51
|
Differential effects of partial and complete loss of TREM2 on microglial injury response and tauopathy. Proc Natl Acad Sci U S A 2018; 115:10172-10177. [PMID: 30232263 PMCID: PMC6176614 DOI: 10.1073/pnas.1811411115] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Alzheimer's disease (AD), the most common form of dementia, is characterized by the abnormal accumulation of amyloid plaques and hyperphosphorylated tau aggregates, as well as microgliosis. Hemizygous missense variants in Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) are associated with elevated risk for developing late-onset AD. These variants are hypothesized to result in loss of function, mimicking TREM2 haploinsufficiency. However, the consequences of TREM2 haploinsufficiency on tau pathology and microglial function remain unknown. We report the effects of partial and complete loss of TREM2 on microglial function and tau-associated deficits. In vivo imaging revealed that microglia from aged TREM2-haploinsufficient mice show a greater impairment in their injury response compared with microglia from aged TREM2-KO mice. In transgenic mice expressing mutant human tau, TREM2 haploinsufficiency, but not complete loss of TREM2, increased tau pathology. In addition, whereas complete TREM2 deficiency protected against tau-mediated microglial activation and atrophy, TREM2 haploinsufficiency elevated expression of proinflammatory markers and exacerbated atrophy at a late stage of disease. The differential effects of partial and complete loss of TREM2 on microglial function and tau pathology provide important insights into the critical role of TREM2 in AD pathogenesis.
Collapse
|
52
|
Lack of association between triggering receptor expressed on myeloid cells 2 polymorphism rs75932628 and late-onset Alzheimer's disease in a Chinese Han population. Psychiatr Genet 2018; 28:16-18. [PMID: 29256968 PMCID: PMC5757673 DOI: 10.1097/ypg.0000000000000188] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Recently, several studies have investigated the association between the rare mutation of triggering receptor expressed on myeloid cells 2 (TREM2) gene (rs75932628-T) and the risk of late-onset Alzheimer’s disease (LOAD), but they did not draw the same conclusion. Our aim was to investigate the link between the TREM2 polymorphism and LOAD in the Chinese Han population. We examined 786 patients and 803 controls in this study. The rs75932628 polymorphism was evaluated using high-resolution melting analysis and direct sequencing. rs75932628-T (predicted to cause an R47H substitution) was absent in our cohort. We did not find an association between the rs75932628 single nucleotide polymorphism of TREM2 and LOAD in this study. Thus, rs75932628 is unlikely to be related to LOAD in the Chinese Han population.
Collapse
|
53
|
The role of TREM2 in Alzheimer's disease and other neurodegenerative disorders. Lancet Neurol 2018; 17:721-730. [PMID: 30033062 DOI: 10.1016/s1474-4422(18)30232-1] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease is a genetically complex disorder; rare variants in the triggering receptor expressed on myeloid cells 2 (TREM2) gene have been shown to as much as triple an individual's risk of developing Alzheimer's disease. TREM2 is a transmembrane receptor expressed in cells of the myeloid lineage, and its association with Alzheimer's disease supports the involvement of immune and inflammatory pathways in the cause of the disease, rather than as a consequence of the disease. TREM2 variants associated with Alzheimer's disease induce partial loss of function of the TREM2 protein and alter the behaviour of microglial cells, including their response to amyloid plaques. TREM2 variants have also been shown to cause polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy and frontotemporal dementia. Although the low frequency of TREM2 variants makes it difficult to establish robust genotype-phenotype correlations, such studies are essential to enable a comprehensive understanding of the role of TREM2 in different neurological diseases, with the ultimate goal of developing novel therapeutic approaches.
Collapse
|
54
|
Li JT, Zhang Y. TREM2 regulates innate immunity in Alzheimer's disease. J Neuroinflammation 2018; 15:107. [PMID: 29655369 PMCID: PMC5899410 DOI: 10.1186/s12974-018-1148-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 04/04/2018] [Indexed: 11/10/2022] Open
Abstract
Recent research has shown that the triggering receptor expressed on myeloid cells 2 (TREM2) in microglia is closely related to the pathogenesis of Alzheimer's disease (AD). The mechanism of this relationship, however, remains unclear. TREM2 is part of the TREM family of receptors, which are expressed primarily in myeloid cells, including monocytes, dendritic cells, and microglia. The TREM family members are cell surface glycoproteins with an immunoglobulin-like extracellular domain, a transmembrane region and a short cytoplasmic tail region. The present article reviews the following: (1) the structure, function, and variant site analysis of the Trem2 gene; (2) the metabolism of TREM2 in peripheral blood and cerebrospinal fluid; and (3) the possible underlying mechanism by which TREM2 regulates innate immunity and participates in AD.
