51
|
Zaslansky R, Ben-Nun O, Ben-Shitrit S, Ullmann Y, Kopf A, Stein C. A randomized, controlled, clinical pilot study assessing the analgesic effect of morphine applied topically onto split-thickness skin wounds. ACTA ACUST UNITED AC 2014; 66:1559-66. [PMID: 24942055 DOI: 10.1111/jphp.12284] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 05/15/2014] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To assess the effect of an opioid administered topically onto a standardized skin wound in patients without significant comorbidity. Findings to date are contradictory, often obtained from multimorbid patients with wounds lacking uniformity. METHODS Forty-four patients undergoing surgery for skin grafting were randomly assigned to receive morphine (0.25, 0.75 or 1.25 mg/100 cm(2) wound size) in hydroxyethylcellulose gel or placebo applied onto the excised split-thickness donor wound at the end of surgery. Pain, supplementary systemic opioids and adverse effects were assessed during the first 24 h after application. Healing was examined when the dressings were removed. KEY FINDINGS Morphine doses ranged from 0.25 to 5.4 mg (mean 1.93 ± standard deviation 1.34 mg). No differences in pain scores or use of supplementary analgesics were found between the groups. Serious adverse effects did not occur; healing was not impaired. Large intragroup variability was observed for pain scores, wound sizes and supplementary analgesia. CONCLUSIONS Patients treated with topically applied morphine gel onto standardized skin wounds did not report lower pain scores compared with placebo-treated patients. Larger groups would be required to arrive at definitive conclusions. The split-thickness skin graft model can be used for future research.
Collapse
Affiliation(s)
- Ruth Zaslansky
- Department of Anesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
52
|
Development of an oral mucosa model to study host-microbiome interactions during wound healing. Appl Microbiol Biotechnol 2014; 98:6831-46. [PMID: 24917376 DOI: 10.1007/s00253-014-5841-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 05/14/2014] [Accepted: 05/16/2014] [Indexed: 12/22/2022]
Abstract
Crosstalk between the human host and its microbiota is reported to influence various diseases such as mucositis. Fundamental research in this area is however complicated by the time frame restrictions during which host-microbe interactions can be studied in vitro. The model proposed in this paper, consisting of an oral epithelium and biofilm, can be used to study microbe-host crosstalk in vitro in non-infectious conditions up to 72 h. Microbiota derived from oral swabs were cultured on an agar/mucin layer and challenged with monolayers of keratinocytes grown on plastic or collagen type I layers embedded with fibroblasts. The overall microbial biofilm composition in terms of diversity remained representative for the oral microbiome, whilst the epithelial cell morphology and viability were unaffected. Applying the model to investigate wound healing revealed a reduced healing of 30 % in the presence of microbiota, which was not caused by a reduction of the proliferation index (52.1-61.5) or a significantly increased number of apoptotic (1-1.13) or necrotic (32-30.5 %) cells. Since the model allows the separate study of the microbial and cellular exometabolome, the biofilm and epithelial characteristics after co-culturing, it is applicable for investigations within fundamental research and for the discovery and development of agents that promote wound healing.
Collapse
|
53
|
Abstract
Age-related changes in skin contribute to impaired wound healing after surgical procedures. Changes in skin with age include decline in thickness and composition, a decrease in the number of most cell types, and diminished microcirculation. The microcirculation provides tissue perfusion, fluid homeostasis, and delivery of oxygen and other nutrients. It also controls temperature and the inflammatory response. Surgical incisions cause further disruption of the microvasculature of aged skin. Perioperative management can be modified to minimize insults to aged tissues. Judicious use of fluids, maintenance of normal body temperature, pain control, and increased tissue oxygen tension are examples of adjustable variables that support the microcirculation. Anesthetic agents influence the microcirculation of a combination of effects on cardiac output, arterial pressure, and local microvascular changes. The authors examined the role of anesthetic management in optimizing the microcirculation and potentially improving postoperative wound repair in older persons.
