51
|
Zhang T, Wang Y, Li X, Zhuang Q, Zhang Z, Zhou H, Ding Q, Wang Y, Dang Y, Duan L, Liu J. Charge state modulation on boron site by carbon and nitrogen localized bonding microenvironment for two-electron electrocatalytic H2O2 production. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
52
|
Wei L, Huang X, Yang J, Wang Y, Huang K, Xie L, Yan F, Luo L, Jiang C, Liang J, Li T, Ya Y. A high performance electrochemical sensor for carbendazim based on porous carbon with intrinsic defects. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
53
|
Dong Z, Zhang Y, Yao J. Enhancement of H 2O 2 yield and TOC removal in electro-peroxone process by electrochemically modified graphite felt: Performance, mechanism and stability. CHEMOSPHERE 2022; 295:133896. [PMID: 35134398 DOI: 10.1016/j.chemosphere.2022.133896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/31/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Electro-peroxone (EP) is an emerging advanced oxidation process which combines electro-generation H2O2 and ozone for removing organic contaminants. In this paper, a platinum plate as anode, a method of electrochemical oxidation is adopted to modify graphite felt (GF) cathode to promote H2O2 yield and TOC removal from oxalic acid solution in EP process, its performance, mechanism and stability were discussed. Compared with original GF cathode, 2.6 times H2O2 yield can be achieved by the 5 min electrochemically modified GF (GF-5). The high electrochemical activity of the modified GF can be ascribed to introducing numerous surface oxygen-containing functional groups (OGs), which not only decreased the impedance, but also increased the amount of active site of O2 reduction. The production of H2O2 with GF-5 cathode improved with the increased initial pH, cathodic potential and O2 flow rate, while this promoting effect was not observed in GF cathode. Compared with GF cathode, TOC removal rate was improved by 21.5% with GF-5 cathode due to higher H2O2 yield in EP process. The primary pathway of TOC removal is electrochemically-driven peroxone process, and hydroxyl radical (·OH) is the dominant reactive species. Furthermore, GF-5 cathode had a good stability due to the protection of H2O2 and free electrons injected. The results indicate that the electrochemically modified GF severed as the cathode of EP processes has significant efficiency and stability in the removal of ozone-refractory organic contaminants.
Collapse
Affiliation(s)
- Zekun Dong
- Department of Civil Engineering, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, China
| | - Yan Zhang
- Department of Civil Engineering, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, China.
| | - Jie Yao
- Department of Civil Engineering, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, China
| |
Collapse
|
54
|
Controllable high-efficiency transformation of H2O2 to reactive oxygen species via electroactivation of Ti-peroxo complexes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
55
|
Chen Z, Zhuang J, Liu C, Chai M, Zhang S, Teng K, Cao T, Zhang Y, Hu Y, Zhao L, An Q. Effective H2O2 production via favorable intermediate desorption in fluctuating electrical fields from matrix‐filler mutually enhanced P‐C3N4/PVDF‐HFP porous composite. ChemElectroChem 2022. [DOI: 10.1002/celc.202200124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zhensheng Chen
- China University of Geosciences Beijing School of materials science and engineering CHINA
| | - Jialin Zhuang
- China University of Geosciences Beijing school of materials science andengineering CHINA
| | - Chao Liu
- China University of Geosciences Beijing school of materials science and engineering CHINA
| | - Mengnan Chai
- China University of Geosciences Beijing school of materials science and engineering CHINA
| | - Shuting Zhang
- China University of Geosciences Beijing school of materials science and engineering CHINA
| | - Kaixuan Teng
- China University of Geosciences Beijing school of materials science and engineering CHINA
| | - Tingting Cao
- China University of Geosciences Beijing school of materials science and engineering CHINA
| | - Yihe Zhang
- China University of Geosciences Beijing school of materials science and engineering CHINA
| | - Yingmo Hu
- China University of Geosciences Beijing school of materials science and engineering CHINA
| | - Lu Zhao
- China University of Geosciences Beijing school of materials science and engineering CHINA
| | - Qi An
- China University of Geosciences Beijing School of materials sciences and engineering 29th Xueyuan Road 100083 Beijing CHINA
| |
Collapse
|
56
|
An J, Feng Y, Wang N, Zhao Q, Wang X, Li N. Amplifying anti-flooding electrode to fabricate modular electro-fenton system for degradation of antiviral drug lamivudine in wastewater. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128185. [PMID: 35032957 DOI: 10.1016/j.jhazmat.2021.128185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
The advanced oxidation based on in-situ hydrogen peroxide production using carbon air cathode is very potential for wastewater treatment. However, catalyst flooding and complex assembly patterns are the bottleneck limiting the air cathode to the long-term and large-scale application. In this work, a novel anti-flooding air-breathing cathode (ABC) was prepared by a simple rolling-spraying method with relatively low price commercial materials. The novel method changed the morphology of gas diffusion layer as well as adjusted the hydrophobicity of air side of the catalyst layer. As a result, water-air distribution management was achieved and TPI disequilibrium was prevented. Compare with traditional ABC, the H2O2 yield and current efficiency (CE) of optimized anti-flooding ABC (ABC0.9) increased by 13.5% (941 ± 10 mg·L-1·h-1 with CE of 84% at 30 mA·cm-2), the material cost and fabrication time decreased by 10.1% (2.32 ¥·dm-2, ~0.36 $·dm-2) and 40%. Amplified ABC coupled with Ti/IrO2 anodes were integrated into a modular electrode used for H2O2generation. When the current density (j) increased from 10 to 30 mA·cm-2, the energy cost increased from 0.19 to 0.43 ¥·mol-1 H2O2 (from 0.03 to 0.07 $·mol-1 H2O2). The modular electrode was utilized in a 2 L pre-pilot scale reactor for antiviral drug lamivudine degradation by electro-Fenton (EF) process. 100% of lamivudine and 78.1% of total organic carbon (TOC) were removed within 60 min at 20 mA·cm-2. The susceptible sites on the lamivudine toward hydroxyl radicals were investigated and transformation products (TP) as well as degradation pathway were studied.