Collapse
Affiliation(s)
- Jiang-Tao Li
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, No. 3 Shangyuan Residence, Haidian District, Beijing, 100044, China
| | - Ying Zhang
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, No. 3 Shangyuan Residence, Haidian District, Beijing, 100044, China.
| |
Collapse
|
55
|
Hampel H, Vergallo A, Aguilar LF, Benda N, Broich K, Cuello AC, Cummings J, Dubois B, Federoff HJ, Fiandaca M, Genthon R, Haberkamp M, Karran E, Mapstone M, Perry G, Schneider LS, Welikovitch LA, Woodcock J, Baldacci F, Lista S. Precision pharmacology for Alzheimer’s disease. Pharmacol Res 2018; 130:331-365. [DOI: 10.1016/j.phrs.2018.02.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/11/2018] [Accepted: 02/12/2018] [Indexed: 12/12/2022]
|
56
|
Bittar A, Sengupta U, Kayed R. Prospects for strain-specific immunotherapy in Alzheimer's disease and tauopathies. NPJ Vaccines 2018; 3:9. [PMID: 29507776 PMCID: PMC5829136 DOI: 10.1038/s41541-018-0046-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 12/20/2022] Open
Abstract
With increasing age, as the incidence of Alzheimer's disease is increasing, finding a therapeutic intervention is becoming critically important to either prevent or slow down the progression of the disease. Passive immunotherapy has been demonstrated as a successful way of reducing large aggregates and improving cognition in animal models of both tauopathies and Alzheimer's disease. However, with all the continuous attempts and significant success of immunotherapy in preclinical studies, finding a successful clinical therapy has been a great challenge, possibly indicating a lack of accuracy in targeting the toxic species. Both active and passive immunotherapy approaches in transgenic animals have been demonstrated to have pros and cons. Passive immunotherapy has been favored and many mechanisms have been shown to clear toxic amyloid and tau aggregates and improve memory. These mechanisms may differ depending on the antibodie's' target and administration route. In this regard, deciding on affinity vs. specificity of the antibodies plays a significant role in terms of avoiding the clearance of the physiological forms of the targeted proteins and reducing adverse side effects. In addition, knowing that a single protein can exist in different conformational states, termed as strains, with varying degrees of neurotoxicity and seeding properties, presents an additional level of complexity. Therefore, immunotherapy targeting specifically the toxic strains will aid in developing potential strategies for intervention. Moreover, an approach of combinatorial immunotherapies against different amyloidogenic proteins, at distinct levels of the disease progression, might offer an effective therapy in many neurodegenerative diseases.
Collapse
Affiliation(s)
- Alice Bittar
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555 USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Urmi Sengupta
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555 USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555 USA
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555 USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555 USA
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555 USA
| |
Collapse
|
57
|
Hopperton KE, Mohammad D, Trépanier MO, Giuliano V, Bazinet RP. Markers of microglia in post-mortem brain samples from patients with Alzheimer's disease: a systematic review. Mol Psychiatry 2018; 23:177-198. [PMID: 29230021 PMCID: PMC5794890 DOI: 10.1038/mp.2017.246] [Citation(s) in RCA: 347] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/15/2017] [Accepted: 09/14/2017] [Indexed: 02/07/2023]
Abstract
Neuroinflammation is proposed as one of the mechanisms by which Alzheimer's disease pathology, including amyloid-β plaques, leads to neuronal death and dysfunction. Increases in the expression of markers of microglia, the main neuroinmmune cell, are widely reported in brains from patients with Alzheimer's disease, but the literature has not yet been systematically reviewed to determine whether this is a consistent pathological feature. A systematic search was conducted in Medline, Embase and PsychINFO for articles published up to 23 February 2017. Papers were included if they quantitatively compared microglia markers in post-mortem brain samples from patients with Alzheimer's disease and aged controls without neurological disease. A total of 113 relevant articles were identified. Consistent increases in markers related to activation, such as major histocompatibility complex II (36/43 studies) and cluster of differentiation 68 (17/21 studies), were identified relative to nonneurological aged controls, whereas other common markers that stain both resting and activated microglia, such as ionized calcium-binding adaptor molecule 1 (10/20 studies) and cluster of differentiation 11b (2/5 studies), were not consistently elevated. Studies of ionized calcium-binding adaptor molecule 1 that used cell counts almost uniformly identified no difference relative to control, indicating that increases in activation occurred without an expansion of the total number of microglia. White matter and cerebellum appeared to be more resistant to these increases than other brain regions. Nine studies were identified that included high pathology controls, patients who remained free of dementia despite Alzheimer's disease pathology. The majority (5/9) of these studies reported higher levels of microglial markers in Alzheimer's disease relative to controls, suggesting that these increases are not solely a consequence of Alzheimer's disease pathology. These results show that increased markers of microglia are a consistent feature of Alzheimer's disease, though this seems to be driven primarily by increases in activation-associated markers, as opposed to markers of all microglia.