Collapse
|
54
|
Astashkina A, Grainger DW. Critical analysis of 3-D organoid in vitro cell culture models for high-throughput drug candidate toxicity assessments. Adv Drug Deliv Rev 2014; 69-70:1-18. [PMID: 24613390 DOI: 10.1016/j.addr.2014.02.008] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 02/14/2014] [Accepted: 02/18/2014] [Indexed: 12/18/2022]
Abstract
Drug failure due to toxicity indicators remains among the primary reasons for staggering drug attrition rates during clinical studies and post-marketing surveillance. Broader validation and use of next-generation 3-D improved cell culture models are expected to improve predictive power and effectiveness of drug toxicological predictions. However, after decades of promising research significant gaps remain in our collective ability to extract quality human toxicity information from in vitro data using 3-D cell and tissue models. Issues, challenges and future directions for the field to improve drug assay predictive power and reliability of 3-D models are reviewed.
Collapse
|
55
|
Mathes SH, Ruffner H, Graf-Hausner U. The use of skin models in drug development. Adv Drug Deliv Rev 2014; 69-70:81-102. [PMID: 24378581 DOI: 10.1016/j.addr.2013.12.006] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 12/10/2013] [Accepted: 12/17/2013] [Indexed: 12/12/2022]
Abstract
Three dimensional (3D) tissue models of the human skin are probably the most developed and understood in vitro engineered constructs. The motivation to accomplish organotypic structures was driven by the clinics to enable transplantation of in vitro grown tissue substitutes and by the cosmetics industry as alternative test substrates in order to replace animal models. Today a huge variety of 3D human skin models exist, covering a multitude of scientific and/or technical demands. This review summarizes and discusses different approaches of skin model development and sets them into the context of drug development. Although human skin models have become indispensable for the cosmetics industry, they have not yet started their triumphal procession in pharmaceutical research and development. For drug development these tissue models may be of particular interest for a) systemically acting drugs applied on the skin, and b) drugs acting at the site of application in the case of skin diseases or disorders. Although quite a broad spectrum of models covering different aspects of the skin as a biologically acting surface exists, these are most often single stand-alone approaches. In order to enable the comprehensive application into drug development processes, the approaches have to be synchronized to allow a cross-over comparison. Besides the development of biological relevant models, other issues are not less important in the context of drug development: standardized production procedures, process automation, establishment of significant analytical methods, and data correlation. For the successful routine use of engineered human skin models in drug development, major requirements were defined. If these requirements can be accomplished in the next few years, human organotypic skin models will become indispensable for drug development, too.
Collapse
Affiliation(s)
- Stephanie H Mathes
- Institute of Chemistry and Biological Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820 Waedenswil, Switzerland
| | - Heinz Ruffner
- Developmental and Molecular Pathways (DMP), Novartis Institutes for BioMedical Research (NIBR), Fabrikstrasse 22, 4056 Basel, Switzerland
| | - Ursula Graf-Hausner
- Institute of Chemistry and Biological Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820 Waedenswil, Switzerland.
| |
Collapse
|
56
|
Ali-von Laue C, Zoschke C, Do N, Lehnen D, Küchler S, Mehnert W, Blaschke T, Kramer KD, Plendl J, Weindl G, Korting HC, Hoeller Obrigkeit D, Merk HF, Schäfer-Korting M. Improving topical non-melanoma skin cancer treatment: In vitro efficacy of a novel guanosine-analog phosphonate. Skin Pharmacol Physiol 2014; 27:173. [PMID: 24503861 DOI: 10.1159/000354118] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 07/01/2013] [Indexed: 11/19/2022]
Abstract
Actinic keratosis, a frequent carcinoma in situ of non-melanoma skin cancer (NMSC), can transform into life-threatening cutaneous squamous cell carcinoma. Current treatment is limited due to low complete clearance rates and asks for novel therapeutic concepts; the novel purine nucleotide analogue OxBu may be an option. In order to enhance skin penetration, solid lipid nanoparticles (SLN, 136-156 nm) were produced with an OxBu entrapment efficiency of 96.5 ± 0.1%. For improved preclinical evaluation, we combined tissue engineering with clinically used keratin-18 quantification. Three doses of 10(-3) mol/l OxBu, dissolved in phosphate-buffered saline as well as loaded to SLN, were effective on reconstructed NMSC. Tumour response and apoptosis induction were evaluated by an increase in caspase-cleaved fragment of keratin-18, caspase-7 activation as well as by reduced expression of matrix metallopeptidase-2 and Ki-67. OxBu efficacy was superior to equimolar 5-fluorouracil solution, and thus the drug should be subjected to the next step in preclinical evaluation.