Collapse
Affiliation(s)
- Jingkun An
- School of Environmental Science and Engineering, Academy of Environment and ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Yujie Feng
- School of Environmental Science and Engineering, Academy of Environment and ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Naiyu Wang
- School of Environmental Science and Engineering, Academy of Environment and ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Qian Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Nan Li
- School of Environmental Science and Engineering, Academy of Environment and ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China.
| |
Collapse
|
57
|
Huang X, Liu W, Zhang J, Song M, Zhang C, Li J, Zhang J, Wang D. Coupling Co-N-C with MXenes Yields Highly Efficient Catalysts for H 2O 2 Production in Acidic Media. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11350-11358. [PMID: 35199988 DOI: 10.1021/acsami.1c22641] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The electrochemical oxygen reduction reaction (ORR) offers a promising method to replace the anthraquinone process for hydrogen peroxide (H2O2) production. However, the efficiency of this process suffers from sluggish kinetics, particularly in an acidic environment. Therefore, employing catalysts with high electroactivity is highly desirable for H2O2 synthesis. Here, an effective strategy for preparing Co-N-C/Ti3C2Tx with high H2O2 selectivity and ORR reactivity is proposed. The acquired Co-N-C/Ti3C2Tx shows excellent H2O2 electrosynthesis performance in acidic media with H2O2 productivity of up to 3200 ppm h-1, superior to state-of-the-art catalysts. Interestingly, a H2O2 concentration of 6.0 wt % was obtained after the stability test, and the Co-N-C/Ti3C2Tx catalyst was found to effectively catalyze organic dye degradation. Further analysis reveals that the enhanced H2O2 electrosynthesis performance originates from the layered structure and the oxygen functional groups of Ti3C2Tx. The layered structure can effectively promote increased exposure of active sites, while the oxygen functional groups will fine-tune the electronic structure of Co atoms, allowing a selective ORR pathway to produce H2O2. This work provides a strategy to design and fabricate highly efficient catalysts for H2O2 production and degradation of organic pollutants.
Collapse
Affiliation(s)
- Xiao Huang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Wei Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Jingjing Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Min Song
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Chang Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Jingwen Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Jian Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Deli Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
58
|
Yang Y, Zheng M, Qiao S, Zhou J, Bi Z, Quan X. Electro-Fenton improving fouling mitigation and microalgae harvesting performance in a novel membrane photobioreactor. WATER RESEARCH 2022; 210:117955. [PMID: 34953215 DOI: 10.1016/j.watres.2021.117955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/06/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
An innovative electro-Fenton enhanced membrane photobioreactor with satisfactory membrane fouling mitigation was constructed for microalgae harvesting. The porous carbon and carbon nanotubes hollow fiber membranes (PC-CHFMs) were used as the separation unit and cathode, simultaneously. H2O2 was generated by cathode reducing O2 in-situ, which would further produce •OH as the main oxidant by coupling H2O2 with Fe2+. The •OH could deeply remove the extracellular organic matter (EOM) deposited on the membrane surface or inside the pores. Experimental results showed that the permeate flux recovery rates of PC-CHFMs by electro-Fenton at the 18th, 29th and 41st day were 100%, 100% and 98.3%, respectively. The corresponding recovery rates by chemical cleaning at the same time were 99.8%, 81.7% and 54.4%. The stable and high permeate flux of PC-CHFMs made a great contribution to the microalgae harvesting efficiency, where the concentration factor could be 4.8 times higher than that of the control group. Filtrating superiority of PC-CHFMs was becoming more prominent with the extension of operating time. In addition, the removal efficiency of NH4+-N and TP in wastewater was approximately 100% at stable culture period.
