and immune cells. Clinically, PPARγ activation by glitazones and PPARα activation by fibrates reduce insulin resistance and dyslipidaemia, respectively. PPARs are also physiological master switches in the heart, steering cardiac energy metabolism in cardiomyocytes, thereby affecting pathological heart failure and diabetic cardiomyopathy. Novel PPAR agonists in clinical development are providing new opportunities in the management of metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- David Montaigne
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Laura Butruille
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Bart Staels
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France.
| |
Collapse
|
64
|
Willis SA, Bawden SJ, Malaikah S, Sargeant JA, Stensel DJ, Aithal GP, King JA. The role of hepatic lipid composition in obesity-related metabolic disease. Liver Int 2021; 41:2819-2835. [PMID: 34547171 DOI: 10.1111/liv.15059] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 12/14/2022]
Abstract
Obesity is a primary antecedent to non-alcoholic fatty liver disease whose cardinal feature is excessive hepatic lipid accumulation. Although total hepatic lipid content closely associates with hepatic and systemic metabolic dysfunction, accumulating evidence suggests that the composition of hepatic lipids may be more discriminatory. This review summarises cross-sectional human studies using liver biopsy/lipidomics and proton magnetic resonance spectroscopy to characterise hepatic lipid composition in people with obesity and related metabolic disease. A comprehensive literature search identified 26 relevant studies published up to 31st March 2021 which were included in the review. The available evidence provides a consistent picture showing that people with hepatic steatosis possess elevated saturated and/or monounsaturated hepatic lipids and a reduced proportion of polyunsaturated hepatic lipids. This altered hepatic lipid profile associates more directly with metabolic derangements, such as insulin resistance, and may be exacerbated in non-alcoholic steatohepatitis. Further evidence from lipidomic studies suggests that these deleterious changes may be related to defects in lipid desaturation and elongation, and an augmentation of the de novo lipogenic pathway. These observations are consistent with mechanistic studies implicating saturated fatty acids and associated bioactive lipid intermediates (ceramides, lysophosphatidylcholines and diacylglycerol) in the development of hepatic lipotoxicity and wider metabolic dysfunction, whilst monounsaturated fatty acids and polyunsaturated fatty acids may exhibit a protective role. Future studies are needed to prospectively determine the relevance of hepatic lipid composition for hepatic and non-hepatic morbidity and mortality; and to further evaluate the impact of therapeutic interventions such as pharmacotherapy and lifestyle interventions.
Collapse
Affiliation(s)
- Scott A Willis
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK
| | - Stephen J Bawden
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK.,NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Leicester, UK
| | - Sundus Malaikah
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK.,Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jack A Sargeant
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK.,Diabetes Research Centre, University of Leicester, Leicester, UK
| | - David J Stensel
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK
| | - Guruprasad P Aithal
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Leicester, UK.,Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - James A King
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK
| |
Collapse
|
65
|
Abstract
BackgroundThe 2018 American College of Cardiology/American Heart Association (ACC/AHA) guidelines and 2021 ACC Expert Consensus Decision Pathway recommend nonpharmacological interventions and initiation of statin therapy for patients with moderate hypertriglyceridemia and addition of fibrates or omega-3 fatty acids in severe hypertriglyceridemia. Although the association between triglyceride (TG) lowering and atherosclerotic cardiovascular disease (ASCVD) risk reduction remains controversial, patients with hypertriglyceridemia may represent a subgroup that require additional therapy to further reduce residual ASCVD risk. Moreover, medications that target novel pathways could provide alternative options for patients who are intolerant of existing therapies or doses needed to provide adequate triglyceride lowering. Objective: Assess recent evidence for TG-lowering agents including omega-3 fatty acid-based therapies, PPARα modulators, apoC-III mRNA antisense inhibitors, angiopoietin-like 3 (ANGPTL3) antibodies, and herbal supplements. Methods: A literature search was performed using PubMed with hypertriglyceridemia specified as a MeSH term or included in the title or abstract of the article along with each individual agent. For inclusion, trials needed to have a primary or secondary outcome of TG levels or TG lowering. Conclusion: Currently, the only US Food and Drug Administration approved medication for CV risk reduction in patients with hypertriglyceridemia is icosapent ethyl. Results from phase 3 trials for CaPre, pemafibrate, and volanesorsen as well as additional evidence for pipeline pharmacotherapies with novel mechanisms of action (e.g., ApoC-III mRNA antisense inhibitors and ANGPTL3 antibodies) will help to guide future pharmacotherapy considerations for patients with hypertriglyceridemia.
Collapse
Affiliation(s)
- Jiashan Xu
- Department of Pharmacy, Michigan Medicine21614, Ann Arbor, MI, USA.,15514University of Michigan College of Pharmacy, Ann Arbor, MI, USA
| | - Emily Ashjian
- 15514University of Michigan College of Pharmacy, Ann Arbor, MI, USA.,21614Michigan Medicine, Ann Arbor, MI, USA
| |
Collapse
|
66
|
Dohmen K, Onohara SY, Harada S. Effects of Switching from Fenofibrate to Pemafibrate for Asymptomatic Primary Biliary Cholangitis. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2021; 78:227-234. [PMID: 34697277 DOI: 10.4166/kjg.2021.092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 01/10/2023]
Abstract
Background/Aims The addition of a fibrate to ursodeoxycholic acid (UDCA) is the standard treatment for asymptomatic primary biliary cholangitis (aPBC) with an incomplete response to UDCA. Among the fibrates, bezafibrate and fenofibrate increase the serum creatinine level and reduce the estimated glomerular filtration rate (eGFR). Pemafibrate is an selective peroxisome proliferator-activated receptor alpha modulator (SPPARM-α) mainly metabolized by the liver that was recently approved to treat dyslipidemia. This study confirmed the changes in the biochemical markers after switching from fenofibrate to pemafibrate in aPBC patients. Methods This study examined the effects of switching treatment from fenofibrate to pemafibrate in 16 aPBC patients. The biological parameters of these patients were examined at the initiation of fenofibrate and after switching to pemafibrate, then at 24 and 48 weeks later, respectively. Results Among patients with aPBC treated with UDCA and fenofibrate, the ALP, GGT, and serum IgM levels decreased significantly (p<0.0001) over 48 weeks. On the other hand, serum creatinine levels increased significantly, and eGFR decreased significantly (p<0.0001). After switching to pemafibrate plus UDCA, patients with aPBC exhibited significantly lower serum creatinine levels (p=0.007) and significantly higher eGFR levels (p=0.014). Conclusions Pemafibrate has therapeutic efficacy for aPBC patients with an inadequate response to UDCA. Pemafibrate might be another option for aPBC patients given its beneficial effects on renal function, but larger, multicenter studies with a longer follow-up are needed.
Collapse
Affiliation(s)
- Kazufumi Dohmen
- Gastrointestinal and Hepato-Biliary-Pancreatic Center, Chihaya Hospital, Fukuoka, Japan
| | - Shin-Ya Onohara
- Gastrointestinal and Hepato-Biliary-Pancreatic Center, Chihaya Hospital, Fukuoka, Japan
| | - Shigeru Harada
- Gastrointestinal and Hepato-Biliary-Pancreatic Center, Chihaya Hospital, Fukuoka, Japan
| |
Collapse
|
67
|
Kardassis D, Thymiakou E, Chroni A. Genetics and regulation of HDL metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1867:159060. [PMID: 34624513 DOI: 10.1016/j.bbalip.2021.159060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023]
Abstract
The inverse association between plasma HDL cholesterol (HDL-C) levels and risk for cardiovascular disease (CVD) has been demonstrated by numerous epidemiological studies. However, efforts to reduce CVD risk by pharmaceutically manipulating HDL-C levels failed and refused the HDL hypothesis. HDL-C levels in the general population are highly heterogeneous and are determined by a combination of genetic and environmental factors. Insights into the causes of HDL-C heterogeneity came from the study of monogenic HDL deficiency syndromes but also from genome wide association and Μendelian randomization studies which revealed the contribution of a large number of loci to low or high HDL-C cases in the general or in restricted ethnic populations. Furthermore, HDL-C levels in the plasma are under the control of transcription factor families acting primarily in the liver including members of the hormone nuclear receptors (PPARs, LXRs, HNF-4) and forkhead box proteins (FOXO1-4) and activating transcription factors (ATFs). The effects of certain lipid lowering drugs used today are based on the modulation of the activity of specific members of these transcription factors. During the past decade, the roles of small or long non-coding RNAs acting post-transcriptionally on the expression of HDL genes have emerged and provided novel insights into HDL regulation and new opportunities for therapeutic interventions. In the present review we summarize recent progress made in the genetics and the regulation (transcriptional and post-transcriptional) of HDL metabolism.
Collapse
Affiliation(s)
- Dimitris Kardassis
- Laboratory of Biochemistry, Department of Basic Sciences, University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Greece.
| | - Efstathia Thymiakou
- Laboratory of Biochemistry, Department of Basic Sciences, University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Greece
| | - Angeliki Chroni
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens, Greece
| |
Collapse
|
68
|
Hatanaka T, Kosone T, Saito N, Takakusagi S, Tojima H, Naganuma A, Takagi H, Uraoka T, Kakizaki S. Effect of 48-week pemafibrate on non-alcoholic fatty liver disease with hypertriglyceridemia, as evaluated by the FibroScan-aspartate aminotransferase score. JGH Open 2021; 5:1183-1189. [PMID: 34622006 PMCID: PMC8485409 DOI: 10.1002/jgh3.12650] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/04/2021] [Accepted: 08/21/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIM This retrospective study investigated the effect of 48-week pemafibrate therapy in non-alcoholic fatty liver disease (NAFLD) with hypertriglyceridemia, as evaluated by the FibroScan-aspartate aminotransferase (FAST) score. METHODS A total of 31 NAFLD patients who were treated with pemafibrate in Gunma Saiseikai Maebashi Hospital and Kusunoki Hospital from September 2018 to April 2020 were included in the current study. We used the FAST score, which is a novel index of steatohepatitis that can be calculated based on the AST value, controlled attenuation parameter (CAP), and liver stiffness measurement (LSM), to evaluate the effect of pemafibrate treatment. RESULTS The median age was 64.0 (interquartile range [IQR] 55.0-75.0) years and 14 patients (45.2%) were male. Median body mass index was 26.8 (IQR 23.8-28.8). Hypertension and diabetes mellitus were detected in 14 (45.2%) and five (16.1%) patients, respectively. Fasting triglyceride and high-density lipoprotein cholesterol were significantly improved (P < 0.001 and 0.013, respectively) and the AST, alanine aminotransferase (ALT), alkaline phosphatase, and γ-glutamyl transpeptidase values were significantly decreased during pemafibrate treatment (P = 0.041, <0.001, <0.001, and <0.001, respectively). While the LSM value and CAP value did not differ to a statistically significant extent (P = 0.19 and 0.140, respectively), the FAST score was significantly improved during pemafibrate treatment (P = 0.029). The delta FAST score was found to be correlated with the variations of ALT (r = 0.504, P = 0.005), which represents the effect of pemafibrate. CONCLUSIONS Pemafibrate improved the FAST score due to the hepatic anti-inflammatory effect, indicating that pemafibrate may prevent disease progression in NAFLD patients with hypertriglyceridemia.