Collapse
Affiliation(s)
- C Ali-von Laue
- Institute for Pharmacy, Freie Universität Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Alépée N, Bahinski A, Daneshian M, De Wever B, Fritsche E, Goldberg A, Hansmann J, Hartung T, Haycock J, Hogberg HT, Hoelting L, Kelm JM, Kadereit S, McVey E, Landsiedel R, Leist M, Lübberstedt M, Noor F, Pellevoisin C, Petersohn D, Pfannenbecker U, Reisinger K, Ramirez T, Rothen-Rutishauser B, Schäfer-Korting M, Zeilinger K, Zurich MG. State-of-the-art of 3D cultures (organs-on-a-chip) in safety testing and pathophysiology. ALTEX 2014; 31:441-77. [PMID: 25027500 PMCID: PMC4783151 DOI: 10.14573/altex.1406111] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 06/30/2014] [Indexed: 02/02/2023]
Abstract
Integrated approaches using different in vitro methods in combination with bioinformatics can (i) increase the success rate and speed of drug development; (ii) improve the accuracy of toxicological risk assessment; and (iii) increase our understanding of disease. Three-dimensional (3D) cell culture models are important building blocks of this strategy which has emerged during the last years. The majority of these models are organotypic, i.e., they aim to reproduce major functions of an organ or organ system. This implies in many cases that more than one cell type forms the 3D structure, and often matrix elements play an important role. This review summarizes the state of the art concerning commonalities of the different models. For instance, the theory of mass transport/metabolite exchange in 3D systems and the special analytical requirements for test endpoints in organotypic cultures are discussed in detail. In the next part, 3D model systems for selected organs--liver, lung, skin, brain--are presented and characterized in dedicated chapters. Also, 3D approaches to the modeling of tumors are presented and discussed. All chapters give a historical background, illustrate the large variety of approaches, and highlight up- and downsides as well as specific requirements. Moreover, they refer to the application in disease modeling, drug discovery and safety assessment. Finally, consensus recommendations indicate a roadmap for the successful implementation of 3D models in routine screening. It is expected that the use of such models will accelerate progress by reducing error rates and wrong predictions from compound testing.
Collapse
Affiliation(s)
| | - Anthony Bahinski
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, USA
| | - Mardas Daneshian
- Center for Alternatives to Animal Testing – Europe (CAAT-Europe), University of Konstanz, Konstanz, Germany
| | | | - Ellen Fritsche
- Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Alan Goldberg
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Bloomberg School of Public Health, Baltimore, USA
| | - Jan Hansmann
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Thomas Hartung
- Center for Alternatives to Animal Testing – Europe (CAAT-Europe), University of Konstanz, Konstanz, Germany,Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Bloomberg School of Public Health, Baltimore, USA
| | - John Haycock
- Department of Materials Science of Engineering, University of Sheffield, Sheffield, UK
| | - Helena T. Hogberg
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Bloomberg School of Public Health, Baltimore, USA
| | - Lisa Hoelting
- Doerenkamp-Zbinden Chair of in vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | | | - Suzanne Kadereit
- Doerenkamp-Zbinden Chair of in vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | - Emily McVey
- Board for the Authorization of Plant Protection Products and Biocides, Wageningen, The Netherlands
| | | | - Marcel Leist
- Center for Alternatives to Animal Testing – Europe (CAAT-Europe), University of Konstanz, Konstanz, Germany,Doerenkamp-Zbinden Chair of in vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | - Marc Lübberstedt
- Bioreactor Group, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Campus Virchow-Klinikum, Berlin, Germany
| | - Fozia Noor
- Biochemical Engineering, Saarland University, Saarbruecken, Germany
| | | | | | | | | | - Tzutzuy Ramirez
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen, Germany
| | | | - Monika Schäfer-Korting
- Institute for Pharmacy (Pharmacology and Toxicology), Freie Universität Berlin, Berlin, Germany
| | - Katrin Zeilinger
- Bioreactor Group, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Campus Virchow-Klinikum, Berlin, Germany
| | - Marie-Gabriele Zurich
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland,Swiss Center for Applied Human Toxicology (SCAHT), University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
58
|
Abstract
INTRODUCTION Centrally acting opioids are well established in the treatment of acute, surgical and cancer pain. However, their use in chronic noncancer pain (CNCP) is controversial because of side effects such as tolerance, somnolence, respiratory depression, confusion, constipation and addiction. Chronic arthritis and other musculoskeletal diseases are among the leading causes of CNCP. AREAS COVERED This manuscript will discuss the role of conventional opioids in chronic arthritis. In addition, future developments and strategies exploiting peripheral effects of opioids on pain and inflammation will be outlined. EXPERT OPINION Aims in drug development include the design of peripherally restricted opioid agonists, selective targeting of endogenous opioids to sites of painful injury and the augmentation of peripheral ligand and receptor synthesis, for example, by gene therapy. Although a large number of peripherally acting opioid compounds have been developed, clinical Phase III studies have not been published so far. Another strategy is to augment the effects of endogenously released opioid peptides by the inhibition of their degrading enzymes. Technology-oriented research is needed to find novel ways of peripheral restriction of opioids. Such analgesics would be desirable for their lack of central side effects and of adverse effects typical of nonsteroidal anti-inflammatory drugs (gastrointestinal ulcers, bleeding, myocardial infarction and stroke).