Collapse
Affiliation(s)
- Yue Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Mingmei Zheng
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Sen Qiao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China; School of Environment Science and Engineering and National and Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhen Bi
- School of Environment Science and Engineering and National and Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
59
|
Wang K, Zhao K, Qin X, Chen S, Yu H, Quan X. Treatment of organic wastewater by a synergic electrocatalysis process with Ti 3+ self-doped TiO 2 nanotube arrays electrode as both cathode and anode. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127747. [PMID: 34823953 DOI: 10.1016/j.jhazmat.2021.127747] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/27/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Electrochemical anodic oxidation (AO) is a promising technology for wastewater treatment due to its strong oxidation property and environmental compatibility. However, it suffers from high energy consumption for pollutants removal due to the side-reactions of hydrogen evolution reaction on cathode and oxygen evolution reaction on anode. Combining electro-Fenton (EF) with AO not only generated •OH for pollutants degradation but also increased current efficiency. This work investigated a synergic electrocatalysis process between EF and AO with Ti3+ self-doped TiO2 nanotube arrays (Ti3+/TNTAs) electrode as both cathode and anode for wastewater treatment. The pseudo-first-order kinetic rate constant of phenol degradation by EF+AO (0.107 min-1) was 9.7 or 6.3 times as much as that of only EF (0.011 min-1) or AO (0.017 min-1) process, respectively. Enhanced pollutants removal of EF+AO could be attributed to the coexistence of •OH oxidation and direct oxidation on Ti3+/TNTAs surface. The COD of secondary effluent of coking wastewater decreased from 159.3 mg L-1 to 47.0 mg L-1 by EF+AO within 120 min with low specific energy consumption (9.5 kWh kg-1 COD-1). This work provided a new insight into design of the energy-efficient synergic electrocatalysis process for refractory pollutants degradation.
Collapse
Affiliation(s)
- Kaixuan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Kun Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Xin Qin
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Shuo Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Hongtao Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China.
| |
Collapse
|
60
|
Fortunato GV, Bezerra LS, Cardoso ESF, Kronka MS, Santos AJ, Greco AS, Júnior JLR, Lanza MRV, Maia G. Using Palladium and Gold Palladium Nanoparticles Decorated with Molybdenum Oxide for Versatile Hydrogen Peroxide Electroproduction on Graphene Nanoribbons. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6777-6793. [PMID: 35080174 DOI: 10.1021/acsami.1c22362] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electrocatalytic production of H2O2 via a two-electron oxygen reduction reaction (ORR-2e-) is regarded as a highly promising decentralized and environmentally friendly mechanism for the production of this important chemical commodity. However, the underlying challenges related to the development of catalytic materials that contain zero or low content of noble metals and that are relatively more active, selective, and resistant for long-term use have become a huge obstacle for the electroproduction of H2O2 on commercial and industrial scales. The present study reports the synthesis and characterization of low metal-loaded (≤6.4 wt %) catalysts and their efficiency in H2O2 electroproduction. The catalysts were constructed using gold palladium molybdenum oxide (AuPdMoOx) and palladium molybdenum oxide (PdMoOx) nanoparticles supported on graphene nanoribbons. Based on the application of a rotating ring-disk electrode, we conducted a thorough comparative analysis of the electrocatalytic performance of the catalysts in the ORR under acidic and alkaline media. The proposed catalysts exhibited high catalytic activity (ca. 0.08 mA gnoble metal-1 in an acidic medium and ca. 6.6 mA gnoble metal-1 in an alkaline medium), good selectivity (over 80%), and improved long-term stability toward ORR-2e-. The results obtained showed that the enhanced ORR activity presented by the catalysts, which occurred preferentially via the two-electron pathway, was promoted by a combination of factors including geometry, Pd content, interparticle distance, and site-blocking effects, while the electrochemical stability of the catalysts may have been enhanced by the presence of MoOx.
Collapse
Affiliation(s)
- Guilherme V Fortunato
- São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, SP 13566-590, Brazil
- Institute of Chemistry, Federal University of Mato Grosso do Sul; Av. Senador Filinto Muller, 1555; Campo Grande, MS 79074-460, Brazil
| | - Leticia S Bezerra
- Institute of Chemistry, Federal University of Mato Grosso do Sul; Av. Senador Filinto Muller, 1555; Campo Grande, MS 79074-460, Brazil
| | - Eduardo S F Cardoso
- Institute of Chemistry, Federal University of Mato Grosso do Sul; Av. Senador Filinto Muller, 1555; Campo Grande, MS 79074-460, Brazil
| | - Matheus S Kronka
- São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, SP 13566-590, Brazil
| | - Alexsandro J Santos
- São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, SP 13566-590, Brazil
| | - Anderson S Greco
- Faculty of Exact Sciences and Technology, Federal University of Grande Dourados, Highway Dourados-Itahum, km 12, Dourados, MS 79804-970, Brazil
| | - Jorge L R Júnior
- Institute of Chemistry, Federal University of Mato Grosso do Sul; Av. Senador Filinto Muller, 1555; Campo Grande, MS 79074-460, Brazil
| | - Marcos R V Lanza
- São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, SP 13566-590, Brazil
| | - Gilberto Maia
- Institute of Chemistry, Federal University of Mato Grosso do Sul; Av. Senador Filinto Muller, 1555; Campo Grande, MS 79074-460, Brazil
| |
Collapse
|
61
|
Metal‐Free Boron‐Rich Borocarbonitride Catalysts for High‐Efficient Oxygen Reduction to Produce Hydrogen Peroxide†. ChemistrySelect 2022. [DOI: 10.1002/slct.202104203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
62
|
Zhang J, Zhou Z, Feng Z, Zhao H, Zhao G. Fast Generation of Hydroxyl Radicals by Rerouting the Electron Transfer Pathway via Constructed Chemical Channels during the Photo-Electro-Reduction of Oxygen. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1331-1340. [PMID: 34792352 DOI: 10.1021/acs.est.1c06368] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A strategy for the fast generation of hydroxyl radicals (HO·) via photo-electro-reduction of oxygen by rerouting the electron transfer pathway was proposed. The rate-determining step of HO· production is the formation of H2O2 and the simultaneous reduction of H2O2. Engineering of F-TiO2 with single atom Pd bonded with four F and two O atoms favored the electrocatalytic 2-electron oxygen reduction to H2O2 with as high as 99% selectivity, while the additional channel bond HO-O···Pd-F-TiO2 facilitates the photogenerated electron transfer from the conduction band to single atom Pd to reduce Pd···O-OH to HO·. The optimized HO· production rate is 9.18 μ mol L-1 min-1, which is 2.6-52.5 times higher than that in traditional advanced oxidation processes. In the application of wastewater treatment, this proposed photoelectrocatalytic oxygen reduction method, respectively, shows fast kinetics of 0.324 and 0.175 min-1 for removing bisphenol A and acetaminophen. Around 93.2% total organic carbon and 99.3% acute toxicity removal were achieved. Additionally, the degradation efficiency was less affected by the water source and pH value because of the evitable usage of metallic active sites. This work represents a fundamental investigation on the generation rate of HO·, which would pave the way for the future development of photoelectrocatalytic technologies for water purification.