Collapse
Affiliation(s)
- Takeshi Hatanaka
- Department of GastroenterologyGunma Saiseikai Maebashi HospitalMaebashiJapan
| | - Takashi Kosone
- Department of Gastroenterology and HepatologyKusunoki HospitalFujiokaJapan
| | - Naoto Saito
- Department of GastroenterologyGunma Saiseikai Maebashi HospitalMaebashiJapan
| | - Satoshi Takakusagi
- Department of Gastroenterology and HepatologyKusunoki HospitalFujiokaJapan
| | - Hiroki Tojima
- Department of Gastroenterology and HepatologyGunma University Graduate School of MedicineMaebashiJapan
| | - Atsushi Naganuma
- Department of GastroenterologyNational Hospital Organization Takasaki General Medical CenterTakasakiJapan
| | - Hitoshi Takagi
- Department of Gastroenterology and HepatologyKusunoki HospitalFujiokaJapan
| | - Toshio Uraoka
- Department of Gastroenterology and HepatologyGunma University Graduate School of MedicineMaebashiJapan
| | - Satoru Kakizaki
- Department of Gastroenterology and HepatologyGunma University Graduate School of MedicineMaebashiJapan
- Department of Clinical ResearchNational Hospital Organization Takasaki General Medical CenterTakasakiJapan
| |
Collapse
|
69
|
Yamashita S, Okazaki M, Okada T, Masuda D, Yokote K, Arai H, Araki E, Ishibashi S. Distinct Differences in Lipoprotein Particle Number Evaluation between GP-HPLC and NMR: Analysis in Dyslipidemic Patients Administered a Selective PPARα Modulator, Pemafibrate. J Atheroscler Thromb 2021; 28:974-996. [PMID: 33536398 PMCID: PMC8532064 DOI: 10.5551/jat.60764] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/02/2020] [Indexed: 11/29/2022] Open
Abstract
AIM We established a method to evaluate the lipid concentrations, size and particle numbers (PNs) of lipoprotein subclasses by gel permeation chromatography (GP-HPLC). Nuclear magnetic resonance (NMR) is widely used to analyze these parameters of lipoprotein subclasses, but differences of the two methods are unknown. Current study compared the PNs of each lipoprotein subclass measured by GP-HPLC and NMR, and assessed the effect of a selective PPARα modulator, pemafibrate. METHODS Lipoprotein profiles of 212 patients with dyslipidemia who participated in the phase 2 clinical trial of a selective PPARα modulator, pemafibrate, were analyzed by two methods, GP-HPLC and NMR, which were performed with LipoSEARCH (Skylight Biotech) and LipoProfile 3 (LabCorp), respectively. GP-HPLC evaluated the PNs of 18 subclasses, consisting of CM, VLDL1-5, LDL1-6, and HDL1-6. NMR evaluated the PNs of 9 subclasses, consisting of large VLDL & CM, medium VLDL, small VLDL, IDL, large LDL, small LDL, large HDL, medium HDL and small HDL. RESULTS Three major classes, total CM&VLDL, total LDL and total HDL were obtained by grouping of corresponding subclasses in both methods and PNs of these classes analyzed by GP-HPLC were correlated positively with those by NMR. The correlation coefficients in total CM&VLDL, total LDL and total HDL between GP-HPLC and NMR was 0.658, 0.863 and 0.798 (all p<0.0001), respectively. The PNs of total CM&VLDL, total LDL and total HDL analyzed by GP-HPLC was 249.5±51.7nM, 1,679±359 nM and 13,273±1,564 nM, respectively, while those by NMR was 124.6±41.8 nM, 1,514±386 nM and 31,161±4,839 nM, respectively. A marked difference in the PNs between the two methods was demonstrated especially in total HDL. The number of apolipoprotein (Apo) B molecule per one ApoB-containing lipoprotein particle, total CM&VLDL plus total LDL, was 1.10±0.05 by GP-HPLC, while 1.32±0.18 by NMR. The number of ApoA-I per one HDL particle was 3.40±0.17 by GP-HPLC, but only 1.46±0.15 by NMR, much less than reported previously.From the phase 2 clinical trial, randomizing 212 patients to pemafibrate 0.025-0.2 mg BID, fenofibrate 100 mg QD, or placebo groups, pemafibrate reduced the PNs of CM, large VLDL1-VLDL3 and medium VLDL4, but not small VLDL5 by GP-HPLC. It significantly decreased the PNs of smaller LDL and larger HDL particles, but increased those of larger LDL and smaller HDL particles. In contrast, NMR showed marked variations in the effect of pemafibrate on lipoprotein PNs, and no significant size-dependent changes. CONCLUSIONS GP-HPLC evaluates the lipoprotein PNs more accurately than NMR and can be used for assessing the effects of lipid-lowering drugs on lipoprotein subclasses.
Collapse
Affiliation(s)
- Shizuya Yamashita
- Department of Cardiology, Rinku General Medical Center, Osaka, Japan
| | | | - Takeshi Okada
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Daisaku Masuda
- Department of Cardiology, Rinku General Medical Center, Osaka, Japan
| | - Koutaro Yokote
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hidenori Arai
- National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Eiichi Araki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Shun Ishibashi
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
70
|
Abstract
OBJECTIVES The main aim of this review was to summarize current evidence on approved and emerging non-statin lipid-lowering therapies. METHODS AND MATERIALS Recent literature on U.S. FDA approved non-statin lipid-lowering therapies and evolving lipid-lowering drugs currently under development was reviewed. RESULTS AND DISCUSSION In the past 20 years, the emergence of non-statin cholesterol-lowering drugs has changed the landscape of dyslipidemia management. Food and Drug Administration approval of non-statin lipid-lowering therapies such as ezetimibe, proprotein convertase subtilisin/Kexin type 9 (PCSK9) inhibitors (evolocumab, alirocumab), bempedoic acid and combination of bempedoic acid and ezetimibe, evinacumab and other triglyceride-lowering agents (eg, icosapent ethyl) has emerged. The European Commission has also recently approved inclisiran for treatment of hypercholesterolemia and mixed hypercholesterolemia even though FDA has put the approval of this drug on hold. Recent guidelines have incorporated PCSK9 inhibitors to treat patients with primary hyperlipidemia and patients with very high-risk ASCVD, who could not achieve adequate lipid-lowering with combination therapy of maximally tolerated statin and ezetimibe. Icosapent ethyl use as an adjunct therapy to statins is also recommended to reduce the risk of ASCVD in patients with hypertriglyceridemia. CONCLUSION Despite cost limitations, the uptake of PCSK9 inhibitors is increasing. Approval of bempedoic acid alone or in combination with ezetimibe has provided additional oral lipid-lowering drug alternatives to ezetimibe. Various lipid-lowering drug targets are under investigation.
Collapse
Affiliation(s)
- Semira Abdi Beshir
- Department of Pharmacy Practice, College of Pharmacy, 105956Gulf Medical University, Ajman, United Arab Emirates
| | - Nadia Hussain
- Department of Pharmaceutical Sciences, College of Pharmacy, 105949Al Ain University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Asim Ahmed Elnor
- Program of Clinical Pharmacy, College of Pharmacy, 105949Al Ain University, Abu Dhabi, United Arab Emirates
| | - Amira S A Said
- Department of Clinical Pharmacy, College of Pharmacy, 105949Al Ain University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
71
|
Komatsu T, Miura T, Joko K, Sunohara D, Mochidome T, Kasai T, Ikeda U. Real-world Profile of a Selective Peroxisome Proliferator-activated Receptor α Modulator (SPPARMα) in Japanese Patients with Renal Impairment and Dyslipidemia. Intern Med 2021; 60:2741-2748. [PMID: 33776008 PMCID: PMC8479210 DOI: 10.2169/internalmedicine.6871-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Objective Although lowering the low-density lipoprotein cholesterol (LDL-C) levels using statins can reduce cardiovascular risk, 70% of the cardiovascular risk remains despite treatment with statins. Several studies have shown that elevated triglyceride (TG)-rich lipoprotein is the primary therapeutic target for reducing the residual risk. However, conventional treatment with fibrates is frequently associated with adverse drug reactions, especially in patients with chronic kidney disease (CKD), and even with a reduction in TG. Pemafibrate is a novel selective peroxisome proliferator-activated receptor α modulator (SPPARMα) with fewer side effects and greater effectiveness that can overcome these challenges. We aimed to investigate the safety and efficacy of pemafibrate in patients with CKD and herein present a real-world profile of pemafibrate. Methods Between January 2019 and January 2020, 126 consecutive patients with hyperglyceridemia from two institutions (54 patients with CKD; 43%) who received pemafibrate were enrolled in this retrospective observational study. Blood samples were collected before (baseline) and at 24 weeks after commencing pemafibrate therapy. The primary endpoint was a decrease in the serum lipid levels. The secondary endpoints were the incidence of rhabdomyolysis, hepatargy, and an exacerbation of CKD. Results All patients, including 51% of patients who were concurrently taking statins, reported significantly reduced total cholesterol, non-high-density lipoprotein-cholesterol (non-HDL-C), LDL-C, and TG, and increased HDL-C (p<0.05). The subgroup of patients with CKD showed similar results without increased HDL-C. No adverse events were observed in any patients. Conclusion Pemafibrate has a good safety profile and efficacy for treating patients with serum lipid abnormalities, including those with CKD.
Collapse
Affiliation(s)
| | - Takashi Miura
- Department of Cardiology, Nagano Municipal Hospital, Japan
| | - Kensuke Joko
- Department of Cardiology, Nagano Municipal Hospital, Japan
| | | | | | - Toshio Kasai
- Department of Cardiology, Nagano Municipal Hospital, Japan
| | - Uichi Ikeda
- Department of Cardiology, Nagano Municipal Hospital, Japan
| |
Collapse
|
72
|
Abstract
Lipid-driven cardiovascular disease (CVD) risk is caused by atherogenic apolipoprotein B (apoB) particles containing low-density lipoprotein cholesterol (LDL-C), triglycerides and lipoprotein(a) [Lp(a)] and resembles a large and modifiable proportion of the total CVD risk. While a surplus of novel lipid-lowering therapies has been developed in recent years, management of lipid-driven CVD risk in the Netherlands remains suboptimal. To lower LDL‑C levels, statins, ezetimibe and proprotein convertase subtilisin/kexin type 9 inhibiting antibodies are the current standard of therapy. With the approval of bempedoic acid and the silencing RNA inclisiran, therapeutic options are expanding continuously. Although the use of triglyceride-lowering therapies remains a matter of debate, post hoc analyses consistently show a benefit in subsets of patients with high triglyceride or low high-density lipoprotein cholesterol levels. Pemafibrate and novel apoC-III could be efficacious options when approved for clinical use. Lp(a)-lowering therapies such as pelacarsen are under clinical investigation, offering a potent Lp(a)-lowering effect. If proven effective in reducing cardiovascular endpoints, Lp(a) lowering holds promise to be the third axis of effective lipid-lowering therapies. Using these three components of lipid-lowering treatment, the contribution of apoB-containing lipid particles to the CVD risk may be fully eradicated in the next decade.