Collapse
Affiliation(s)
- Christoph Stein
- Freie Universitaet Berlin, Charite Campus Benjamin Franklin, Department of Anaesthesiology and Critical Care Medicine , Berlin , Germany
| | | |
Collapse
|
59
|
Zhang M, Li H, Ma H, Qin J. A simple microfluidic strategy for cell migration assay in an in vitro wound-healing model. Wound Repair Regen 2013; 21:897-903. [DOI: 10.1111/wrr.12106] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 07/25/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Min Zhang
- Department of Biotechnology; Dalian Institute of Chemical Physics; Chinese Academy of Science; Dalian Liaoning China
| | - Hongjing Li
- Department of Orthopedics; The First Affiliated Hospital of Dalian Medical University; Dalian Liaoning China
| | - Huipeng Ma
- College of Medical Laboratory; Dalian Medical University; Dalian Liaoning China
| | - Jianhua Qin
- Department of Biotechnology; Dalian Institute of Chemical Physics; Chinese Academy of Science; Dalian Liaoning China
| |
Collapse
|
60
|
Charbaji N, Rosenthal P, Schäfer-Korting M, Küchler S. Cytoprotective effects of opioids on irradiated oral epithelial cells. Wound Repair Regen 2013; 21:883-9. [DOI: 10.1111/wrr.12115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 08/28/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Nada Charbaji
- Institute for Pharmacy, Pharmacology and Toxicology; Freie University Berlin; Berlin Germany
| | - Peter Rosenthal
- Clinic of Radiation Oncology and Radiotherapy; Charité - University Medicine; Berlin Germany
| | - Monika Schäfer-Korting
- Institute for Pharmacy, Pharmacology and Toxicology; Freie University Berlin; Berlin Germany
| | - Sarah Küchler
- Institute for Pharmacy, Pharmacology and Toxicology; Freie University Berlin; Berlin Germany
| |
Collapse
|
61
|
Kulvietis V, Zurauskas E, Rotomskis R. Distribution of polyethylene glycol coated quantum dots in mice skin. Exp Dermatol 2013; 22:157-9. [PMID: 23362878 DOI: 10.1111/exd.12087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2013] [Indexed: 11/28/2022]
Abstract
The distribution of nanoparticles (NP) in an organism is an important issue for developing NP-based drug delivery systems and for general nanotoxicology. The knowledge of NP localisation in the skin is crucial for the optimisation of NP behaviour in vivo. Therefore, we have used semiconductor quantum dots (QD) to investigate their biodistribution in the skin by means of confocal fluorescence microscopy after subcutaneous injection. The results obtained showed that the diffusion of QD in the dermis is limited by basement membrane and dense connective tissue fibres, which resulted in negligible QD penetration into the epidermis, hair follicles, sebaceous and sweat glands, nerves and blood vessels. Low permeation of QD through the tissues results in slow clearance and raises the risks of potential immune, inflammatory and cytotoxic responses. The study reveals the significance of the tissue architecture for the interstitial and intracellular migration patterns of non-functionalised QD.