Collapse
Affiliation(s)
- Jinxing Zhang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Zhaoyu Zhou
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Zhiyuan Feng
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Hongying Zhao
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Guohua Zhao
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
63
|
Guo H, Xu H, Zhao C, Hao X, Yang Z, Xu W. High-effective generation of H2O2 by oxygen reduction utilizing organic acid anodized graphite felt as cathode. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
64
|
Zhang Y, Pang Y, Xia D, Chai G. Regulable pyrrolic-N-doped carbon materials as an efficient electrocatalyst for selective O 2 reduction to H 2O 2. NEW J CHEM 2022. [DOI: 10.1039/d2nj02393h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-free nitrogen-doped carbon catalysts with pyrrolic-N as the active site were efficiently synthesized via a direct carbonization method, which exibited a high two-electron oxygen reduction reaction performance.
Collapse
Affiliation(s)
- Yunxian Zhang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Yongyu Pang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Dong Xia
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Guoliang Chai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| |
Collapse
|
65
|
Hu T, Tang L, Feng H, Zhang J, Li X, Zuo Y, Lu Z, Tang W. Metal-organic frameworks (MOFs) and their derivatives as emerging catalysts for electro-Fenton process in water purification. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214277] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
66
|
Wang D, Feng B, Zhang X, Liu Y, Pei Y, Qiao M, Zong B. Nitrogen-doped Carbon Pyrolyzed from ZIF-8 for Electrocatalytic Oxygen Reduction to Hydrogen Peroxide. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
67
|
Enhanced electrochemical advanced oxidation on boride activated carbon: The influences of boron groups. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
68
|
Wang X, Cao P, Zhao K, Chen S, Yu H, Quan X. Flow-through heterogeneous electro-Fenton system based on the absorbent cotton derived bulk electrode for refractory organic pollutants treatment. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
69
|
Bu Y, Wang Y, Han GF, Zhao Y, Ge X, Li F, Zhang Z, Zhong Q, Baek JB. Carbon-Based Electrocatalysts for Efficient Hydrogen Peroxide Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103266. [PMID: 34562030 DOI: 10.1002/adma.202103266] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Hydrogen peroxide (H2 O2 ) is an environment-friendly and efficient oxidant with a wide range of applications in different industries. Recently, the production of hydrogen peroxide through direct electrosynthesis has attracted widespread research attention, and has emerged as the most promising method to replace the traditional energy-intensive multi-step anthraquinone process. In ongoing efforts to achieve highly efficient large-scale electrosynthesis of H2 O2 , carbon-based materials have been developed as 2e- oxygen reduction reaction catalysts, with the benefits of low cost, abundant availability, and optimal performance. This review comprehensively introduces the strategies for optimizing carbon-based materials toward H2 O2 production, and the latest advances in carbon-based hybrid catalysts. The active sites of the carbon-based materials and the influence of coordination heteroatom doping on the selectivity of H2 O2 are extensively analyzed. In particular, the appropriate design of functional groups and understanding the effect of the electrolyte pH are expected to further improve the selective efficiency of producing H2 O2 via the oxygen reduction reaction. Methods for improving catalytic activity by interface engineering and reaction kinetics are summarized. Finally, the challenges carbon-based catalysts face before they can be employed for commercial-scale H2 O2 production are identified, and prospects for designing novel electrochemical reactors are proposed.