Collapse
Affiliation(s)
- K E Hopperton
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - D Mohammad
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - M O Trépanier
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - V Giuliano
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - R P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada,Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, FitzGerald Building, 150 College Street, Room 306, Toronto, ON M5S 3E2, Canada. E-mail:
| |
Collapse
|
58
|
Zhang X, Wang W, Li P, Wang X, Ni K. High TREM2 expression correlates with poor prognosis in gastric cancer. Hum Pathol 2018; 72:91-99. [DOI: 10.1016/j.humpath.2017.10.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 12/16/2022]
|
59
|
Carter CJ. Genetic, Transcriptome, Proteomic, and Epidemiological Evidence for Blood-Brain Barrier Disruption and Polymicrobial Brain Invasion as Determinant Factors in Alzheimer's Disease. J Alzheimers Dis Rep 2017; 1:125-157. [PMID: 30480234 PMCID: PMC6159731 DOI: 10.3233/adr-170017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Diverse pathogens are detected in Alzheimer's disease (AD) brains. A bioinformatics survey showed that AD genome-wide association study (GWAS) genes (localized in bone marrow, immune locations and microglia) relate to multiple host/pathogen interactomes (Candida albicans, Cryptococcus neoformans, Bornavirus, Borrelia burgdorferri, cytomegalovirus, Ebola virus, HSV-1, HERV-W, HIV-1, Epstein-Barr, hepatitis C, influenza, Chlamydia pneumoniae, Porphyrymonas gingivalis, Helicobacter pylori, Toxoplasma gondii, Trypanosoma cruzi). These interactomes also relate to the AD hippocampal transcriptome and to plaque or tangle proteins. Upregulated AD hippocampal genes match those upregulated by multiple bacteria, viruses, fungi, or protozoa in immunocompetent cells. AD genes are enriched in GWAS datasets reflecting pathogen diversity, suggesting selection for pathogen resistance, as supported by the old age of AD patients, implying resistance to earlier infections. APOE4 is concentrated in regions of high parasitic burden and protects against childhood tropical infections and hepatitis C. Immune/inflammatory gain of function applies to APOE4, CR1, and TREM2 variants. AD genes are also expressed in the blood-brain barrier (BBB), which is disrupted by AD risk factors (age, alcohol, aluminum, concussion, cerebral hypoperfusion, diabetes, homocysteine, hypercholesterolemia, hypertension, obesity, pesticides, pollution, physical inactivity, sleep disruption, smoking) and by pathogens, directly or via olfactory routes to basal-forebrain BBB control centers. The BBB benefits from statins, NSAIDs, estrogen, melatonin, memantine, and the Mediterranean diet. Polymicrobial involvement is supported by upregulation of bacterial, viral, and fungal sensors/defenders in the AD brain, blood, or cerebrospinal fluid. AD serum amyloid-β autoantibodies may attenuate its antimicrobial effects favoring microbial survival and cerebral invasion leading to activation of neurodestructive immune/inflammatory processes, which may also be augmented by age-related immunosenescence. AD may thus respond to antibiotic, antifungal, or antiviral therapy.
Collapse
|
60
|
Cuello AC. Early and Late CNS Inflammation in Alzheimer's Disease: Two Extremes of a Continuum? Trends Pharmacol Sci 2017; 38:956-966. [PMID: 28867259 DOI: 10.1016/j.tips.2017.07.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 11/16/2022]
Abstract
In 1990 it was reported that individuals receiving NSAIDs (non-steroidal anti-inflammatory drugs) showed a markedly reduced prevalence of Alzheimer's disease (AD) compared to the overall population. Large epidemiological studies corroborated this assertion and provoked numerous prospective AD clinical trials with a variety of NSAIDs, all of which demonstrated lack of efficacy. It is postulated that the explanation for the success of NSAIDS in preventing AD onset when given at preclinical stages, and for their failure when administered after AD clinical presentation, lies in the changing nature of central nervous system (CNS) inflammation in the decades-long continuum of AD pathology. Early disease-aggravating CNS inflammation might start decades before the presentation of severe cognitive impairments or dementia, and the nature of this process will co-evolve with the neuropathological progression from preclinical to clinical AD stages. This early CNS inflammation should be considered a promising therapeutic target as we continue searching for an unequivocal diagnosis of AD preclinical stages.