Collapse
|
62
|
Kumar S, Randhawa JK. High melting lipid based approach for drug delivery: Solid lipid nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:1842-52. [DOI: 10.1016/j.msec.2013.01.037] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 01/11/2013] [Accepted: 01/16/2013] [Indexed: 12/13/2022]
|
63
|
Stein C, Küchler S. Targeting inflammation and wound healing by opioids. Trends Pharmacol Sci 2013; 34:303-12. [PMID: 23602130 DOI: 10.1016/j.tips.2013.03.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/18/2013] [Accepted: 03/20/2013] [Indexed: 11/27/2022]
Abstract
Opioid receptors are expressed on peripheral sensory nerve endings, cutaneous cells, and immune cells; and local application of opioids is used for the treatment of inflammatory pain in arthritis, burns, skin grafts, and chronic wounds. However, peripherally active opioids can also directly modulate the inflammatory process and wound healing. Here, we discuss the underlying mechanisms of opioid action and the conceivable therapeutic approaches for opioid treatment, as investigated in experimental and clinical studies. A large number of in vitro experiments and animal model investigations have produced evidence that peripherally active opioids can reduce plasma extravasation, vasodilation, proinflammatory neuropeptides, immune mediators, and tissue destruction. In contrast to currently available anti-inflammatory agents, opioids have not demonstrated organ toxicity, thus making them interesting candidates for drug development. Few clinical studies have tapped into this potential to date.
Collapse
Affiliation(s)
- Christoph Stein
- Department of Anesthesiology and Critical Care Medicine, Freie Universität Berlin, 12200 Berlin, Germany.
| | | |
Collapse
|
64
|
Kesarwani K, Gupta R. Bioavailability enhancers of herbal origin: an overview. Asian Pac J Trop Biomed 2013; 3:253-66. [PMID: 23620848 PMCID: PMC3634921 DOI: 10.1016/s2221-1691(13)60060-x] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 03/07/2013] [Indexed: 01/08/2023] Open
Abstract
Recently, the use of herbal medicines has been increased all over the world due to their therapeutic effects and fewer adverse effects as compared to the modern medicines. However, many herbal drugs and herbal extracts despite of their impressive in-vitro findings demonstrates less or negligible in-vivo activity due to their poor lipid solubility or improper molecular size, resulting in poor absorption and hence poor bioavailability. Nowadays with the advancement in the technology, novel drug delivery systems open the door towards the development of enhancing bioavailability of herbal drug delivery systems. For last one decade many novel carriers such as liposomes, microspheres, nanoparticles, transferosomes, ethosomes, lipid based systems etc. have been reported for successful modified delivery of various herbal drugs. Many herbal compounds including quercetin, genistein, naringin, sinomenine, piperine, glycyrrhizin and nitrile glycoside have demonstrated capability to enhance the bioavailability. The objective of this review is to summarize various available novel drug delivery technologies which have been developed for delivery of drugs (herbal), and to achieve better therapeutic response. An attempt has also been made to compile a profile on bioavailability enhancers of herbal origin with the mechanism of action (wherever reported) and studies on improvement in drug bioavailability, exhibited particularly by natural compounds.
Collapse
Affiliation(s)
| | - Rajiv Gupta
- *Corresponding author: Rajiv Gupta, Professor & Dean, School of Pharmacy, BBD University, Lucknow. U.P., India. Tel: 9839278227 E-mail:
| |
Collapse
|
65
|
Heilmann S, Küchler S, Wischke C, Lendlein A, Stein C, Schäfer-Korting M. A thermosensitive morphine-containing hydrogel for the treatment of large-scale skin wounds. Int J Pharm 2013; 444:96-102. [PMID: 23352858 DOI: 10.1016/j.ijpharm.2013.01.027] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 01/11/2013] [Accepted: 01/13/2013] [Indexed: 11/25/2022]
Abstract
PURPOSE Topically applied opioids are an option to induce efficient analgesia in patients with severe skin wounds. For ongoing pain reduction, the vehicle should provide sustained drug release in order to increase the intervals during the regular wound dressing changes. In addition, the formulation should not impair wound healing. Hydrogels provide a moist wound environment, which is known to facilitate the healing process. METHODS AND RESULTS Investigating poloxamer hydrogels as a carrier system for morphine in terms of release behavior and (per-)cutaneous absorption, poloxamer 407 25wt.% hydrogel sustained morphine release up to 24h. The drug release rate decreased with increasing concentration of the gel forming triblock copolymer. Poloxamer 407 25wt.% hydrogel retarded morphine uptake into reconstructed human skin and percutaneous drug absorption compared to a hydroxyethyl cellulose reference gel. CONCLUSIONS The results of our in vitro study indicate that the thermosensitive poloxamer 407 25wt.% hydrogel is an appropriate carrier system for the topical application of morphine with regard to sustained drug release and ongoing analgesia.