Collapse
|
73
|
Hatanaka T, Kakizaki S, Saito N, Nakano Y, Nakano S, Hazama Y, Yoshida S, Hachisu Y, Tanaka Y, Kashiwabara K, Yoshinaga T, Tojima H, Naganuma A, Uraoka T. Impact of Pemafibrate in Patients with Hypertriglyceridemia and Metabolic Dysfunction-associated Fatty Liver Disease Pathologically Diagnosed with Non-alcoholic Steatohepatitis: A Retrospective, Single-arm Study. Intern Med 2021; 60:2167-2174. [PMID: 33612679 PMCID: PMC8355409 DOI: 10.2169/internalmedicine.6574-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022] Open
Abstract
Objective The therapeutic effect of pemafibrate on metabolic dysfunction-associated fatty liver disease (MAFLD) remains unknown. This retrospective, single-arm study investigated the efficacy and safety of pemafibrate in MAFLD patients with hypertriglyceridemia. Methods A total of 10 patients who received pemafibrate (oral, 0.1 mg, twice a day) at Gunma Saiseikai Maebashi Hospital between September 2018 and September 2019 were included. All patients underwent a liver biopsy, and the disease grade and stage were pathologically assessed based on the FLIP algorithm. Results The median age was 66.0 (53.8-74.8) years old, and 5 patients (50.0%) were men. All patients were diagnosed with non-alcoholic steatohepatitis (NASH). The fasting and non-fasting triglyceride (TG) levels were 175 (149-247) mg/dL and 228 (169-335) mg/dL, respectively. The AST and ALT values at 6 months were significantly lower than at baseline [AST: 28.0 (22.0-33.8) U/L vs. 43.5 (24.0-55.0) U/L, p=0.008, ALT: 23.0 (14.8-26.5) U/L vs. 51.5 (23.0-65.3) U/L, p=0.005, respectively], especially in NASH patients with significant activity and advanced fibrosis (p=0.040 and 0.014, respectively). Fasting TG levels were significantly lower and HDL-C levels significantly higher at 6 months than at baseline (p=0.005 and 0.032, respectively). At six months, FIB-4, the aspartate aminotransferase-to-platelet ratio index, and the macrophage galactose-specific lectin-2 binding protein glycosylation isomer level were significantly improved compared with baseline (p=0.041, 0.005 and 0.005, respectively). Treatment-related adverse events were not observed. Conclusion Pemafibrate treatment may be safe and effective for MAFLD patients with hypertriglyceridemia.
Collapse
Affiliation(s)
- Takeshi Hatanaka
- Department of Gastroenterology, Gunma Saiseikai Maebashi Hospital, Japan
| | - Satoru Kakizaki
- Department of Clinical Research, National Hospital Organization Takasaki General Medical Center, Japan
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine, Japan
| | - Naoto Saito
- Department of Gastroenterology, Gunma Saiseikai Maebashi Hospital, Japan
| | - Yuya Nakano
- Department of Gastroenterology, Gunma Saiseikai Maebashi Hospital, Japan
| | - Sachi Nakano
- Department of Gastroenterology, Gunma Saiseikai Maebashi Hospital, Japan
| | - Yoichi Hazama
- Department of Gastroenterology, Gunma Saiseikai Maebashi Hospital, Japan
| | - Sachiko Yoshida
- Department of Gastroenterology, Gunma Saiseikai Maebashi Hospital, Japan
| | - Yoko Hachisu
- Department of Gastroenterology, Gunma Saiseikai Maebashi Hospital, Japan
| | - Yoshiki Tanaka
- Department of Gastroenterology, Gunma Saiseikai Maebashi Hospital, Japan
| | - Kenji Kashiwabara
- Department of Pathological Diagnosis, Gunma Saiseikai Maebashi Hospital, Japan
| | - Teruo Yoshinaga
- Department of Gastroenterology, Gunma Saiseikai Maebashi Hospital, Japan
| | - Hiroki Tojima
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine, Japan
| | - Atsushi Naganuma
- Department of Gastroenterology, National Hospital Organization Takasaki General Medical Center, Japan
| | - Toshio Uraoka
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine, Japan
| |
Collapse
|
74
|
Abstract
PURPOSE OF REVIEW Triglycerides (TGs) are measured as part of routine lipid profiles but their relationship to cardiovascular disease (CVD) risk has been controversial and overshadowed by high-density lipoprotein cholesterol (HDL-C). RECENT FINDINGS Epidemiological studies show a clear relationship of TG-containing lipoproteins including remnant particles with CVD risk with the effect being most clearly demonstrated through the excess risk captured by non-HDL-C compared with low-density lipoprotein-cholesterol (LDL-C). Mendelian randomisation studies show a consistent relationship of gene variants linked to TG metabolism with rates of CVD. Furthermore, meta-analyses of intervention trials with statins and other nonstatin drugs also suggest that reducing TGs is associated with benefits on rates of CVD events. Historical subgroup data from fibrate trials suggest benefits in patients with high TG:HDL ratios but seem to add little to optimized statin therapy. Recent trials with omega-3 fatty acids (specifically eicosapentaenoic acid) have suggested that high-dose formulations in contrast to low dose formulations have benefits on CVD outcomes. SUMMARY Further studies with newer agents are required to determine the place of TG-lowering drugs in therapeutic pathways. Trials with agents such as pemafibrate and vupanorsen may finally answer these questions.
Collapse
Affiliation(s)
| | - Anthony S Wierzbicki
- Metabolic Medicine/Chemical Pathology, Guy's & St Thomas Hospitals, London SE1 7EH, UK
| |
Collapse
|
75
|
Aomura D, Harada M, Yamada Y, Nakajima T, Hashimoto K, Tanaka N, Kamijo Y. Pemafibrate Protects against Fatty Acid-Induced Nephropathy by Maintaining Renal Fatty Acid Metabolism. Metabolites 2021; 11:372. [PMID: 34207854 PMCID: PMC8230306 DOI: 10.3390/metabo11060372] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/25/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
As classical agonists for peroxisomal proliferator-activated receptor alpha (PPARα), fibrates activate renal fatty acid metabolism (FAM) and provide renoprotection. However, fibrate prescription is limited in patients with kidney disease, since impaired urinary excretion of the drug causes serious adverse effects. Pemafibrate (PEM), a novel selective PPARα modulator, is mainly excreted in bile, and, thus, may be safe and effective in kidney disease patients. It remains unclear, however, whether PEM actually exhibits renoprotective properties. We investigated this issue using mice with fatty acid overload nephropathy (FAON). PEM (0.5 mg/kg body weight/day) or a vehicle was administered for 20 days to 13-week-old wild-type male mice, which were simultaneously injected with free fatty acid (FFA)-binding bovine serum albumin from day 7 to day 20 to induce FAON. All mice were sacrificed on day 20 for assessment of the renoprotective effect of PEM against FAON. PEM significantly attenuated the histological findings of tubular injury caused by FAON, increased the renal expressions of mRNA and proteins related to FAM, and decreased renal FFA content and oxidative stress. Taken together, PEM exhibits renoprotective effects through the activation and maintenance of renal FAM and represents a promising drug for kidney disease.
Collapse
Affiliation(s)
- Daiki Aomura
- Department of Nephrology, Shinshu University School of Medicine, Matsumoto, Nagano 390-8621, Japan; (D.A.); (M.H.); (Y.Y.); (K.H.)
| | - Makoto Harada
- Department of Nephrology, Shinshu University School of Medicine, Matsumoto, Nagano 390-8621, Japan; (D.A.); (M.H.); (Y.Y.); (K.H.)
| | - Yosuke Yamada
- Department of Nephrology, Shinshu University School of Medicine, Matsumoto, Nagano 390-8621, Japan; (D.A.); (M.H.); (Y.Y.); (K.H.)
| | - Takero Nakajima
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Nagano 390-8621, Japan; (T.N.); (N.T.)
| | - Koji Hashimoto
- Department of Nephrology, Shinshu University School of Medicine, Matsumoto, Nagano 390-8621, Japan; (D.A.); (M.H.); (Y.Y.); (K.H.)
| | - Naoki Tanaka
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Nagano 390-8621, Japan; (T.N.); (N.T.)
- International Relations Office, Shinshu University School of Medicine, Matsumoto, Nagano 390-8621, Japan
| | - Yuji Kamijo
- Department of Nephrology, Shinshu University School of Medicine, Matsumoto, Nagano 390-8621, Japan; (D.A.); (M.H.); (Y.Y.); (K.H.)
| |
Collapse
|
76
|
Shinozaki S, Tahara T, Lefor AK, Ogura M. Pemafibrate improves hepatic inflammation, function and fibrosis in patients with non-alcoholic fatty liver disease: a one-year observational study. Clin Exp Hepatol 2021; 7:172-177. [PMID: 34295984 PMCID: PMC8284174 DOI: 10.5114/ceh.2021.106864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/10/2021] [Indexed: 02/08/2023] Open
Abstract
AIM OF THE STUDY To optimize the long-term outcomes of patients with non-alcoholic fatty liver disease (NAFLD), long-term therapy is important to prevent cirrhosis and hepatocellular carcinoma. Pemafibrate, a novel selective peroxisome proliferator-activated receptor-α modulator, is a promising therapeutic agent for patients with NAFLD. However, only short-term clinical studies are currently available. The aim of this study is to evaluate the long-term outcomes of patients with NAFLD treated with pemafibrate. MATERIAL AND METHODS This is a retrospective observational study. Patients with NAFLD treated with pemafibrate 0.1 mg twice daily for one year were retrospectively reviewed. RESULTS Twenty-two patients without diabetes mellitus were included and analyzed. Regarding hepatic inflammation markers, alanine aminotransferase (ALT) significantly decreased during the first three months and was maintained. Low-density lipoprotein and triglycerides significantly decreased at three months and were maintained. Regarding markers of hepatic function, the albumin-bilirubin score decreased significantly during one year of therapy due to significantly elevated serum albumin and decreased total bilirubin levels. Regarding markers of fibrosis, Mac-2 binding protein glucosylation isomer (M2BPGi) significantly decreased, and platelet count increased significantly. Next, we performed correlation analysis between changes in M2BPGi and other parameters. Changes in aspartate aminotransferase, ALT and triglycerides positively correlated with the change in M2BPGi. CONCLUSIONS One-year pemafibrate therapy improves markers of hepatic inflammation, function and fibrosis in non-diabetic patients with NAFLD. Improvement of hepatic fibrosis markers significantly correlates with improvement of hepatic inflammation markers and triglyceride levels.
Collapse
Affiliation(s)
- Satoshi Shinozaki
- Shinozaki Medical Clinic, Japan
- Department of Medicine, Division of Gastroenterology, Jichi Medical University, Japan
| | | | | | - Masahito Ogura
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Japan
| |
Collapse
|
77
|
Kusunoki M, Sakazaki T, Tsutsumi K, Miyata T, Oshida Y. The Effects of Pemafibrate in Japanese Patients with Type 2 Diabetes Receiving HMG-CoA Reductase Inhibitors. Endocr Metab Immune Disord Drug Targets 2021; 21:919-924. [PMID: 32819242 DOI: 10.2174/1871530320999200818135553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/19/2020] [Accepted: 06/30/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The combination therapy of HMG-CoA reductase inhibitors (statins), which are anti-hyperlipidemic agents, and fibrates may increase the risk of hepatic dysfunction and myopathy, therefore, this combination required careful administration for patients. In the present study, the effects of combination therapy of pemafibrate, a novel fibrate, and statins, was evaluated. METHODS Pemafibrate was administered for 6 months as an add-on to statin therapy in 27 type 2 diabetes patients with dyslipidemia already receiving statins for 6 months (combination group), and the efficacy and safety of the combination therapy in comparison with a pemafibrate monotherapy group was examined. RESULTS In the combination group, a decrease in serum total cholesterol levels was observed after 6 months of pemafibrate treatment compared to baseline, along with an increase in HDL-cholesterol. While serum triglyceride level was reduced, HbA1c level was elevated in both the groups. Serum creatinine kinase level, which is an indicator of myopathy, was lowered in the combination group. In addition, a decrease in γ-glutamyl transpeptidase, a parameter of hepatic dysfunction, was observed in the combination group. CONCLUSION The statin-pemafibrate combination therapy in type 2 diabetes patients with dyslipidemia improved lipid metabolism safely without increasing the risk of hepatic dysfunction and myopathy.