Collapse
Affiliation(s)
- A Claudio Cuello
- McGill University Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.
| |
Collapse
|
61
|
Jay TR, von Saucken VE, Landreth GE. TREM2 in Neurodegenerative Diseases. Mol Neurodegener 2017; 12:56. [PMID: 28768545 PMCID: PMC5541421 DOI: 10.1186/s13024-017-0197-5] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/20/2017] [Indexed: 12/12/2022] Open
Abstract
TREM2 variants have been identified as risk factors for Alzheimer's disease (AD) and other neurodegenerative diseases (NDDs). Because TREM2 encodes a receptor exclusively expressed on immune cells, identification of these variants conclusively demonstrates that the immune response can play an active role in the pathogenesis of NDDs. These TREM2 variants also confer the highest risk for developing Alzheimer's disease of any risk factor identified in nearly two decades, suggesting that understanding more about TREM2 function could provide key insights into NDD pathology and provide avenues for novel immune-related NDD biomarkers and therapeutics. The expression, signaling and function of TREM2 in NDDs have been extensively investigated in an effort to understand the role of immune function in disease pathogenesis and progression. We provide a comprehensive review of our current understanding of TREM2 biology, including new insights into the regulation of TREM2 expression, and TREM2 signaling and function across NDDs. While many open questions remain, the current body of literature provides clarity on several issues. While it is still often cited that TREM2 expression is decreased by pro-inflammatory stimuli, it is now clear that this is true in vitro, but inflammatory stimuli in vivo almost universally increase TREM2 expression. Likewise, while TREM2 function is classically described as promoting an anti-inflammatory phenotype, more than half of published studies demonstrate a pro-inflammatory role for TREM2, suggesting that its role in inflammation is much more complex. Finally, these components of TREM2 biology are applied to a discussion of how TREM2 impacts NDD pathologies and the latest assessment of how these findings might be applied to immune-directed clinical biomarkers and therapeutics.
Collapse
Affiliation(s)
- Taylor R. Jay
- Department of Neurosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106 USA
| | - Victoria E. von Saucken
- Department of Neurosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106 USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W 15th Street, Indianapolis, IN 46202 USA
| | - Gary E. Landreth
- Department of Neurosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106 USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W 15th Street, Indianapolis, IN 46202 USA
| |
Collapse
|
62
|
Millan MJ. Linking deregulation of non-coding RNA to the core pathophysiology of Alzheimer's disease: An integrative review. Prog Neurobiol 2017; 156:1-68. [PMID: 28322921 DOI: 10.1016/j.pneurobio.2017.03.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 03/09/2017] [Accepted: 03/09/2017] [Indexed: 02/06/2023]
Abstract
The human genome encodes a vast repertoire of protein non-coding RNAs (ncRNA), some specific to the brain. MicroRNAs, which interfere with the translation of target mRNAs, are of particular interest since their deregulation has been implicated in neurodegenerative disorders like Alzheimer's disease (AD). However, it remains challenging to link the complex body of observations on miRNAs and AD into a coherent framework. Using extensive graphical support, this article discusses how a diverse panoply of miRNAs convergently and divergently impact (and are impacted by) core pathophysiological processes underlying AD: neuroinflammation and oxidative stress; aberrant generation of β-amyloid-42 (Aβ42); anomalies in the production, cleavage and post-translational marking of Tau; impaired clearance of Aβ42 and Tau; perturbation of axonal organisation; disruption of synaptic plasticity; endoplasmic reticulum stress and the unfolded protein response; mitochondrial dysfunction; aberrant induction of cell cycle re-entry; and apoptotic loss of neurons. Intriguingly, some classes of miRNA provoke these cellular anomalies, whereas others act in a counter-regulatory, protective mode. Moreover, changes in levels of certain species of miRNA are a consequence of the above-mentioned anomalies. In addition to miRNAs, circular RNAs, piRNAs, long non-coding RNAs and other types of ncRNA are being increasingly implicated in AD. Overall, a complex mesh of deregulated and multi-tasking ncRNAs reciprocally interacts with core pathophysiological mechanisms underlying AD. Alterations in ncRNAs can be detected in CSF and the circulation as well as the brain and are showing promise as biomarkers, with the ultimate goal clinical exploitation as targets for novel modes of symptomatic and course-altering therapy.