Collapse
Affiliation(s)
- Sarah Heilmann
- Institute for Pharmacy, Freie Universität Berlin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
66
|
Heilmann S, Küchler S, Schäfer-Korting M. Morphine Metabolism in Human Skin Microsomes. Skin Pharmacol Physiol 2012; 25:319-22. [DOI: 10.1159/000342067] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 07/19/2012] [Indexed: 02/04/2023]
|
67
|
Charbaji N, Schäfer-Korting M, Küchler S. Morphine stimulates cell migration of oral epithelial cells by delta-opioid receptor activation. PLoS One 2012; 7:e42616. [PMID: 22900034 PMCID: PMC3416801 DOI: 10.1371/journal.pone.0042616] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 07/09/2012] [Indexed: 01/13/2023] Open
Abstract
Oral mucositis is one of the most common side effects of chemoradiation regimens and manifestation can be dose-limiting for the therapy, can impair the patient's nutritional condition and quality of life due to severe pain. The therapeutic options are limited; often only an alleviation of the symptoms such as pain reduction by using systemic opioids is possible. Stimulating opioid receptors on peripheral neurons and dermal tissue, potent analgesic effects are induced e.g. in skin grafted patients. Advantageous effects on the cell migration and, thus, on the wound healing process are described, too. In this study, we investigated whether opioid receptors are also expressed on oral epithelial cells and if morphine can modulate their cell migration behavior. The expression of the opioid receptors MOR, DOR and KOR on primary human oral epithelial cells was verified. Furthermore, a significantly accelerated cell migration was observed following incubation with morphine. The effect even slightly exceeded the cell migration stimulating effect of TGF-ß: After 14 h of morphine treatment about 86% of the wound area was closed, whereas TGF-ß application resulted in a closed wound area of 80%. With respect to morphine stimulated cell migration we demonstrate that DOR plays a key role and we show the involvement of the MAPK members Erk 1/2 and p38 using Western blot analysis.Further studies in more complex systems in vitro and in vivo are required. Nevertheless, these findings might open up a new therapeutic option for the treatment of oral mucositis.
Collapse
Affiliation(s)
- Nada Charbaji
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | | | - Sarah Küchler
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
68
|
PolyMorphine: an innovative biodegradable polymer drug for extended pain relief. J Control Release 2012; 162:538-44. [PMID: 22877734 DOI: 10.1016/j.jconrel.2012.07.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 06/30/2012] [Accepted: 07/26/2012] [Indexed: 11/21/2022]
Abstract
Morphine, a potent narcotic analgesic used for the treatment of acute and chronic pain, was chemically incorporated into a poly(anhydride-ester) backbone. The polymer termed "PolyMorphine", was designed to degrade hydrolytically releasing morphine in a controlled manner to ultimately provide analgesia for an extended time period. PolyMorphine was synthesized via melt-condensation polymerization and its structure was characterized using proton and carbon nuclear magnetic resonance spectroscopies, and infrared spectroscopy. The weight-average molecular weight and the thermal properties were determined. The hydrolytic degradation pathway of the polymer was determined by in vitro studies, showing that free morphine is released. In vitro cytocompatibility studies demonstrated that PolyMorphine is non-cytotoxic towards fibroblasts. In vivo studies using mice showed that PolyMorphine provides analgesia for 3 days, 20 times the analgesic window of free morphine. The animals retained full responsiveness to morphine after being subjected to an acute morphine challenge.