Collapse
Affiliation(s)
- Yunfei Bu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), UNIST-NUIST Research Center of Environment and Energy, (UNNU), School of Environmental Science and Technology, Nanjing University of Information Science and Technology (NUIST), Nanjing, 210044, P. R. China
| | - Yaobin Wang
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), UNIST-NUIST Research Center of Environment and Energy, (UNNU), School of Environmental Science and Technology, Nanjing University of Information Science and Technology (NUIST), Nanjing, 210044, P. R. China
| | - Gao-Feng Han
- School of Energy and Chemical Engineering/Center for Dimension Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan, 44919, South Korea
| | - Yunxia Zhao
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), UNIST-NUIST Research Center of Environment and Energy, (UNNU), School of Environmental Science and Technology, Nanjing University of Information Science and Technology (NUIST), Nanjing, 210044, P. R. China
| | - Xinlei Ge
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), UNIST-NUIST Research Center of Environment and Energy, (UNNU), School of Environmental Science and Technology, Nanjing University of Information Science and Technology (NUIST), Nanjing, 210044, P. R. China
| | - Feng Li
- School of Energy and Chemical Engineering/Center for Dimension Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan, 44919, South Korea
| | - Zhihui Zhang
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Qin Zhong
- School of Chemical and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Jong-Beom Baek
- School of Energy and Chemical Engineering/Center for Dimension Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan, 44919, South Korea
| |
Collapse
|
70
|
Hu C, Paul R, Dai Q, Dai L. Carbon-based metal-free electrocatalysts: from oxygen reduction to multifunctional electrocatalysis. Chem Soc Rev 2021; 50:11785-11843. [PMID: 34559871 DOI: 10.1039/d1cs00219h] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Since the discovery of N-doped carbon nanotubes as the first carbon-based metal-free electrocatalyst (C-MFEC) for oxygen reduction reaction (ORR) in 2009, C-MFECs have shown multifunctional electrocatalytic activities for many reactions beyond ORR, such as oxygen evolution reaction (OER), hydrogen evolution reaction (HER), carbon dioxide reduction reaction (CO2RR), nitrogen reduction reaction (NRR), and hydrogen peroxide production reaction (H2O2PR). Consequently, C-MFECs have attracted a great deal of interest for various applications, including metal-air batteries, water splitting devices, regenerative fuel cells, solar cells, fuel and chemical production, water purification, to mention a few. By altering the electronic configuration and/or modulating their spin angular momentum, both heteroatom(s) doping and structural defects (e.g., atomic vacancy, edge) have been demonstrated to create catalytic active sites in the skeleton of graphitic carbon materials. Although certain C-MFECs have been made to be comparable to or even better than their counterparts based on noble metals, transition metals and/or their hybrids, further research and development are necessary in order to translate C-MFECs for practical applications. In this article, we present a timely and comprehensive, but critical, review on recent advancements in the field of C-MFECs within the past five years or so by discussing various types of electrocatalytic reactions catalyzed by C-MFECs. An emphasis is given to potential applications of C-MFECs for energy conversion and storage. The structure-property relationship for and mechanistic understanding of C-MFECs will also be discussed, along with the current challenges and future perspectives.
Collapse
Affiliation(s)
- Chuangang Hu
- Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Rajib Paul
- Department of Macromolecular Science and Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Quanbin Dai
- Department of Macromolecular Science and Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Liming Dai
- Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
71
|
Lim JS, Kim JH, Woo J, Baek DS, Ihm K, Shin TJ, Sa YJ, Joo SH. Designing highly active nanoporous carbon H2O2 production electrocatalysts through active site identification. Chem 2021. [DOI: 10.1016/j.chempr.2021.08.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
72
|
Cao P, Quan X, Zhao K, Zhao X, Chen S, Yu H. Durable and Selective Electrochemical H 2O 2 Synthesis under a Large Current Enabled by the Cathode with Highly Hydrophobic Three-Phase Architecture. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03236] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Peike Cao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Kun Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xueyang Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shuo Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hongtao Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
73
|
Xu X, Yin X, Fu J, Ke D. Structural Modulation on NiCo 2 S 4 Nanoarray by N Doping to Enhance 2e-ORR Selectivity for Photothermal AOPs and Zn-O 2 Batteries*. Chemistry 2021; 27:14451-14460. [PMID: 34346117 DOI: 10.1002/chem.202101786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Indexed: 12/13/2022]
Abstract
As a H2 O2 generator, a 2e- oxygen reduction reaction active electrocatalyst plays an important role in the advanced oxidation process to degrade organic pollutants in sewage. To enhance the tendency of NiCo2 S4 towards the 2e- reduction reaction, N atoms are doped in its structure and replace S2- . The result implies that this weakens the interaction between NiCo2 S4 and OOH*, suppresses O-O bond breaking and enhances H2 O2 selectivity. This electrocatalyst also shows photothermal effect. Under photothermal heating, H2 O2 produced by the oxidation reduction reaction can decompose and releaseOH, which degrades organic pollutants through the advanced oxidation process. Photothermal effect induced by the advance oxidation process shows obvious advantages over the traditional Fenton reaction, such as wide pH adaptation scope and low secondary pollutant due to its Fe2+ free character. With Zn as anode and the electrocatalyst as cathode material, a Zn-O2 battery is assembled. It achieves electricity generation and photothermal effect induced by the advance oxidation process simultaneously.