Collapse
Affiliation(s)
- Mark J Millan
- Centre for Therapeutic Innovation in Neuropsychiatry, institut de recherche Servier, 125 chemin de ronde, 78290 Croissy sur Seine, France.
| |
Collapse
|
63
|
Zuroff L, Daley D, Black KL, Koronyo-Hamaoui M. Clearance of cerebral Aβ in Alzheimer's disease: reassessing the role of microglia and monocytes. Cell Mol Life Sci 2017; 74:2167-2201. [PMID: 28197669 PMCID: PMC5425508 DOI: 10.1007/s00018-017-2463-7] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 01/07/2017] [Accepted: 01/11/2017] [Indexed: 01/03/2023]
Abstract
Deficiency in cerebral amyloid β-protein (Aβ) clearance is implicated in the pathogenesis of the common late-onset forms of Alzheimer’s disease (AD). Accumulation of misfolded Aβ in the brain is believed to be a net result of imbalance between its production and removal. This in turn may trigger neuroinflammation, progressive synaptic loss, and ultimately cognitive decline. Clearance of cerebral Aβ is a complex process mediated by various systems and cell types, including vascular transport across the blood–brain barrier, glymphatic drainage, and engulfment and degradation by resident microglia and infiltrating innate immune cells. Recent studies have highlighted a new, unexpected role for peripheral monocytes and macrophages in restricting cerebral Aβ fibrils, and possibly soluble oligomers. In AD transgenic (ADtg) mice, monocyte ablation or inhibition of their migration into the brain exacerbated Aβ pathology, while blood enrichment with monocytes and their increased recruitment to plaque lesion sites greatly diminished Aβ burden. Profound neuroprotective effects in ADtg mice were further achieved through increased cerebral recruitment of myelomonocytes overexpressing Aβ-degrading enzymes. This review summarizes the literature on cellular and molecular mechanisms of cerebral Aβ clearance with an emphasis on the role of peripheral monocytes and macrophages in Aβ removal.
Collapse
Affiliation(s)
- Leah Zuroff
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 127 S. San Vicente, AHSP A8115, Los Angeles, CA, 90048, USA.,Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David Daley
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 127 S. San Vicente, AHSP A8115, Los Angeles, CA, 90048, USA
| | - Keith L Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 127 S. San Vicente, AHSP A8115, Los Angeles, CA, 90048, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 127 S. San Vicente, AHSP A8115, Los Angeles, CA, 90048, USA. .,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| |
Collapse
|
64
|
The APOE ε4 genotype modulates CSF YKL-40 levels and their structural brain correlates in the continuum of Alzheimer's disease but not those of sTREM2. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2016; 6:50-59. [PMID: 28149943 PMCID: PMC5266482 DOI: 10.1016/j.dadm.2016.12.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Among other metabolic functions, the apolipoprotein E (APOE) plays a crucial role in neuroinflammation. We aimed at assessing whether APOE ε4 modulates levels of glial cerebrospinal fluid (CSF) biomarkers and their structural cerebral correlates along the continuum of Alzheimer's disease (AD). METHODS Brain magnetic resonance imaging (MRI) scans were acquired in 110 participants (49 control; 19 preclinical; 27 mild cognitive impairment [MCI] due to AD; 15 mild AD dementia) and CSF concentrations of YKL-40 and sTREM2 were determined. Differences in CSF biomarker concentrations and interactions in their association with gray-matter volume according to APOE ε4 status were sought after. RESULTS Preclinical and MCI carriers showed higher YKL-40 levels. There was a significant interaction in the association between YKL-40 levels and gray-matter volume according to ε4 status. No similar effects could be detected for sTREM2 levels. DISCUSSION Our findings are indicative of an increased astroglial activation in APOE ε4 carriers while both groups displayed similar levels of CSF AD core biomarkers.