Collapse
|
69
|
Affiliation(s)
- David M. Ansell
- The Healing Foundation Centre; Faculty of Life Sciences; The University of Manchester; Manchester; UK
| | | | - Matthew J. Hardman
- The Healing Foundation Centre; Faculty of Life Sciences; The University of Manchester; Manchester; UK
| |
Collapse
|
70
|
Gokce EH, Korkmaz E, Dellera E, Sandri G, Bonferoni MC, Ozer O. Resveratrol-loaded solid lipid nanoparticles versus nanostructured lipid carriers: evaluation of antioxidant potential for dermal applications. Int J Nanomedicine 2012; 7:1841-50. [PMID: 22605933 PMCID: PMC3352689 DOI: 10.2147/ijn.s29710] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background Excessive generation of radical oxygen species (ROS) is a contributor to skin pathologies. Resveratrol (RSV) is a potent antioxidant. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) can ensure close contact and increase the amount of drug absorbed into the skin. In this study, RSV was loaded into SLN and NLC for dermal applications. Methods Nanoparticles were prepared by high shear homogenization using Compritol 888ATO, Myglyol, Poloxamer188, and Tween80. Particle size (PS), polydispersity index (PI), zeta potential (ZP), drug entrapment efficiency (EE), and production yield were determined. Differential scanning calorimetry (DSC) analysis and morphological transmission electron microscopy (TEM) examination were conducted. RSV concentration was optimized with cytotoxicity studies, and net intracellular accumulation of ROS was monitored with cytofluorimetry. The amount of RSV was determined from different layers of rat abdominal skin. Results PS of uniform RSV-SLN and RSV-NLC were determined as 287.2 nm ± 5.1 and 110.5 nm ± 1.3, respectively. ZP was −15.3 mV ± 0.4 and −13.8 mV ± 0.1 in the same order. The drug EE was 18% higher in NLC systems. TEM studies showed that the drug in the shell model was relevant for SLN, and that the melting point of the lipid in NLC was slightly lower. Concentrations below 50 μM were determined as suitable RSV concentrations for both SLN and NLC in cell culture studies. RSV-NLC showed less fluorescence, indicating less ROS production in cytofluorometric studies. Ex vivo skin studies revealed that NLC are more efficient in carrying RSV to the epidermis. Conclusion This study suggests that both of the lipid nanoparticles had antioxidant properties at a concentration of 50 μM. When the two systems were compared, NLC penetrated deeper into the skin. RSV-loaded NLC with smaller PS and higher drug loading appears to be superior to SLN for dermal applications.
Collapse
Affiliation(s)
- Evren H Gokce
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ege, Izmir, Turkey.
| | | | | | | | | | | |
Collapse
|
71
|
Luo Z, Zhang S. Designer nanomaterials using chiral self-assembling peptide systems and their emerging benefit for society. Chem Soc Rev 2012; 41:4736-54. [DOI: 10.1039/c2cs15360b] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
72
|
Stein C, Machelska H. Modulation of peripheral sensory neurons by the immune system: implications for pain therapy. Pharmacol Rev 2011; 63:860-81. [PMID: 21969325 DOI: 10.1124/pr.110.003145] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
The concept that the immune system can communicate with peripheral sensory neurons to modulate pain is based mostly on documented interactions between opioid ligands and receptors. Such findings may have broad implications for the development of safer pain medication. Innovative strategies take into account that analgesics should be particularly active in pathological states rather than producing a general suppression of the central nervous system, as with conventional morphine- or cannabinoid-like drugs. Inflammation of peripheral tissue leads to increased functionality of opioid receptors on peripheral sensory neurons and to local production of endogenous opioid peptides. In addition, endocannabinoids were detected in leukocytes, but their role in pain modulation has yet to be addressed. Future aims include the development of peripherally restricted opioid agonists, selective targeting of opioid-containing immune cells to sites of painful injury, and the augmentation of peripheral ligand and receptor synthesis (e.g., by gene therapy). Similar approaches may be pursued for cannabinoids. The ultimate goal is to avoid detrimental side effects of currently available analgesics such as respiratory depression, cognitive impairment, addiction, gastrointestinal bleeding, and thromboembolic complications.