Collapse
Affiliation(s)
- Masataka Kusunoki
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Takahiko Sakazaki
- Faculty of Sports and Health Science, Fukui University of Technology, 3-6-1 Gakuen, Fukui 910-8505, Japan
| | - Kazuhiko Tsutsumi
- Okinaka Memorial Institute for Medical Research, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan
| | - Tetsuro Miyata
- Vascular Center, Sanno Medical Center, 8-5-35 Akasaka, Minato-ku, Tokyo 107-0052, Japan
| | - Yoshiharu Oshida
- Medical Checkup Center, Minami Seikyo Hospital, 2-204 Minamiohdaka, Midori-ku, Nagoya 459-8540, Japan
| |
Collapse
|
78
|
Karantas ID, Okur ME, Okur NÜ, Siafaka PI. Dyslipidemia Management in 2020: An Update on Diagnosis and Therapeutic Perspectives. Endocr Metab Immune Disord Drug Targets 2021; 21:815-834. [PMID: 32778041 DOI: 10.2174/1871530320666200810144004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/10/2020] [Accepted: 06/19/2020] [Indexed: 11/22/2022]
Abstract
Cardiovascular diseases are the leading cause of death in the modern world and dyslipidemia is one of the major risk factors. The current therapeutic strategies for cardiovascular diseases involve the management of risk factors, especially dyslipidemia and hypertension. Recently, the updated guidelines of dyslipidemia management were presented, and the newest data were included in terms of diagnosis, imaging, and treatment. In this targeted literature review, the researchers presented the most recent evidence on dyslipidemia management by including the current therapeutic goals for it. In addition, the novel diagnostic tools based on theranostics are shown. Finally, the future perspectives on treatment based on novel drug delivery systems and their potential to be used in clinical trials were also analyzed. It should be noted that dyslipidemia management can be achieved by the strict lifestyle change, i.e., by adopting a healthy life, and choosing the most suitable medication. This review can help medical professionals as well as specialists of other sciences to update their knowledge on dyslipidemia management, which can lead to better therapeutic outcomes and newer drug developments.
Collapse
Affiliation(s)
| | - Mehmet E Okur
- University of Health Sciences, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey
| | - Neslihan Ü Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Panoraia I Siafaka
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
79
|
Yokote K, Yamashita S, Arai H, Araki E, Matsushita M, Nojima T, Suganami H, Ishibashi S. Effects of pemafibrate on glucose metabolism markers and liver function tests in patients with hypertriglyceridemia: a pooled analysis of six phase 2 and phase 3 randomized double-blind placebo-controlled clinical trials. Cardiovasc Diabetol 2021; 20:96. [PMID: 33947390 PMCID: PMC8097867 DOI: 10.1186/s12933-021-01291-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/27/2021] [Indexed: 12/26/2022] Open
Abstract
Background Increased risk of cardiovascular events is associated not only with dyslipidemias, but also with abnormalities in glucose metabolism and liver function. This study uses pooled analysis to explore the in-depth effects of pemafibrate, a selective peroxisome proliferator-activated receptor α modulator (SPPARMα) already known to decrease elevated triglycerides, on glucose metabolism and liver function in patients with hypertriglyceridemia. Methods We performed a post-hoc analysis of six phase 2 and phase 3 Japanese randomized double-blind placebo-controlled trials that examined the effects of daily pemafibrate 0.1 mg, 0.2 mg, and 0.4 mg on glucose metabolism markers and liver function tests (LFTs). Primary endpoints were changes in glucose metabolism markers and LFTs from baseline after 12 weeks of pemafibrate treatment. All adverse events and adverse drug reactions were recorded as safety endpoints. Results The study population was 1253 patients randomized to placebo (n = 298) or pemafibrate 0.1 mg/day (n = 127), 0.2 mg/day (n = 584), or 0.4 mg/day (n = 244). Participant mean age was 54.3 years, 65.4 % had BMI ≥ 25 kg/m2, 35.8 % had type 2 diabetes, and 42.6 % had fatty liver. Fasting glucose, fasting insulin, and HOMA-IR decreased significantly in all pemafibrate groups compared to placebo. The greatest decrease was for pemafibrate 0.4 mg/day: least square (LS) mean change from baseline in fasting glucose − 0.25 mmol/L; fasting insulin − 3.31 µU/mL; HOMA-IR − 1.28. ALT, γ-GT, ALP, and total bilirubin decreased significantly at all pemafibrate doses vs. placebo, with the greatest decrease in the pemafibrate 0.4 mg/day group: LS mean change from baseline in ALT − 7.6 U/L; γ-GT − 37.3 U/L; ALP − 84.7 U/L; and total bilirubin − 2.27 µmol/L. Changes in HbA1c and AST did not differ significantly from placebo in any pemafibrate groups in the overall study population. The decreases from baseline in LFTs and glucose metabolism markers except for HbA1c were notable among patients with higher baseline values. FGF21 increased significantly in all pemafibrate groups compared to placebo, with the greatest increase in the pemafibrate 0.4 mg/day group. Adverse event rates were similar in all groups including placebo. Conclusions In patients with hypertriglyceridemia, pemafibrate can improve glucose metabolism and liver function, and increase FGF21, without increasing adverse event risk. Supplementary Information The online version contains supplementary material available at 10.1186/s12933-021-01291-w.
Collapse
Affiliation(s)
- Koutaro Yokote
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8670, Japan. .,Department of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8670, Japan.
| | - Shizuya Yamashita
- Rinku General Medical Center, 2-23 Ohrai-kita, Rinku, Izumisano-shi, Osaka, 598-8577, Japan
| | - Hidenori Arai
- National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu-shi, Aichi, 474-8511, Japan
| | - Eiichi Araki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, Kumamoto, 860-8556, Japan
| | - Mitsunori Matsushita
- Medical Affairs Department, Kowa Company, Ltd, 3-4-14 Nihonbashi-honcho, Chuo-ku, Tokyo, 103-8433, Japan
| | - Toshiaki Nojima
- Clinical Data Science Department, Kowa Company, Ltd, 3-4-14 Nihonbashi-honcho, Chuo- ku, Tokyo, 103-8433, Japan
| | - Hideki Suganami
- Clinical Data Science Department, Kowa Company, Ltd, 3-4-14 Nihonbashi-honcho, Chuo- ku, Tokyo, 103-8433, Japan
| | - Shun Ishibashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| |
Collapse
|
80
|
Zhao Y, Liu L, Yang S, Liu G, Pan L, Gu C, Wang Y, Li D, Zhao R, Wu M. Mechanisms of Atherosclerosis Induced by Postprandial Lipemia. Front Cardiovasc Med 2021; 8:636947. [PMID: 33996937 PMCID: PMC8116525 DOI: 10.3389/fcvm.2021.636947] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
Postprandial lipemia plays an important role in the formation, occurrence, and development of atherosclerosis, and it is closely related to coronary heart disease and other diseases involving endothelial dysfunction, oxidative stress, inflammation, and other mechanisms. Therefore, it has become a focus area for further research. The studies on postprandial lipemia mainly include TG, TRL, VLDL, CM, and remnant cholesterol. Diurnal triglyceride patterns and postprandial hyperlipidemia are very relevant and are now insufficiently covered. The possible mechanisms between postprandial lipemia and cardiovascular disease have been reviewed in this article by referring to relevant literature in recent years. The research progress on the effects of postprandial lipemia on endothelial function, oxidative stress, and inflammation is highlighted. The intervention of postprandial lipemia is discussed. Non-medicinal intervention such as diet and exercise improves postprandial lipemia. As medicinal intervention, statin, fibrate, ezetimibe, omega-3 fatty acids, and niacin have been found to improve postprandial lipid levels. Novel medications such as pemafibrate, PCSK9, and apoCIII inhibitors have been the focus of research in recent years. Gut microbiota is closely related to lipid metabolism, and some studies have indicated that intestinal microorganisms may affect lipid metabolism as environmental factors. Whether intervention of gut microbiota can reduce postprandial lipemia, and therefore against AS, may be worthy of further study.
Collapse
Affiliation(s)
- Yixi Zhao
- Comprehensive Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Longtao Liu
- Cardiovascular Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shengjie Yang
- Comprehensive Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guijian Liu
- Clinical Laboratory, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Limin Pan
- Comprehensive Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chun Gu
- Clinical Laboratory, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Wang
- Comprehensive Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dan Li
- Comprehensive Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ran Zhao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Min Wu
- Comprehensive Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
81
|
Bando H, Taneda S, Manda N. Efficacy and Safety of Low-Dose Pemafibrate Therapy for Hypertriglyceridemia in Patients with Type 2 Diabetes. JMA J 2021; 4:135-140. [PMID: 33997447 PMCID: PMC8118964 DOI: 10.31662/jmaj.2020-0104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/12/2021] [Indexed: 12/21/2022] Open
Abstract
Introduction: Pemafibrate is a potent selective peroxisome proliferator-activated receptor α (PPARα) modulator that may be safer than conventional PPARα agonists in the treatment of dyslipidemia. This study was designed to investigate the efficacy of low-dose pemafibrate (0.1 mg/day) therapy for hypertriglyceridemia in 31 patients with type 2 diabetes and high triglyceride (TG) levels at the Manda Memorial Hospital. Methods: TG, remnant lipoprotein cholesterol (RLP-C), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), apolipoprotein (Apo) AI, Apo AII, Apo B, Apo CII, Apo CIII, and Apo E levels were evaluated. Liver, kidney, and muscle toxicity tests were also performed. Pemafibrate (0.1 mg) was administered once daily. Results: This treatment significantly decreased TG, RLP-C, Apo CII, Apo CIII, and Apo E levels while significantly increasing HDL-C, Apo AI, and Apo AII levels. No significant changes were observed in LDL-C and Apo B levels. There were no significant liver-, kidney-, or muscle-related adverse events. Conclusions: The results of this study show that low-dose pemafibrate administration improves the lipid profile in Japanese patients with hypertriglyceridemia and type 2 diabetes.
Collapse
Affiliation(s)
| | - Shinji Taneda
- Manda Memorial Hospital, Sapporo City, Hokkaido, Japan
| | - Naoki Manda
- Manda Memorial Hospital, Sapporo City, Hokkaido, Japan
| |
Collapse
|
82
|
Suto K, Fukuda D, Shinohara M, Ganbaatar B, Yagi S, Kusunose K, Yamada H, Soeki T, Hirata KI, Sata M. Pemafibrate, A Novel Selective Peroxisome Proliferator-Activated Receptor α Modulator, Reduces Plasma Eicosanoid Levels and Ameliorates Endothelial Dysfunction in Diabetic Mice. J Atheroscler Thromb 2021; 28:1349-1360. [PMID: 33775978 PMCID: PMC8629704 DOI: 10.5551/jat.61101] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aims:
Various pathological processes related to diabetes cause endothelial dysfunction. Eicosanoids derived from arachidonic acid (AA) have roles in vascular regulation. Fibrates have recently been shown to attenuate vascular complications in diabetics. Here we examined the effects of pemafibrate, a selective peroxisome proliferator-activated receptor α modulator, on plasma eicosanoid levels and endothelial function in diabetic mice.