Collapse
|
65
|
Ma L, Allen M, Sakae N, Ertekin-Taner N, Graff-Radford NR, Dickson DW, Younkin SG, Sevlever D. Expression and processing analyses of wild type and p.R47H TREM2 variant in Alzheimer's disease brains. Mol Neurodegener 2016; 11:72. [PMID: 27887626 PMCID: PMC5124229 DOI: 10.1186/s13024-016-0137-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 11/16/2016] [Indexed: 12/17/2022] Open
Abstract
Background Genetic analyses showed that the triggering receptor expressed in myeloid cells 2 (TREM2) p.R47H variant increases the risk for Alzheimer’s disease (AD). The question of whether the p.R47H mutation affects expression or function of the receptor remains unanswered. To address this question we quantified mRNA and analyzed protein profiles of WT and p.R47H TREM2 in human brains. Methods Quantitative real-time PCR (qPCR) was performed using 2 sets of primers one that detects all TREM2 mRNA isoforms and one specific for the alternative spliced isoform (TREM2alt) that encodes for the extracellular domain (soluble TREM2). Because in the brain TREM2 is expressed primarily in microglial cells, we also assessed the levels of IBA1 to control for microglial variability across samples. For TREM2 protein quantitation and N-glycosylation processing, RIPA brain extracts were analyzed by Western blot before and after EndoH and PNGaseF treatments. Results We identified statistically significant increased levels of TREM2 transcripts in the temporal cortex of AD subjects when compared with controls; TREM2alt was likewise higher in AD cases, but was not significant after adjustment for covariates. Quantitative analysis of TREM2 protein confirmed qPCR results that showed higher levels in AD than in control brains. Among AD subjects, we observed a trend towards higher mRNA and protein TREM2 levels in carriers of the p.R47H risk allele. Analysis of individual TREM2 species found no difference in the relative amounts of mature and immature species, and carboxyl terminal fragments between non carriers and p.R47H samples. Furthermore, TREM2 species from either non carriers or p.R47H brains were equally susceptible to EndoH and PNGaseF treatments. Conclusions Our results suggest that TREM2 expression is increased in AD. Furthermore, we provide evidence indicating that p.R47H mutation does not affect the levels of TREM2 either directly by altering expression or indirectly by affecting processing of the protein. Our data support previous findings that suggest that p.R47H variant affects TREM2 function by altering binding properties of the receptor rather than expression.
Collapse
Affiliation(s)
- Li Ma
- Department of Neuroscience, Mayo Clinic, Jacksonville, 32224, FL, USA
| | - Mariet Allen
- Department of Neuroscience, Mayo Clinic, Jacksonville, 32224, FL, USA
| | - Nobutaka Sakae
- Department of Neuroscience, Mayo Clinic, Jacksonville, 32224, FL, USA
| | - Nilufer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, 32224, FL, USA.,Department of Neurology, Mayo Clinic, Jacksonville, 32224, FL, USA
| | | | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, 32224, FL, USA
| | - Steven G Younkin
- Department of Neuroscience, Mayo Clinic, Jacksonville, 32224, FL, USA
| | - Daniel Sevlever
- Department of Neuroscience, Mayo Clinic, Jacksonville, 32224, FL, USA.
| |
Collapse
|
66
|
Wang M, Roussos P, McKenzie A, Zhou X, Kajiwara Y, Brennand KJ, De Luca GC, Crary JF, Casaccia P, Buxbaum JD, Ehrlich M, Gandy S, Goate A, Katsel P, Schadt E, Haroutunian V, Zhang B. Integrative network analysis of nineteen brain regions identifies molecular signatures and networks underlying selective regional vulnerability to Alzheimer's disease. Genome Med 2016; 8:104. [PMID: 27799057 PMCID: PMC5088659 DOI: 10.1186/s13073-016-0355-3] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/14/2016] [Indexed: 11/25/2022] Open
Abstract
Background Alzheimer’s disease (AD) is the most common form of dementia, characterized by progressive cognitive impairment and neurodegeneration. However, despite extensive clinical and genomic studies, the molecular basis of AD development and progression remains elusive. Methods To elucidate molecular systems associated with AD, we developed a large scale gene expression dataset from 1053 postmortem brain samples across 19 cortical regions of 125 individuals with a severity spectrum of dementia and neuropathology of AD. We excluded brain specimens that evidenced neuropathology other than that characteristic of AD. For the first time, we performed a pan-cortical brain region genomic analysis, characterizing the gene expression changes associated with a measure of dementia severity and multiple measures of the severity of neuropathological lesions associated with AD (neuritic plaques and neurofibrillary tangles) and constructing region-specific co-expression networks. We rank-ordered 44,692 gene probesets, 1558 co-expressed gene modules and 19 brain regions based upon their association with the disease traits. Results The neurobiological pathways identified through these analyses included actin cytoskeleton, axon guidance, and nervous system development. Using public human brain single-cell RNA-sequencing data, we computed brain cell type-specific marker genes for human and determined that many of the abnormally expressed gene signatures and network modules were specific to oligodendrocytes, astrocytes, and neurons. Analysis based on disease severity suggested that: many of the gene expression changes, including those of oligodendrocytes, occurred early in the progression of disease, making them potential translational/treatment development targets and unlikely to be mere bystander result of degeneration; several modules were closely linked to cognitive compromise with lesser association with traditional measures of neuropathology. The brain regional analyses identified temporal lobe gyri as sites associated with the greatest and earliest gene expression abnormalities. Conclusions This transcriptomic network analysis of 19 brain regions provides a comprehensive assessment of the critical molecular pathways associated with AD pathology and offers new insights into molecular mechanisms underlying selective regional vulnerability to AD at different stages of the progression of cognitive compromise and development of the canonical neuropathological lesions of AD. Electronic supplementary material The online version of this article (doi:10.1186/s13073-016-0355-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 1470 Madison Avenue, New York, NY, 10029, USA.,Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Panos Roussos