Collapse
Affiliation(s)
- Xinxin Xu
- Department of Chemistry, College of Science, Northeastern University, Shenyang City, Liaoning Province, 110819, China.,Institute for Frontier Technologies of Low-Carbon Steelmaking, Northeastern University, Shenyang, Liaoning, 110819, China)
| | - Xunkai Yin
- Department of Chemistry, College of Science, Northeastern University, Shenyang City, Liaoning Province, 110819, China
| | - Jingnuo Fu
- Department of Chemistry, College of Science, Northeastern University, Shenyang City, Liaoning Province, 110819, China
| | - Di Ke
- Department of Chemistry, College of Science, Northeastern University, Shenyang City, Liaoning Province, 110819, China
| |
Collapse
|
74
|
Zhang Y, Melchionna M, Medved M, Błoński P, Steklý T, Bakandritsos A, Kment Š, Zbořil R, Otyepka M, Fornaserio P, Naldoni A. Enhanced On‐Site Hydrogen Peroxide Electrosynthesis by a Selectively Carboxylated N‐Doped Graphene Catalyst. ChemCatChem 2021. [DOI: 10.1002/cctc.202100805] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yu Zhang
- Czech Advanced Technology and Research Institute Regional Centre of Advanced Technologies and Materials Palacky University Slechtitelu 27 77900 Olomouc Czech Republic
| | - Michele Melchionna
- Department of Chemical and Pharmaceutical Sciences, INSTM University of Trieste Via L. Giorgieri 1 34127 Trieste Italy
| | - Miroslav Medved
- Czech Advanced Technology and Research Institute Regional Centre of Advanced Technologies and Materials Palacky University Slechtitelu 27 77900 Olomouc Czech Republic
| | - Piotr Błoński
- Czech Advanced Technology and Research Institute Regional Centre of Advanced Technologies and Materials Palacky University Slechtitelu 27 77900 Olomouc Czech Republic
| | - Tomáš Steklý
- Czech Advanced Technology and Research Institute Regional Centre of Advanced Technologies and Materials Palacky University Slechtitelu 27 77900 Olomouc Czech Republic
| | - Aristides Bakandritsos
- Czech Advanced Technology and Research Institute Regional Centre of Advanced Technologies and Materials Palacky University Slechtitelu 27 77900 Olomouc Czech Republic
- Nanotechnology Centre CEET VŠB – Technical University Ostrava 17 listopadu 2172/15 Ostrava-Poruba 70800 Czech Republic
| | - Štěpán Kment
- Czech Advanced Technology and Research Institute Regional Centre of Advanced Technologies and Materials Palacky University Slechtitelu 27 77900 Olomouc Czech Republic
- Nanotechnology Centre CEET VŠB – Technical University Ostrava 17 listopadu 2172/15 Ostrava-Poruba 70800 Czech Republic
| | - Radek Zbořil
- Czech Advanced Technology and Research Institute Regional Centre of Advanced Technologies and Materials Palacky University Slechtitelu 27 77900 Olomouc Czech Republic
- Nanotechnology Centre CEET VŠB – Technical University Ostrava 17 listopadu 2172/15 Ostrava-Poruba 70800 Czech Republic
| | - Michal Otyepka
- Czech Advanced Technology and Research Institute Regional Centre of Advanced Technologies and Materials Palacky University Slechtitelu 27 77900 Olomouc Czech Republic
- IT4Innovations, VSB – Technical University of Ostrava 17. listopadu 2172/15 70800 Ostrava-Poruba Czech Republic
| | - Paolo Fornaserio
- Department of Chemical and Pharmaceutical Sciences, INSTM University of Trieste Via L. Giorgieri 1 34127 Trieste Italy
| | - Alberto Naldoni
- Czech Advanced Technology and Research Institute Regional Centre of Advanced Technologies and Materials Palacky University Slechtitelu 27 77900 Olomouc Czech Republic
- Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 610054 P. R. China
| |
Collapse
|
75
|
Sun Y, Li S, Paul B, Han L, Strasser P. Highly efficient electrochemical production of hydrogen peroxide over nitrogen and phosphorus dual-doped carbon nanosheet in alkaline medium. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
76
|
Wang N, Ma S, Zuo P, Duan J, Hou B. Recent Progress of Electrochemical Production of Hydrogen Peroxide by Two-Electron Oxygen Reduction Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100076. [PMID: 34047062 PMCID: PMC8336511 DOI: 10.1002/advs.202100076] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/17/2021] [Indexed: 05/06/2023]
Abstract
Shifting electrochemical oxygen reduction reaction (ORR) via two-electron pathway becomes increasingly crucial as an alternative/green method for hydrogen peroxide (H2 O2 ) generation. Here, the development of 2e- ORR catalysts in recent years is reviewed, in aspects of reaction mechanism exploration, types of high-performance catalysts, factors to influence catalytic performance, and potential applications of 2e- ORR. Based on the previous theoretical and experimental studies, the underlying 2e- ORR catalytic mechanism is firstly unveiled, in aspect of reaction pathway, thermodynamic free energy diagram, limiting potential, and volcano plots. Then, various types of efficient catalysts for producing H2 O2 via 2e- ORR pathway are summarized. Additionally, the catalytic active sites and factors to influence catalysts' performance, such as electronic structure, carbon defect, functional groups (O, N, B, S, F etc.), synergistic effect, and others (pH, pore structure, steric hindrance effect, etc.) are discussed. The H2 O2 electrogeneration via 2e- ORR also has various potential applications in wastewater treatment, disinfection, organics degradation, and energy storage. Finally, potential future directions and prospects in 2e- ORR catalysts for electrochemically producing H2 O2 are examined. These insights may help develop highly active/selective 2e- ORR catalysts and shape the potential application of this electrochemical H2 O2 producing method.