Methods:
Diabetes was induced in 7-week-old male wild-type mice by a single injection of streptozotocin (150 mg/kg). Pemafibrate (0.3 mg/kg/day) was administered orally for 3 weeks. Untreated mice received vehicle. Circulating levels of eicosanoids and free fatty acids were measured using both gas and liquid chromatography-mass spectrometry. Endothelium-dependent and endothelium-independent vascular responses to acetylcholine and sodium nitroprusside, respectively, were analyzed.
Results:
Pemafibrate reduced both triglyceride and non-high-density lipoprotein-cholesterol levels (
P
<0.01), without affecting body weight. It also decreased circulating levels of AA (
P
<0.001), thromboxane B
2
(
P
<0.001), prostaglandin E
2
, leukotriene B
4
(
P
<0.05), and 5-hydroxyeicosatetraenoic acid (
P
<0.001), all of which were elevated by the induction of diabetes. In contrast, the plasma levels of 15-deoxy-Δ
12,14
-prostaglandin J
2
, which declined following diabetes induction, remained unaffected by pemafibrate treatment. In diabetic mice, pemafibrate decreased palmitic acid (PA) and stearic acid concentrations (
P
<0.05). Diabetes induction impaired endothelial function, whereas pemafibrate ameliorated it (
P
<0.001). The results of ex vivo experiments indicated that eicosanoids or PA impaired endothelial function.
Conclusion:
Pemafibrate diminished the levels of vasoconstrictive eicosanoids and free fatty acids accompanied by a reduction of triglyceride. These effects may be associated with the improvement of endothelial function by pemafibrate in diabetic mice.
Collapse
Affiliation(s)
- Kumiko Suto
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences
| | - Daiju Fukuda
- Department of Cardio-Diabetes Medicine, Tokushima University Graduate School of Biomedical Sciences
| | - Masakazu Shinohara
- The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine.,Division of Epidemiology, Kobe University Graduate School of Medicine
| | - Byambasuren Ganbaatar
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences
| | - Shusuke Yagi
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences
| | - Kenya Kusunose
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences
| | - Hirotsugu Yamada
- Department of Community Medicine for Cardiology, Tokushima University Graduate School of Biomedical Sciences
| | - Takeshi Soeki
- Department of Community Medicine and Medical Science, Tokushima University Graduate School of Biomedical Sciences
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine
| | - Masataka Sata
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences
| |
Collapse
|
83
|
Abstract
Purpose of review Based on the recent data of the DA VINCI study, it is clear that, besides utilization of statins, there is a need to increase non-statin lipid lowering approaches to reduce the cardiovascular burden in patients at highest risk. Recent findings For hypercholesterolemia, the small synthetic molecule bempedoic acid has the added benefit of selective liver activation, whereas inclisiran, a hepatic inhibitor of the PCSK9 synthesis, has comparable effects with PCSK9 monoclonal antibodies. For hypertriglyceridemia, cardiovascular benefit has been achieved by the use of icosapent ethyl, whereas results with pemafibrate, a selective agonist of PPAR-α, are eagerly awaited. In the era of RNA-based therapies, new options are offered to dramatically reduce levels of lipoprotein(a) (APO(a)LRX) and of triglycerides (ANGPTL3LRX and APOCIII-LRx). Summary Despite the demonstrated benefits of statins, a large number of patients still remain at significant risk because of inadequate LDL-C reduction or elevated blood triglyceride-rich lipoproteins or lipoprotein(a). The area of lipid modulating agents is still ripe with ideas and major novelties are to be awaited in the next few years.
Collapse
|
84
|
Komiya I, Yamamoto A, Sunakawa S, Wakugami T. Pemafibrate decreases triglycerides and small, dense LDL, but increases LDL-C depending on baseline triglycerides and LDL-C in type 2 diabetes patients with hypertriglyceridemia: an observational study. Lipids Health Dis 2021; 20:17. [PMID: 33610176 PMCID: PMC7897372 DOI: 10.1186/s12944-021-01434-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/19/2021] [Indexed: 12/18/2022] Open
Abstract
Background Pemafibrate, a selective PPARα modulator, has the beneficial effects on serum triglycerides (TGs) and very low density lipoprotein (VLDL), especially in patients with diabetes mellitus or metabolic syndrome. However, its effect on the low density lipoprotein cholesterol (LDL-C) levels is still undefined. LDL-C increased in some cases together with a decrease in TGs, and the profile of lipids, especially LDL-C, during pemafibrate administration was evaluated. Methods Pemafibrate was administered to type 2 diabetes patients with hypertriglyceridemia. Fifty-one type 2 diabetes patients (mean age 62 ± 13 years) with a high rate of hypertension and no renal insufficiency were analyzed. Pemafibrate 0.2 mg (0.1 mg twice daily) was administered, and serum lipids were monitored every 4–8 weeks from 8 weeks before administration to 24 weeks after administration. LDL-C was measured by the direct method. Lipoprotein fractions were measured by electrophoresis (polyacrylamide gel, PAG), and LDL-migration index (LDL-MI) was calculated to estimate small, dense LDL. Results Pemafibrate reduced serum TGs, midband and VLDL fractions by PAG. Pemafibrate increased LDL-C levels from baseline by 5.3% (− 3.8–19.1, IQR). Patients were divided into 2 groups: LDL-C increase of > 5.3% (group I, n = 25) and < 5.3% (group NI, n = 26) after pemafibrate. Compared to group NI, group I had lower LDL-C (2.53 [1.96–3.26] vs. 3.36 [3.05–3.72] mmol/L, P = 0.0009), higher TGs (3.71 [2.62–6.69] vs. 3.25 [2.64–3.80] mmol/L), lower LDL by PAG (34.2 [14.5, SD] vs. 46.4% [6.5], P = 0.0011), higher VLDL by PAG (28.2 [10.8] vs. 22.0% [5.2], P = 0.0234), and higher LDL-MI (0.421 [0.391–0.450] vs. 0.354 [0.341–0.396], P < 0.0001) at baseline. Pemafibrate decreased LDL-MI in group I, and the differences between the groups disappeared. These results showed contradictory effects of pemafibrate on LDL-C levels, and these effects were dependent on the baseline levels of LDL-C and TGs. Conclusions Pemafibrate significantly reduced TGs, VLDL, midband, and small, dense LDL, but increased LDL-C in diabetes patients with higher baseline TGs and lower baseline LDL-C. Even if pre-dose LDL-C remains in the normal range, pemafibrate improves LDL composition and may reduce cardiovascular disease risk.
Collapse
Affiliation(s)
- Ichiro Komiya
- Department of Internal Medicine, Okinawa Medical Hospital, 2310 Tsuhako-Nishihara, Sashiki, Nanjo, Okinawa, 9011414, Japan. .,Department of Diabetes and Endocrinology, Medical Plaza Daido Central, 123 Daido, Naha, Okinawa, 9020066, Japan.
| | - Akira Yamamoto
- Department of Cardiology, Medical Plaza Daido Central, 123 Daido, Naha, Okinawa, 9020066, Japan
| | - Suguru Sunakawa
- Department of Diabetes and Endocrinology, Medical Plaza Daido Central, 123 Daido, Naha, Okinawa, 9020066, Japan
| | - Tamio Wakugami
- Department of Internal Medicine, Okinawa Medical Hospital, 2310 Tsuhako-Nishihara, Sashiki, Nanjo, Okinawa, 9011414, Japan
| |
Collapse
|
85
|
Wang L, Cai Y, Jian L, Cheung CW, Zhang L, Xia Z. Impact of peroxisome proliferator-activated receptor-α on diabetic cardiomyopathy. Cardiovasc Diabetol 2021; 20:2. [PMID: 33397369 PMCID: PMC7783984 DOI: 10.1186/s12933-020-01188-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/02/2020] [Indexed: 12/21/2022] Open
Abstract
The prevalence of cardiomyopathy is higher in diabetic patients than those without diabetes. Diabetic cardiomyopathy (DCM) is defined as a clinical condition of abnormal myocardial structure and performance in diabetic patients without other cardiac risk factors, such as coronary artery disease, hypertension, and significant valvular disease. Multiple molecular events contribute to the development of DCM, which include the alterations in energy metabolism (fatty acid, glucose, ketone and branched chain amino acids) and the abnormalities of subcellular components in the heart, such as impaired insulin signaling, increased oxidative stress, calcium mishandling and inflammation. There are no specific drugs in treating DCM despite of decades of basic and clinical investigations. This is, in part, due to the lack of our understanding as to how heart failure initiates and develops, especially in diabetic patients without an underlying ischemic cause. Some of the traditional anti-diabetic or lipid-lowering agents aimed at shifting the balance of cardiac metabolism from utilizing fat to glucose have been shown inadequately targeting multiple aspects of the conditions. Peroxisome proliferator-activated receptor α (PPARα), a transcription factor, plays an important role in mediating DCM-related molecular events. Pharmacological targeting of PPARα activation has been demonstrated to be one of the important strategies for patients with diabetes, metabolic syndrome, and atherosclerotic cardiovascular diseases. The aim of this review is to provide a contemporary view of PPARα in association with the underlying pathophysiological changes in DCM. We discuss the PPARα-related drugs in clinical applications and facts related to the drugs that may be considered as risky (such as fenofibrate, bezafibrate, clofibrate) or safe (pemafibrate, metformin and glucagon-like peptide 1-receptor agonists) or having the potential (sodium-glucose co-transporter 2 inhibitor) in treating DCM.
Collapse
Affiliation(s)
- Lin Wang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong, SAR, China
| | - Yin Cai
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong, SAR, China
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Liguo Jian
- Department of Cardiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chi Wai Cheung
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong, SAR, China
| | - Liangqing Zhang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
86
|
Small-Molecule Modulation of PPARs for the Treatment of Prevalent Vascular Retinal Diseases. Int J Mol Sci 2020; 21:ijms21239251. [PMID: 33291567 PMCID: PMC7730325 DOI: 10.3390/ijms21239251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/29/2020] [Accepted: 12/02/2020] [Indexed: 02/08/2023] Open
Abstract
Vascular-related retinal diseases dramatically impact quality of life and create a substantial burden on the healthcare system. Age-related macular degeneration, diabetic retinopathy, and retinopathy of prematurity are leading causes of irreversible blindness. In recent years, the scientific community has made great progress in understanding the pathology of these diseases and recent discoveries have identified promising new treatment strategies. Specifically, compelling biochemical and clinical evidence is arising that small-molecule modulation of peroxisome proliferator-activated receptors (PPARs) represents a promising approach to simultaneously address many of the pathological drivers of these vascular-related retinal diseases. This has excited academic and pharmaceutical researchers towards developing new and potent PPAR ligands. This review highlights recent developments in PPAR ligand discovery and discusses the downstream effects of targeting PPARs as a therapeutic approach to treating retinal vascular diseases.