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 1470 Madison Avenue, New York, NY, 10029, USA.,Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,Psychiatry, JJ Peters VA Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
| | - Andrew McKenzie
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 1470 Madison Avenue, New York, NY, 10029, USA.,Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 1470 Madison Avenue, New York, NY, 10029, USA.,Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Yuji Kajiwara
- Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Kristen J Brennand
- Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Gabriele C De Luca
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - John F Crary
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,Department of Pathology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Patrizia Casaccia
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 1470 Madison Avenue, New York, NY, 10029, USA.,Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Joseph D Buxbaum
- Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Michelle Ehrlich
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY, 10029, USA.,Departments of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY, 10029, USA
| | - Sam Gandy
- Psychiatry, JJ Peters VA Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA.,Departments of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY, 10029, USA.,The Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY, 10029, USA
| | - Alison Goate
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 1470 Madison Avenue, New York, NY, 10029, USA.,Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,Departments of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY, 10029, USA.,The Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY, 10029, USA.,Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY, 10029, USA
| | - Pavel Katsel
- Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,Psychiatry, JJ Peters VA Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
| | - Eric Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 1470 Madison Avenue, New York, NY, 10029, USA.,Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Vahram Haroutunian
- Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Psychiatry, JJ Peters VA Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA. .,Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,The Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY, 10029, USA.
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 1470 Madison Avenue, New York, NY, 10029, USA. .,Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY, 10029, USA.
| |
Collapse
|
67
|
Cheng J, Guo X, Zhang T, Zhong L, Bu G, Chen X. TREMs in Alzheimer's disease: Genetic and clinical investigations. Clin Chim Acta 2016; 463:88-95. [PMID: 27769848 DOI: 10.1016/j.cca.2016.10.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/16/2016] [Accepted: 10/17/2016] [Indexed: 02/07/2023]
Abstract
Triggering receptor expressed on myeloid cells (TREMs) receptors constitute a family modulators in human innate immunity system that encode by a gene cluster. Rare variants in TREM2 were reported to be associated with significant Alzheimer's disease (AD) risk. However, inconsistent results were also reported in some studies of Non-European descents. Recently, the other TREM family members are also considered to involve in AD and cerebrospinal fluid (CSF) soluble form of TREM2 (sTREM2) levels has also been associated with respond to progression of disease. In this review, we converged the data of genetic and clinical investigations to identify the clearer role of TREMs in AD. Here, comprehensively analyze of multidisciplinary fields highlights the contribution of TREMs locus to AD development.
Collapse
Affiliation(s)
- Jia Cheng
- Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China.
| | - XiaoFeng Guo
- Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China
| | - Tian Zhang
- Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China
| | - Li Zhong
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, Fujian, China
| | - GuoJun Bu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, Fujian, China; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - XiaoFen Chen
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
68
|
Dá Mesquita S, Ferreira AC, Sousa JC, Correia-Neves M, Sousa N, Marques F. Insights on the pathophysiology of Alzheimer's disease: The crosstalk between amyloid pathology, neuroinflammation and the peripheral immune system. Neurosci Biobehav Rev 2016; 68:547-562. [PMID: 27328788 DOI: 10.1016/j.neubiorev.2016.06.014] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 06/09/2016] [Accepted: 06/14/2016] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, whose prevalence is growing along with the increased life expectancy. Although the accumulation and deposition of amyloid beta (Aβ) peptides in the brain is viewed as one of the pathological hallmarks of AD and underlies, at least in part, brain cell dysfunction and behavior alterations, the etiology of this neurodegenerative disease is still poorly understood. Noticeably, increased amyloid load is accompanied by marked inflammatory alterations, both at the level of the brain parenchyma and at the barriers of the brain. However, it is debatable whether the neuroinflammation observed in aging and in AD, together with alterations in the peripheral immune system, are responsible for increased amyloidogenesis, decreased clearance of Aβ out of the brain and/or the marked deficits in memory and cognition manifested by AD patients. Herein, we scrutinize some important traits of the pathophysiology of aging and AD, focusing on the interplay between the amyloidogenic pathway, neuroinflammation and the peripheral immune system.