Collapse
Affiliation(s)
- Nan Wang
- Key Laboratory of Marine Environmental Corrosion and Bio‐FoulingInstitute of OceanologyChinese Academy of Sciences7 Nanhai RoadQingdao266071China
- Center for Ocean Mega‐ScienceChinese Academy of Sciences7 Nanhai RoadQingdao266071China
- Open Studio for Marine Corrosion and ProtectionPilot National Laboratory for Marine Science and Technology (Qingdao)1 Wenhai RoadQingdao266237China
| | - Shaobo Ma
- MITT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001China
| | - Pengjian Zuo
- MITT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001China
| | - Jizhou Duan
- Key Laboratory of Marine Environmental Corrosion and Bio‐FoulingInstitute of OceanologyChinese Academy of Sciences7 Nanhai RoadQingdao266071China
- Center for Ocean Mega‐ScienceChinese Academy of Sciences7 Nanhai RoadQingdao266071China
- Open Studio for Marine Corrosion and ProtectionPilot National Laboratory for Marine Science and Technology (Qingdao)1 Wenhai RoadQingdao266237China
| | - Baorong Hou
- Key Laboratory of Marine Environmental Corrosion and Bio‐FoulingInstitute of OceanologyChinese Academy of Sciences7 Nanhai RoadQingdao266071China
- Center for Ocean Mega‐ScienceChinese Academy of Sciences7 Nanhai RoadQingdao266071China
- Open Studio for Marine Corrosion and ProtectionPilot National Laboratory for Marine Science and Technology (Qingdao)1 Wenhai RoadQingdao266237China
| |
Collapse
|
77
|
Xia Y, Zhao X, Xia C, Wu ZY, Zhu P, Kim JY(T, Bai X, Gao G, Hu Y, Zhong J, Liu Y, Wang H. Highly active and selective oxygen reduction to H 2O 2 on boron-doped carbon for high production rates. Nat Commun 2021; 12:4225. [PMID: 34244503 PMCID: PMC8270976 DOI: 10.1038/s41467-021-24329-9] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
Oxygen reduction reaction towards hydrogen peroxide (H2O2) provides a green alternative route for H2O2 production, but it lacks efficient catalysts to achieve high selectivity and activity simultaneously under industrial-relevant production rates. Here we report a boron-doped carbon (B-C) catalyst which can overcome this activity-selectivity dilemma. Compared to the state-of-the-art oxidized carbon catalyst, B-C catalyst presents enhanced activity (saving more than 210 mV overpotential) under industrial-relevant currents (up to 300 mA cm-2) while maintaining high H2O2 selectivity (85-90%). Density-functional theory calculations reveal that the boron dopant site is responsible for high H2O2 activity and selectivity due to low thermodynamic and kinetic barriers. Employed in our porous solid electrolyte reactor, the B-C catalyst demonstrates a direct and continuous generation of pure H2O2 solutions with high selectivity (up to 95%) and high H2O2 partial currents (up to ~400 mA cm-2), illustrating the catalyst's great potential for practical applications in the future.
Collapse
Affiliation(s)
- Yang Xia
- grid.21940.3e0000 0004 1936 8278Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX USA
| | - Xunhua Zhao
- grid.89336.370000 0004 1936 9924Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX USA
| | - Chuan Xia
- grid.21940.3e0000 0004 1936 8278Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX USA ,grid.21940.3e0000 0004 1936 8278Smalley-Curl Institute, Rice University, Houston, TX USA
| | - Zhen-Yu Wu
- grid.21940.3e0000 0004 1936 8278Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX USA
| | - Peng Zhu
- grid.21940.3e0000 0004 1936 8278Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX USA
| | - Jung Yoon (Timothy) Kim
- grid.21940.3e0000 0004 1936 8278Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX USA
| | - Xiaowan Bai
- grid.89336.370000 0004 1936 9924Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX USA
| | - Guanhui Gao
- grid.21940.3e0000 0004 1936 8278Department of Materials Science and Nanoengineering, Rice University, Houston, TX USA
| | - Yongfeng Hu
- grid.25152.310000 0001 2154 235XDepartment of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK Canada
| | - Jun Zhong
- grid.263761.70000 0001 0198 0694Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, China
| | - Yuanyue Liu
- grid.89336.370000 0004 1936 9924Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX USA
| | - Haotian Wang
- grid.21940.3e0000 0004 1936 8278Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX USA ,grid.21940.3e0000 0004 1936 8278Department of Materials Science and Nanoengineering, Rice University, Houston, TX USA ,grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, Houston, TX United States ,grid.440050.50000 0004 0408 2525Azrieli Global Scholar, Canadian Institute for Advanced Research (CIFAR), Toronto, ON Canada
| |
Collapse
|
78
|
Wei Z, Xu H, Lei Z, Yi X, Feng C, Dang Z. A binder-free electrode for efficient H2O2 formation and Fe2+ regeneration and its application to an electro-Fenton process for removing organics in iron-laden acid wastewater. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
79
|
Chen S, Luo T, Chen K, Lin Y, Fu J, Liu K, Cai C, Wang Q, Li H, Li X, Hu J, Li H, Zhu M, Liu M. Chemical Identification of Catalytically Active Sites on Oxygen-doped Carbon Nanosheet to Decipher the High Activity for Electro-synthesis Hydrogen Peroxide. Angew Chem Int Ed Engl 2021; 60:16607-16614. [PMID: 33982396 DOI: 10.1002/anie.202104480] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/10/2021] [Indexed: 11/06/2022]
Abstract
Electrochemical production of hydrogen peroxide (H2 O2 ) through two-electron (2 e- ) oxygen reduction reaction (ORR) is an on-site and clean route. Oxygen-doped carbon materials with high ORR activity and H2 O2 selectivity have been considered as the promising catalysts, however, there is still a lack of direct experimental evidence to identify true active sites at the complex carbon surface. Herein, we propose a chemical titration strategy to decipher the oxygen-doped carbon nanosheet (OCNS900 ) catalyst for 2 e- ORR. The OCNS900 exhibits outstanding 2 e- ORR performances with onset potential of 0.825 V (vs. RHE), mass activity of 14.5 A g-1 at 0.75 V (vs. RHE) and H2 O2 production rate of 770 mmol g-1 h-1 in flow cell, surpassing most reported carbon catalysts. Through selective chemical titration of C=O, C-OH, and COOH groups, we found that C=O species contributed to the most electrocatalytic activity and were the most active sites for 2 e- ORR, which were corroborated by theoretical calculations.