Collapse
|
87
|
Seko Y, Yamaguchi K, Umemura A, Yano K, Takahashi A, Okishio S, Kataoka S, Okuda K, Moriguchi M, Okanoue T, Itoh Y. Effect of pemafibrate on fatty acid levels and liver enzymes in non-alcoholic fatty liver disease patients with dyslipidemia: A single-arm, pilot study. Hepatol Res 2020; 50:1328-1336. [PMID: 32926754 DOI: 10.1111/hepr.13571] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/21/2020] [Accepted: 08/10/2020] [Indexed: 12/30/2022]
Abstract
AIM Dyslipidemia (DL) is commonly associated with non-alcoholic fatty liver disease (NAFLD). Pemafibrate, a selective peroxisome proliferator activated receptor α modulator (SPPARMα), has been shown to improve liver function among patients with DL. The aim of this single-arm prospective study is to evaluate the efficacy of pemafibrate in NAFLD patients with DL. METHODS Twenty NAFLD patients with DL who received pemafibrate (0.1 mg) twice a day for 12 weeks were prospectively enrolled in this study. The primary end-point was change in serum alanine aminotransferase (ALT) levels from baseline to week 12. RESULTS Serum ALT levels decreased from 75.1 IU/L at baseline to 43.6 IU/L at week 12 (P = 0.001). Significant improvements in triglyceride, high-density lipoprotein cholesterol, total fatty acid, saturated fatty acid (SFA), and unsaturated fatty acid were also noted. The serum level of remnant-like protein cholesterol, SFA, and polyunsaturated / saturated fatty acid ratio (PUFA / SFA ratio) at baseline were correlated with change in ALT level (r = -0.53, r = -0.57, and r = 0.46, respectively). Change in PUFA and change in PUFA / SFA ratio were negatively correlated with change in ALT level (r = -0.49 and r = -0.53). No hepatic or renal adverse events were reported. CONCLUSIONS Selective peroxisome proliferator activated receptor α could be a promising novel agent for treatment of NAFLD patients with DL by regulating fatty acid composition. A further long-term large-scale trial is warranted to confirm the efficacy of SPPARMα on NAFLD with DL.
Collapse
Affiliation(s)
- Yuya Seko
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kanji Yamaguchi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Atsushi Umemura
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kota Yano
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Aya Takahashi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shinya Okishio
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Seita Kataoka
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Keiichiroh Okuda
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Michihisa Moriguchi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takeshi Okanoue
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Osaka, Japan
| | - Yoshito Itoh
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
88
|
Iitake C, Masuda D, Koseki M, Yamashita S. Marked effects of novel selective peroxisome proliferator-activated receptor α modulator, pemafibrate in severe hypertriglyceridemia: preliminary report. Cardiovasc Diabetol 2020; 19:201. [PMID: 33246467 PMCID: PMC7694943 DOI: 10.1186/s12933-020-01172-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/15/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Currently available treatments have only been partly successful in patients with severe hypertriglyceridemia, including those with high serum triglycerides above 1,000 mg/dL (11.3 mmol/L), who often suffer from acute pancreatitis. Pemafibrate is a novel selective peroxisome proliferator-activated receptor α modulator (SPPARMα) which has been developed as an affordable oral tablet in Japan. We herein report the first three patients with severe hypertriglyceridemia who were successfully treated with pemafibrate. METHODS Three patients with fasting serum triglyceride (TG) levels above 1,000 mg/dL (11.3 mmol/L) were treated with pemafibrate (0.2-0.4 mg/day, 0.1-0.2 mg BID). RESULTS Serum TGs decreased from 2,000-3,000 mg/dL (22.6-33.9 mmol/L) to < 250 mg/dL (2.8 mmol/L) without adverse effects in all three patients. Serum TGs in Patient 1 and 2 decreased from 1,326 mg/dL (15.0 mmol/L) to 164 mg/dL (1.9 mmol/L) and from 2,040 mg/dL (23.1 mmol/L) to 234 mg/dL (2.6 mmol/L), respectively. Patient 3 with type 2 diabetes and 12.1% (109 mmol/mol) hemoglobin A1c had a TG level of 2,300 mg/dL (26.0 mmol/L). Even after glycemic control improved, TG remained high. After pemafibrate administration, TG decreased to 200 mg/dL (2.3 mmol/L). All patients showed no serious adverse events. CONCLUSIONS Pemafibrate demonstrated potential efficacy and safety for severe hypertriglyceridemia which may contribute to the prevention of acute pancreatitis, in a manner that can be easily prescribed and used as an oral tablet.
Collapse
Affiliation(s)
- Chie Iitake
- Iitake Clinic for Internal Medicine, 2131-1976 Migawacho, Mito City, Ibaraki, 310-0913, Japan.
| | - Daisaku Masuda
- Department of Cardiology, Rinku General Medical Center, 2-23 Ourai-kita, Rinku, Izumisano, Osaka, 598-0048, Japan.,Rinku Innovation Center for Wellness Care and Activities (RICWA), Rinku General Medical Center, 2-23 Ourai-kita, Rinku, Izumisano, Osaka, 598-0048, Japan
| | - Masahiro Koseki
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shizuya Yamashita
- Department of Cardiology, Rinku General Medical Center, 2-23 Ourai-kita, Rinku, Izumisano, Osaka, 598-0048, Japan
| |
Collapse
|
89
|
Park JE, Shitara Y, Lee W, Morita S, Sahi J, Toshimoto K, Sugiyama Y. Improved Prediction of the Drug-Drug Interactions of Pemafibrate Caused by Cyclosporine A and Rifampicin via PBPK Modeling: Consideration of the Albumin-Mediated Hepatic Uptake of Pemafibrate and Inhibition Constants With Preincubation Against OATP1B. J Pharm Sci 2020; 110:517-528. [PMID: 33058894 DOI: 10.1016/j.xphs.2020.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/27/2020] [Accepted: 10/07/2020] [Indexed: 11/17/2022]
Abstract
Pemafibrate (PMF) is highly albumin-bound (>99.8%) and a substrate for hepatic uptake transporters (OATP1B) and CYP enzymes. Here, we developed a PBPK model of PMF to capture drug-drug interactions (DDI) incurred by cyclosporine (CsA) and rifampicin (RIF), the two OATP1B inhibitors. Initial PBPK modeling of PMF utilized in vitro hepatic uptake clearance (PSinf) obtained in the absence of albumin, but failed in capturing the blood PMF pharmacokinetic (PK) profiles. Based on the results that in vitro PSinf of unbound PMF was enhanced in the presence of albumin, we applied the albumin-facilitated dissociation model and the resulting PSinf parameters improved the prediction of the blood PMF PK profiles. In refining our PBPK model toward improved prediction of the observed DDI data (PMF co-administered with single dosing of CsA or RIF; PMF following multiple RIF dosing), we adjusted the previously obtained in vivo OATP1B inhibition constants (Ki,OATP1B) of CsA or RIF for pitavastatin by correcting for substrate-dependency. We also incorporated the induction of OATP1B and CYP enzymes after multiple RIF dosing. Sensitivity analysis informed that the higher gastrointestinal absorption rate constant could further improve capturing the observed DDI data, suggesting the possible inhibition of intestinal ABC transporter(s) by CsA or RIF.
Collapse
Affiliation(s)
- Ji Eun Park
- Sugiyama Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; Pharmacokinetics, Dynamics and Metabolism, Translational Medicine and Early Development, R&D, Sanofi K.K., 3 Chome-20-2, Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Yoshihisa Shitara
- Pharmacokinetics, Dynamics and Metabolism, Translational Medicine and Early Development, R&D, Sanofi K.K., 3 Chome-20-2, Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Wooin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Bldg 21 Rm 309, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, S. Korea
| | - Shigemichi Morita
- Pharmacokinetics, Dynamics and Metabolism, Translational Medicine and Early Development, R&D, Sanofi K.K., 3 Chome-20-2, Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Jasminder Sahi
- Pharmacokinetics, Dynamics and Metabolism, Translational Medicine and Early Development, R&D, Sanofi China, 1228 Yan'an Middle Road, Jing'an District, Shanghai, China
| | - Kota Toshimoto
- Sugiyama Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| |
Collapse
|
90
|
Polyzos SA, Kang ES, Boutari C, Rhee EJ, Mantzoros CS. Current and emerging pharmacological options for the treatment of nonalcoholic steatohepatitis. Metabolism 2020; 111S:154203. [PMID: 32151660 DOI: 10.1016/j.metabol.2020.154203] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/16/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a highly prevalent disease and important unmet medical need. Current guidelines recommend, under specific restrictions, pioglitazone or vitamin E in patients with NASH and significant fibrosis, but the use of both remains off-label. We summarize evidence on medications for the treatment of nonalcoholic steatohepatitis (NASH), since NASH has been mainly associated with higher morbidity and mortality. Some of these medications are currently in phase 3 clinical trials, including obeticholic acid (a farnesoid X receptor agonist), elafibranor (a peroxisome proliferator activated receptor [PPAR]-α/δ dual agonist), cenicriviroc (a CC chemokine receptor antagonist), MSDC-0602 K (a PPAR sparing modulator), selonsertib (an apoptosis signal-regulating kinase-1 inhibitor) and resmetirom (a thyroid hormone receptor agonist). A significant research effort is also targeting PPARs and selective PPAR modulators, including INT131 and pemafibrate, with the expectation that novel drugs may have beneficial effects similar to those of pioglitazone, but without the associated adverse effects. Whether these and other medications could offer tangible therapeutic benefits, alone or in combination, apparently on a background of lifestyle modification, i.e. exercise and a healthy dietary pattern (e.g. Mediterranean diet) remain to be proven. In conclusion, major advances are expected for the treatment of NASH.
Collapse
Affiliation(s)
- Stergios A Polyzos
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Eun Seok Kang
- Severance Hospital Diabetes Center, Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Chrysoula Boutari
- Second Propedeutic Department of Internal Medicine, School of Medicine, Aristotle University, Ippokration Hospital, Thessaloniki, Macedonia, Greece
| | - Eun-Jung Rhee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
91
|
Yoshida M, Nakamura K, Miyoshi T, Yoshida M, Kondo M, Akazawa K, Kimura T, Ohtsuka H, Ohno Y, Miura D, Ito H. Combination therapy with pemafibrate (K-877) and pitavastatin improves vascular endothelial dysfunction in dahl/salt-sensitive rats fed a high-salt and high-fat diet. Cardiovasc Diabetol 2020; 19:149. [PMID: 32979918 PMCID: PMC7520032 DOI: 10.1186/s12933-020-01132-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/18/2020] [Indexed: 11/25/2022] Open
Abstract
Background Statins suppress the progression of atherosclerosis by reducing low-density lipoprotein (LDL) cholesterol levels. Pemafibrate (K-877), a novel selective peroxisome proliferator-activated receptor α modulator, is expected to reduce residual risk factors including high triglycerides (TGs) and low high-density lipoprotein (HDL) cholesterol during statin treatment. However, it is not known if statin therapy with add-on pemafibrate improves the progression of atherosclerosis. The aim of this study was to assess the effect of combination therapy with pitavastatin and pemafibrate on lipid profiles and endothelial dysfunction in hypertension and insulin resistance model rats. Methods Seven-week-old male Dahl salt-sensitive (DS) rats were divided into the following five treatment groups (normal diet (ND) plus vehicle, high-salt and high-fat diet (HD) plus vehicle, HD plus pitavastatin (0.3 mg/kg/day), HD plus pemafibrate (K-877) (0.5 mg/kg/day), and HD plus combination of pitavastatin and pemafibrate) and treated for 12 weeks. At 19 weeks, endothelium-dependent relaxation of the thoracic aorta in response to acetylcholine was evaluated. Results After feeding for 12 weeks, systolic blood pressure and plasma levels of total cholesterol were significantly higher in the HD-vehicle group compared with the ND-vehicle group. Combination therapy with pitavastatin and pemafibrate significantly reduced systolic blood pressure, TG levels, including total, chylomicron (CM), very LDL (VLDL), HDL-TG, and cholesterol levels, including total, CM, VLDL, and LDL-cholesterol, compared with vehicle treatment. Acetylcholine caused concentration-dependent relaxation of thoracic aorta rings that were pre-contracted with phenylephrine in all rats. Relaxation rates in the HD-vehicle group were significantly lower compared with the ND-vehicle group. Relaxation rates in the HD-combination of pitavastatin and pemafibrate group significantly increased compared with the HD-vehicle group, although neither medication alone ameliorated relaxation rates significantly. Western blotting experiments showed increased phosphorylated endothelial nitric oxide synthase protein expression in aortas from rats in the HD-pemafibrate group and the HD-combination group compared with the HD-vehicle group. However, the expression levels did not respond significantly to pitavastatin alone. Conclusions Combination therapy with pitavastatin and pemafibrate improved lipid profiles and endothelial dysfunction in hypertension and insulin resistance model rats. Pemafibrate as an add-on strategy to statins may be useful for preventing atherosclerosis progression.