Collapse
Affiliation(s)
- Sandro Dá Mesquita
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimaraes, Portugal
| | - Ana Catarina Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimaraes, Portugal
| | - João Carlos Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimaraes, Portugal
| | - Margarida Correia-Neves
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimaraes, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimaraes, Portugal
| | - Fernanda Marques
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimaraes, Portugal.
| |
Collapse
|
69
|
Upregulation of PRDM5 Is Associated with Astrocyte Proliferation and Neuronal Apoptosis Caused by Lipopolysaccharide. J Mol Neurosci 2016; 59:146-57. [PMID: 27074744 DOI: 10.1007/s12031-016-0744-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 03/22/2016] [Indexed: 12/19/2022]
|
70
|
GU XINYI, CAI ZHENGXU, CAI MING, LIU KUN, LIU DAN, ZHANG QINSONG, TAN JING, MA QIANG. Protective effect of paeoniflorin on inflammation and apoptosis in the cerebral cortex of a transgenic mouse model of Alzheimer's disease. Mol Med Rep 2016; 13:2247-52. [DOI: 10.3892/mmr.2016.4805] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 11/19/2015] [Indexed: 11/06/2022] Open
|
71
|
Liu G, Liu Y, Jiang Q, Jiang Y, Feng R, Zhang L, Chen Z, Li K, Liu J. Convergent Genetic and Expression Datasets Highlight TREM2 in Parkinson’s Disease Susceptibility. Mol Neurobiol 2015; 53:4931-8. [PMID: 26365049 DOI: 10.1007/s12035-015-9416-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/01/2015] [Indexed: 10/23/2022]
|
72
|
Rosenthal SL, Bamne MN, Wang X, Berman S, Snitz BE, Klunk WE, Sweet RA, Demirci FY, Lopez OL, Kamboh MI. More evidence for association of a rare TREM2 mutation (R47H) with Alzheimer's disease risk. Neurobiol Aging 2015; 36:2443.e21-6. [PMID: 26058841 PMCID: PMC4465085 DOI: 10.1016/j.neurobiolaging.2015.04.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/19/2015] [Indexed: 01/22/2023]
Abstract
Over 20 risk loci have been identified for late-onset Alzheimer's disease (LOAD), most of which display relatively small effect sizes. Recently, a rare missense (R47H) variant, rs75932628 in TREM2, has been shown to mediate LOAD risk substantially in Icelandic and Caucasian populations. Here, we present more evidence for the association of the R47H with LOAD risk in a Caucasian population comprising 4567 LOAD cases and controls. Our results show that carriers of the R47H variant have a significantly increased risk for LOAD (odds ratio = 7.40, p = 3.66E-06). In addition to Alzheimer's disease risk, we also examined the association of R47H with Alzheimer's disease-related phenotypes, including age-at-onset, psychosis, and amyloid deposition but found no significant association. Our results corroborate those of other studies implicating TREM2 as an LOAD risk locus and indicate the need to determine its biological role in the context of neurodegeneration.
Collapse
Affiliation(s)
- Samantha L Rosenthal
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mikhil N Bamne
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xingbin Wang
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sarah Berman
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beth E Snitz
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - William E Klunk
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert A Sweet
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; VISN 4 Mental Illness Research, Education and Clinical Center (MIRECC), VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - F Yesim Demirci
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Oscar L Lopez
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - M Ilyas Kamboh
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
73
|
Lu Y, Liu W, Wang X. TREM2 variants and risk of Alzheimer's disease: a meta-analysis. Neurol Sci 2015; 36:1881-8. [PMID: 26037549 DOI: 10.1007/s10072-015-2274-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/28/2015] [Indexed: 02/08/2023]
Abstract
Recent studies show that heterozygous variant of triggering receptor expressed on myeloid cells 2 (TREM2) increase the risk of Alzheimer's disease (AD) but with inconclusive results. Here, we conducted a meta-analysis to summarize and clarify the association between TREM2 variants and AD, and examined the relationship between TREM2 genetic variant and the etiology of AD. Relevant case-control studies were retrieved and collected according to established inclusion criteria. Odds ratio (OR) and 95% confidence interval (95% CI) were used to estimate the associations between three TREM2 variants (rs75932628, rs104894002, and rs143332484) and AD. In overall meta-analysis, the summary ORs for rs75932628, rs104894002, and rs143332484 were 2.70 [95% CI: 2.24, 3.24; P < 0.001], 7.21 (95% CI: 1.28, 40.78; P = 0.025), and 1.65 (95% CI: 1.24, 2.21; P = 0.001), respectively, indicating that the TREM2 rs75932628, rs104894002, and rs143332484 may contribute to AD risk. However, sensitivity analysis showed that the results of rs104894002 and rs143332484 should be interpreted with caution, and larger sample size, particularly in different ethnicities, are needed to validate the two variants. The current meta-analysis demonstrates that TREM2 is a candidate gene for AD susceptibility, and TREM2 variant rs75932628 may be a risk factor for AD.
Collapse
Affiliation(s)
- Yanjun Lu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Liu
- Department of Public Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiong Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|