Collapse
Affiliation(s)
- Christoph Stein
- Department of Anesthesiology and Critical Care Medicine, Freie Universität Berlin, Charité Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany.
| | | |
Collapse
|
73
|
Padois K, Cantiéni C, Bertholle V, Bardel C, Pirot F, Falson F. Solid lipid nanoparticles suspension versus commercial solutions for dermal delivery of minoxidil. Int J Pharm 2011; 416:300-4. [PMID: 21704140 DOI: 10.1016/j.ijpharm.2011.06.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 06/09/2011] [Accepted: 06/09/2011] [Indexed: 12/23/2022]
Abstract
Solid lipid nanoparticles have been reported as possible carrier for skin drug delivery. Solid lipid nanoparticles are produced from biocompatible and biodegradable lipids. Solid lipid nanoparticles made of semi-synthetic triglycerides stabilized with a mixture of polysorbate and sorbitan oleate were loaded with 5% of minoxidil. The prepared systems were characterized for particle size, pH and drug content. Ex vivo skin penetration studies were performed using Franz-type glass diffusion cells and pig ear skin. Ex vivo skin corrosion studies were realized with a method derived from the Corrositex(®) test. Solid lipid nanoparticles suspensions were compared to commercial solutions in terms of skin penetration and skin corrosion. Solid lipid nanoparticles suspensions have been shown as efficient as commercial solutions for skin penetration; and were non-corrosive while commercial solutions presented a corrosive potential. Solid lipid nanoparticles suspensions would constitute a promising formulation for hair loss treatment.
Collapse
|
74
|
Nanoparticles and microparticles for skin drug delivery. Adv Drug Deliv Rev 2011; 63:470-91. [PMID: 21315122 DOI: 10.1016/j.addr.2011.01.012] [Citation(s) in RCA: 473] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 01/27/2011] [Accepted: 01/31/2011] [Indexed: 01/29/2023]
Abstract
Skin is a widely used route of delivery for local and systemic drugs and is potentially a route for their delivery as nanoparticles. The skin provides a natural physical barrier against particle penetration, but there are opportunities to deliver therapeutic nanoparticles, especially in diseased skin and to the openings of hair follicles. Whilst nanoparticle drug delivery has been touted as an enabling technology, its potential in treating local skin and systemic diseases has yet to be realised. Most drug delivery particle technologies are based on lipid carriers, i.e. solid lipid nanoparticles and nanoemulsions of around 300 nm in diameter, which are now considered microparticles. Metal nanoparticles are now recognized for seemingly small drug-like characteristics, i.e. antimicrobial activity and skin cancer prevention. We present our unpublished clinical data on nanoparticle penetration and previously published reports that support the hypothesis that nanoparticles >10nm in diameter are unlikely to penetrate through the stratum corneum into viable human skin but will accumulate in the hair follicle openings, especially after massage. However, significant uptake does occur after damage and in certain diseased skin. Current chemistry limits both atom by atom construction of complex particulates and delineating their molecular interactions within biological systems. In this review we discuss the skin as a nanoparticle barrier, recent work in the field of nanoparticle drug delivery to the skin, and future directions currently being explored.
Collapse
|
75
|
Farley P. Should topical opioid analgesics be regarded as effective and safe when applied to chronic cutaneous lesions? J Pharm Pharmacol 2011; 63:747-56. [DOI: 10.1111/j.2042-7158.2011.01252.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Abstract
Objectives
The induction of analgesia for many chronic cutaneous lesions requires treatment with an opioid analgesic. In many patients suffering with these wounds such drugs are either contraindicated or shunned because of their association with death. There are now case reports involving over 100 patients with many different types of chronic superficial wounds, which suggest that the topical application of an opioid in a suitable gel leads to a significant reduction in the level of perceived pain.
Key findings
Some work has been undertaken to elucidate the mechanisms by which such a reduction is achieved. To date there have been no proven deleterious effects of such an analgesic system upon wound healing. Although morphine is not absorbed through the intact epidermis, an open wound provides no such barrier and for large wounds drug absorption can be problematic. However, for most chronic cutaneous lesions, where data has been gathered, the blood levels of the drug applied ranges from undetectable to below that required for a systemic effect.
Summary
If proven, the use of opioids in this way would provide adequate analgesia for a collection of wounds, which are difficult to treat in patients who are often vulnerable. Proof of this concept is now urgently required.
Collapse
Affiliation(s)
- Peter Farley
- Formerly Life and Health Sciences, Aston University, Birmingham, UK
| |
Collapse
|
76
|
Lipid-based colloidal systems (nanoparticles, microemulsions) for drug delivery to the skin: materials and end-product formulations. J Drug Deliv Sci Technol 2011. [DOI: 10.1016/s1773-2247(11)50005-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|