Collapse
Affiliation(s)
- Masatoki Yoshida
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Kazufumi Nakamura
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Toru Miyoshi
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Masashi Yoshida
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Megumi Kondo
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Kaoru Akazawa
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Tomonari Kimura
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hiroaki Ohtsuka
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Yuko Ohno
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.,Department of Medical Technology, Kawasaki College of Allied Health Professions, Okayama, Japan
| | - Daiji Miura
- Department of Basic and Clinical Medicine, Nagano College of Nursing, Nagano, Japan
| | - Hiroshi Ito
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| |
Collapse
|
92
|
Pemafibrate Protects Against Retinal Dysfunction in a Murine Model of Diabetic Retinopathy. Int J Mol Sci 2020; 21:ijms21176243. [PMID: 32872333 PMCID: PMC7503472 DOI: 10.3390/ijms21176243] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 12/16/2022] Open
Abstract
Diabetic retinopathy (DR) is one of the leading causes of blindness globally. Retinal neuronal abnormalities occur in the early stage in DR. Therefore, maintaining retinal neuronal activity in DR may prevent vision loss. Previously, pemafibrate, a novel selective peroxisome proliferator-activated receptor alpha modulator, was suggested as a promising drug in hypertriglyceridemia. However, the role of pemafibrate remains obscure in DR. Therefore, we aimed to unravel systemic and retinal changes by pemafibrate in diabetes. Adult mice were intraperitoneally injected with streptozotocin (STZ) to induce diabetes. After STZ injection, diet supplemented with pemafibrate was given to STZ-induced diabetic mice for 12 weeks. During the experiment period, body weight and blood glucose levels were examined. Electroretinography was performed to check the retinal neural function. After sacrifice, the retina, liver, and blood samples were subjected to molecular analyses. We found pemafibrate mildly improved blood glucose level as well as lipid metabolism, boosted liver function, increased serum fibroblast growth factor21 level, restored retinal functional deficits, and increased retinal synaptophysin protein expression in STZ-induced diabetic mice. Our present data suggest a promising pemafibrate therapy for the prevention of early DR by improving systemic metabolism and protecting retinal function.
Collapse
|
93
|
Pappa E, Elisaf MS, Kostara C, Bairaktari E, Tsimihodimos VK. Cardioprotective Properties of HDL: Structural and Functional Considerations. Curr Med Chem 2020; 27:2964-2978. [PMID: 30714519 DOI: 10.2174/0929867326666190201142321] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 12/03/2018] [Accepted: 12/11/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND As Mendelian Randomization (MR) studies showed no effect of variants altering HDL-cholesterol (HDL-C) levels concerning Cardiovascular Disease (CVD) and novel therapeutic interventions aiming to raise HDL-C resulted to futility, the usefulness of HDL-C is unclear. OBJECTIVE As the role of HDL-C is currently doubtful, it is suggested that the atheroprotective functions of HDLs can be attributed to the number of HDL particles, and their characteristics including their lipid and protein components. Scientific interest has focused on HDL function and on the causes of rendering HDL particles dysfunctional, whereas the relevance of HDL subclasses with CVD remains controversial. METHODS The present review discusses changes in quality as much as in quantity of HDL in pathological conditions and the connection between HDL particle concentration and cardiovascular disease and mortality. Emphasis is given to the recently available data concerning the cholesterol efflux capacity and the parameters that determine HDL functionality, as well as to recent investigations concerning the associations of HDL subclasses with cardiovascular mortality. RESULTS MR studies or pharmacological interventions targeting HDL-C are not in favor of the hypothesis of HDL-C levels and the relationship with CVD. The search of biomarkers that relate with HDL functionality is needed. Similarly, HDL particle size and number exhibit controversial data in the context of CVD and further studies are needed. CONCLUSION There is no room for the old concept of HDL as a silver bullet,as HDL-C cannot be considered a robust marker and does not reflect the importance of HDL particle size and number. Elucidation of the complex HDL system, as well as the finding of biomarkers, will allow the development of any HDL-targeted therapy.
Collapse
Affiliation(s)
- Eleni Pappa
- Department of Internal Medicine, Medical University of Ioannina, Ioannina, Greece
| | - Moses S Elisaf
- Department of Internal Medicine, Medical University of Ioannina, Ioannina, Greece
| | - Christina Kostara
- Laboratory of Clinical Chemistry, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Eleni Bairaktari
- Laboratory of Clinical Chemistry, School of Medicine, University of Ioannina, Ioannina, Greece
| | | |
Collapse
|
94
|
Fruchart JC, Hermans MP, Fruchart-Najib J. Selective Peroxisome Proliferator-Activated Receptor Alpha Modulators (SPPARMα): New Opportunities to Reduce Residual Cardiovascular Risk in Chronic Kidney Disease? Curr Atheroscler Rep 2020; 22:43. [PMID: 32671476 PMCID: PMC7363727 DOI: 10.1007/s11883-020-00860-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Chronic kidney disease (CKD) poses a major global challenge, which is exacerbated by aging populations and the pandemic of type 2 diabetes mellitus. Much of the escalating burden of CKD is due to cardiovascular complications. Current treatment guidelines for dyslipidemia in CKD prioritize low-density lipoprotein cholesterol management, but still leave a high residual cardiovascular risk. Targeting elevated triglycerides and low plasma high-density lipoprotein cholesterol, a common feature of CKD, could offer additional benefit. There are, however, safety issues with current fibrates (peroxisome proliferator-activated receptor alpha [PPARα] agonists), notably the propensity for elevation in serum creatinine, indicating the need for new approaches. RECENT FINDINGS Interactions between the ligand and PPARα receptor influence the specificity and potency of receptor binding, and downstream gene and physiological effects. The peroxisome proliferator-activated receptor alpha modulator (SPPARMα) concept aims to modulate the ligand structure so as to enhance binding at the PPARα receptor, thereby improving the ligand's selectivity, potency, and safety profile. This concept has led to the development of pemafibrate, a novel SPPARMα agent. This review discusses evidence that differentiates pemafibrate from current fibrates, especially the lack of evidence for elevation in serum creatinine or worsening of renal function in high-risk patients, including those with CKD. Differentiation of pemafibrate from current fibrates aims to address unmet clinical needs in CKD. The ongoing PROMINENT study will provide critical information regarding the long-term efficacy and safety of pemafibrate in patients with type 2 diabetes mellitus, including those with CKD, and whether the favorable lipid-modifying profile translates to reduction in residual cardiovascular risk.
Collapse
Affiliation(s)
- Jean-Charles Fruchart
- Residual Risk Reduction Initiative (R3i) Foundation, Picassoplatz 8, 4010, Basel, Switzerland.
| | - Michel P Hermans
- Division of Endocrinology and Nutrition, Cliniques Universitaires St-Luc and Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Jamila Fruchart-Najib
- Residual Risk Reduction Initiative (R3i) Foundation, Picassoplatz 8, 4010, Basel, Switzerland
| |
Collapse
|
95
|
Fougerat A, Montagner A, Loiseau N, Guillou H, Wahli W. Peroxisome Proliferator-Activated Receptors and Their Novel Ligands as Candidates for the Treatment of Non-Alcoholic Fatty Liver Disease. Cells 2020; 9:E1638. [PMID: 32650421 PMCID: PMC7408116 DOI: 10.3390/cells9071638] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/26/2020] [Accepted: 07/04/2020] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major health issue worldwide, frequently associated with obesity and type 2 diabetes. Steatosis is the initial stage of the disease, which is characterized by lipid accumulation in hepatocytes, which can progress to non-alcoholic steatohepatitis (NASH) with inflammation and various levels of fibrosis that further increase the risk of developing cirrhosis and hepatocellular carcinoma. The pathogenesis of NAFLD is influenced by interactions between genetic and environmental factors and involves several biological processes in multiple organs. No effective therapy is currently available for the treatment of NAFLD. Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that regulate many functions that are disturbed in NAFLD, including glucose and lipid metabolism, as well as inflammation. Thus, they represent relevant clinical targets for NAFLD. In this review, we describe the determinants and mechanisms underlying the pathogenesis of NAFLD, its progression and complications, as well as the current therapeutic strategies that are employed. We also focus on the complementary and distinct roles of PPAR isotypes in many biological processes and on the effects of first-generation PPAR agonists. Finally, we review novel and safe PPAR agonists with improved efficacy and their potential use in the treatment of NAFLD.
Collapse
Affiliation(s)
- Anne Fougerat
- Institut National de la Recherche Agronomique (INRAE), ToxAlim, UMR1331 Toulouse, France; (A.M.); (N.L.); (H.G.)
| | - Alexandra Montagner
- Institut National de la Recherche Agronomique (INRAE), ToxAlim, UMR1331 Toulouse, France; (A.M.); (N.L.); (H.G.)
- Institut National de la Santé et de la Recherche Médicale (Inserm), Institute of Metabolic and Cardiovascular Diseases, UMR1048 Toulouse, France
- Institute of Metabolic and Cardiovascular Diseases, University of Toulouse, UMR1048 Toulouse, France
| | - Nicolas Loiseau
- Institut National de la Recherche Agronomique (INRAE), ToxAlim, UMR1331 Toulouse, France; (A.M.); (N.L.); (H.G.)
| | - Hervé Guillou
- Institut National de la Recherche Agronomique (INRAE), ToxAlim, UMR1331 Toulouse, France; (A.M.); (N.L.); (H.G.)
| | - Walter Wahli
- Institut National de la Recherche Agronomique (INRAE), ToxAlim, UMR1331 Toulouse, France; (A.M.); (N.L.); (H.G.)
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
- Center for Integrative Genomics, Université de Lausanne, Le Génopode, CH-1015 Lausanne, Switzerland
| |
Collapse
|
96
|
Boeckmans J, Natale A, Rombaut M, Buyl K, Cami B, De Boe V, Heymans A, Rogiers V, De Kock J, Vanhaecke T, Rodrigues RM. Human hepatic in vitro models reveal distinct anti-NASH potencies of PPAR agonists. Cell Biol Toxicol 2020; 37:293-311. [PMID: 32613381 DOI: 10.1007/s10565-020-09544-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/17/2020] [Indexed: 12/17/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) is a highly prevalent, chronic liver disease characterized by hepatic lipid accumulation, inflammation, and concomitant fibrosis. Up to date, no anti-NASH drugs have been approved. In this study, we reproduced key NASH characteristics in vitro by exposing primary human hepatocytes (PHH), human skin stem cell-derived hepatic cells (hSKP-HPC), HepaRG and HepG2 cell lines, as well as LX-2 cells to multiple factors that play a role in the onset of NASH. The obtained in vitro disease models showed intracellular lipid accumulation, secretion of inflammatory chemokines, induced ATP content, apoptosis, and increased pro-fibrotic gene expression. These cell systems were then used to evaluate the anti-NASH properties of eight peroxisome proliferator-activated receptor (PPAR) agonists (bezafibrate, elafibranor, fenofibrate, lanifibranor, pemafibrate, pioglitazone, rosiglitazone, and saroglitazar). PPAR agonists differently attenuated lipid accumulation, inflammatory chemokine secretion, and pro-fibrotic gene expression.Based on the obtained readouts, a scoring system was developed to grade the anti-NASH potencies. The in vitro scoring system, based on a battery of the most performant models, namely PHH, hSKP-HPC, and LX-2 cultures, showed that elafibranor, followed by saroglitazar and pioglitazone, induced the strongest anti-NASH effects. These data corroborate available clinical data and show the relevance of these in vitro models for the preclinical investigation of anti-NASH compounds.
Collapse
Affiliation(s)
- Joost Boeckmans
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Alessandra Natale
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Matthias Rombaut
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Karolien Buyl
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Brent Cami
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Veerle De Boe
- Department of Urology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Anja Heymans
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Vera Rogiers
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Joery De Kock
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Tamara Vanhaecke
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Robim M Rodrigues
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| |
Collapse
|
97
|
Langsted A, Madsen CM, Nordestgaard BG. Contribution of remnant cholesterol to cardiovascular risk. J Intern Med 2020; 288:116-127. [PMID: 32181933 DOI: 10.1111/joim.13059] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/03/2020] [Accepted: 02/27/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Remnant cholesterol in triglyceride-rich lipoproteins is associated observationally and genetic, causally with increased risk of atherosclerotic cardiovascular disease in healthy individuals. OBJECTIVES We tested the hypothesis that an unmet medical need exists in individuals with high nonfasting remnant cholesterol and prior atherosclerotic cardiovascular disease. METHODS From amongst 109 574 individuals in a prospective cohort study of the Danish general population, we included 2973 individuals aged 20-80 with baseline diagnoses of myocardial infarction/ischaemic stroke ascertained from national Danish health registries. RESULTS The recurrent major cardiovascular event (MACE) incidence rates per 1000 person-years were 39 (95% confidence interval: 30-50) for individuals with remnant cholesterol levels ≥ 1.5 mmol L-1 (≥58 mg dL-1 ), 31 (26-37) for 1-1.49 mmol L-1 (39-57 mg dL-1 ), 27 (24-31) for 0.5-0.99 mmol L-1 (19-38 mg dL-1 ) and 23 (19-27) for individuals with remnant cholesterol < 0.5 mmol L-1 (<19 mg dL-1 ). Compared to individuals with remnant cholesterol < 0.5 mmol L-1 (<19 mg dL-1 ), the subhazard ratio for recurrent MACE was 1.23 (95% CI: 0.98-1.55) for individuals with remnant cholesterol levels of 0.5-0.99 mmol L-1 (19-38 mg dL-1 ), 1.48 (1.14-1.92) for 1-1.49 mmol L-1 (39-57 mg dL-1 ) and 1.79 (1.28-2.49) for ≥ 1.5 mmol L-1 (≥58 mg dL-1 ). The recurrent MACE incidence rates per 1000 person-years for individuals with remnant cholesterol levels < 0.5 mmol L-1 (<19 mg dL-1 ) and ≥ 1.5 mmol L-1 (≥58 mg dL-1 ) were 10 (6.6-15) and 31 (21-47) for those below age 65 and correspondingly 25 (21-30) and 43 (32-59) for those with LDL cholesterol levels < 3 mmol L-1 (<116 mg dL-1 ), respectively. For a 20% recurrent MACE risk reduction in secondary prevention, an estimated remnant cholesterol lowering of 0.83 mmol L-1 (32 mg dL-1 ) would be needed. CONCLUSIONS In individuals with a diagnosis of myocardial infarction/ischaemic stroke, a lower remnant cholesterol of 0.8 mmol L-1 (32 mg dL-1 ) was estimated to reduce recurrent MACE by 20% in secondary prevention. Our data indicate an unmet medical need for secondary prevention in individuals with high nonfasting remnant cholesterol levels.
Collapse
Affiliation(s)
- A Langsted
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - C M Madsen
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - B G Nordestgaard
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
98
|
Wang H, Li H, Zhou Y, Liu J, Wang F, Zhao Q. Pemafibrate Tends to have Better Efficacy in Treating Dyslipidemia than Fenofibrate. Curr Pharm Des 2020; 25:4725-4734. [PMID: 31769360 DOI: 10.2174/1381612825666191126102943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/14/2020] [Indexed: 12/22/2022]
Abstract
AIMS To compare the efficacy of pemafibrate (PF) and fenofibrate (FF) in treating dyslipidemia. METHODS A comprehensive search was performed on the public database to identify relevant randomized controlled trials (RCTs), which compared the effects of PF and FF treatment in lipid parameters among patients with dyslipidemia. Mean difference (MD) and 95% confidence intervals (CI) were pooled for continuous outcomes, whereas odds ratio (OR) and 95% CI were calculated for dichotomous outcomes. RESULTS Three RCTs were included with a total of 744 patients (PF=547 and FF=197). Compared with the FF group (100mg/day), PF group (0.05 to 0.4mg/day) had a better effect on reducing triglycerides (TGs) (MD, -8.66; 95%CI, -10.91 to -6.41), very low-density lipoprotein cholesterol (VLDL-C, MD, -12.19; 95%CI, -15.37 to - 9.01), remnant lipoprotein cholesterol (MD, -13.16; 95%CI, -17.62 to -8.69), apolipoprotein-B48 (ApoB48, MD, -12.74; 95%CI, -17.71 to -7.76) and ApoCIII (MD, -6.25; 95%CI, -11.85 to -0.64). Although a slightly LDL-Cincreasing effect was found in PF-treated group (MD, 3.10; 95%CI, -0.12 to 6.09), the levels of HDL-C (MD, 3.59; 95%CI, 1.65 to 5.53) and ApoAI (MD, 1.60; 95%CI, 0.38 to 2.82) were significantly increased in the PF group. However, no significant difference was found in the level of total cholesterol (MD, 0.01; 95%CI, -1.37 to - 1.39), non-HDL-C (MD, -0.06; 95%CI, -1.75 to 1.63), ApoB (MD, 0.39; 95%CI, -1.37 to 2.15) and ApoAII (MD, 3.31; 95%CI, -1.66 to 8.29) between the two groups. In addition, the incidence of total adverse events (OR, 0.68; 95%CI, 0.53 to 0.86) and adverse drug reactions (OR, 0.36; 95%CI, 0.24 to 0.54) was lower in the PF group than that in the FF group. CONCLUSIONS Pemafibrate tends to have better efficacy in treating dyslipidemia than fenofibrate.
Collapse
Affiliation(s)
- Haizhou Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Haiou Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Yunjiao Zhou
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Jing Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Fan Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| |
Collapse
|
99
|
Nurmohamed NS, Dallinga-Thie GM, Stroes ESG. Targeting apoC-III and ANGPTL3 in the treatment of hypertriglyceridemia. Expert Rev Cardiovasc Ther 2020; 18:355-361. [PMID: 32511037 DOI: 10.1080/14779072.2020.1768848] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION The prevalence of hypertriglyceridemia (HTG) is increasing. Elevated triglyceride (TG) levels are associated with an increased cardiovascular disease (CVD) risk. Moreover, severe HTG results in an elevated risk of pancreatitis, especially in severe HTG with an up to 350-fold increased risk. Both problems emphasize the clinical need for effective TG lowering. AREAS COVERED The purpose of this review is to discuss the currently available therapies and to elaborate the most promising novel therapeutics for TG lowering. EXPERT OPINION Conventional lipid lowering strategies do not efficiently lower plasma TG levels, leaving a residual CVD and pancreatitis risk. Both apolipoprotein C-III (apoC-III) and angiopoietin-like 3 (ANGPTL3) are important regulators in TG-rich lipoprotein (TRL) metabolism. Several novel agents targeting these linchpins have ended phase II/III trials. Volanesorsen targeting apoC-III has shown reductions in plasma TG levels up to 90%. Multiple ANGPLT3 inhibitors (evinacumab, IONIS-ANGPTL3-LRx, ARO-ANG3) effectuate TG reductions up to 70% with concomitant potent reduction in all other apoB containing lipoprotein fractions. We expect these therapeutics to become players in the treatment for (especially) severe HTG in the near future.
Collapse
Affiliation(s)
- N S Nurmohamed
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences , Amsterdam, The Netherlands.,Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences , Amsterdam, The Netherlands
| | - G M Dallinga-Thie
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences , Amsterdam, The Netherlands
| | - E S G Stroes
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences , Amsterdam, The Netherlands
| |
Collapse
|
100
|
Sáez-Orellana F, Octave JN, Pierrot N. Alzheimer's Disease, a Lipid Story: Involvement of Peroxisome Proliferator-Activated Receptor α. Cells 2020; 9:E1215. [PMID: 32422896 PMCID: PMC7290654 DOI: 10.3390/cells9051215] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/10/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in the elderly. Mutations in genes encoding proteins involved in amyloid-β peptide (Aβ) production are responsible for inherited AD cases. The amyloid cascade hypothesis was proposed to explain the pathogeny. Despite the fact that Aβ is considered as the main culprit of the pathology, most clinical trials focusing on Aβ failed and suggested that earlier interventions are needed to influence the course of AD. Therefore, identifying risk factors that predispose to AD is crucial. Among them, the epsilon 4 allele of the apolipoprotein E gene that encodes the major brain lipid carrier and metabolic disorders such as obesity and type 2 diabetes were identified as AD risk factors, suggesting that abnormal lipid metabolism could influence the progression of the disease. Among lipids, fatty acids (FAs) play a fundamental role in proper brain function, including memory. Peroxisome proliferator-activated receptor α (PPARα) is a master metabolic regulator that regulates the catabolism of FA. Several studies report an essential role of PPARα in neuronal function governing synaptic plasticity and cognition. In this review, we explore the implication of lipid metabolism in AD, with a special focus on PPARα and its potential role in AD therapy.
Collapse
Affiliation(s)
- Francisco Sáez-Orellana
- Université Catholique de Louvain, Alzheimer Dementia, Avenue Mounier 53, SSS/IONS/CEMO-Bte B1.53.03, B-1200 Brussels, Belgium; (F.S.-O.); (J.-N.O.)
- Institute of Neuroscience, Alzheimer Dementia, Avenue Mounier 53, SSS/IONS/CEMO-Bte B1.53.03, B-1200 Brussels, Belgium
| | - Jean-Noël Octave
- Université Catholique de Louvain, Alzheimer Dementia, Avenue Mounier 53, SSS/IONS/CEMO-Bte B1.53.03, B-1200 Brussels, Belgium; (F.S.-O.); (J.-N.O.)
- Institute of Neuroscience, Alzheimer Dementia, Avenue Mounier 53, SSS/IONS/CEMO-Bte B1.53.03, B-1200 Brussels, Belgium
| | - Nathalie Pierrot
- Université Catholique de Louvain, Alzheimer Dementia, Avenue Mounier 53, SSS/IONS/CEMO-Bte B1.53.03, B-1200 Brussels, Belgium; (F.S.-O.); (J.-N.O.)
- Institute of Neuroscience, Alzheimer Dementia, Avenue Mounier 53, SSS/IONS/CEMO-Bte B1.53.03, B-1200 Brussels, Belgium
| |
Collapse
|