Collapse
Affiliation(s)
- Shanyong Chen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 511443, Guangzhou, China
| | - Tao Luo
- State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, China
| | - Kejun Chen
- State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, China
| | - Yiyang Lin
- State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, China
| | - Junwei Fu
- State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, China
| | - Kang Liu
- State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, China
| | - Chao Cai
- State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, China
| | - Qiyou Wang
- State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, China
| | - Huangjingwei Li
- State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, China
| | - Xiaoqing Li
- State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, China
| | - Junhua Hu
- School of Materials Science and Engineering, Zhengzhou University, 450002, Zhengzhou, China
| | - Hongmei Li
- State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, China
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 511443, Guangzhou, China
| | - Min Liu
- State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, China
| |
Collapse
|
80
|
Chen S, Luo T, Chen K, Lin Y, Fu J, Liu K, Cai C, Wang Q, Li H, Li X, Hu J, Li H, Zhu M, Liu M. Chemical Identification of Catalytically Active Sites on Oxygen‐doped Carbon Nanosheet to Decipher the High Activity for Electro‐synthesis Hydrogen Peroxide. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104480] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Shanyong Chen
- Guangdong Key Laboratory of Environmental Pollution and Health School of Environment Jinan University 511443 Guangzhou China
| | - Tao Luo
- State Key Laboratory of Powder Metallurgy School of Physical and Electronics Central South University 410083 Changsha China
| | - Kejun Chen
- State Key Laboratory of Powder Metallurgy School of Physical and Electronics Central South University 410083 Changsha China
| | - Yiyang Lin
- State Key Laboratory of Powder Metallurgy School of Physical and Electronics Central South University 410083 Changsha China
| | - Junwei Fu
- State Key Laboratory of Powder Metallurgy School of Physical and Electronics Central South University 410083 Changsha China
| | - Kang Liu
- State Key Laboratory of Powder Metallurgy School of Physical and Electronics Central South University 410083 Changsha China
| | - Chao Cai
- State Key Laboratory of Powder Metallurgy School of Physical and Electronics Central South University 410083 Changsha China
| | - Qiyou Wang
- State Key Laboratory of Powder Metallurgy School of Physical and Electronics Central South University 410083 Changsha China
| | - Huangjingwei Li
- State Key Laboratory of Powder Metallurgy School of Physical and Electronics Central South University 410083 Changsha China
| | - Xiaoqing Li
- State Key Laboratory of Powder Metallurgy School of Physical and Electronics Central South University 410083 Changsha China
| | - Junhua Hu
- School of Materials Science and Engineering Zhengzhou University 450002 Zhengzhou China
| | - Hongmei Li
- State Key Laboratory of Powder Metallurgy School of Physical and Electronics Central South University 410083 Changsha China
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health School of Environment Jinan University 511443 Guangzhou China
| | - Min Liu
- State Key Laboratory of Powder Metallurgy School of Physical and Electronics Central South University 410083 Changsha China
| |
Collapse
|
81
|
N-doped carbon-coated Fe3N composite as heterogeneous electro-Fenton catalyst for efficient degradation of organics. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63719-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
82
|
Zheng M, Yang Y, Qiao S, Zhou J, Quan X. A porous carbon-based electro-Fenton hollow fiber membrane with good antifouling property for microalgae harvesting. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119189] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
83
|
Zhao H, Yuan ZY. Design Strategies of Non-Noble Metal-Based Electrocatalysts for Two-Electron Oxygen Reduction to Hydrogen Peroxide. CHEMSUSCHEM 2021; 14:1616-1633. [PMID: 33587818 DOI: 10.1002/cssc.202100055] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/12/2021] [Indexed: 05/25/2023]
Abstract
Hydrogen peroxide (H2 O2 ) is a highly value-added and environmentally friendly chemical with various applications. The production of H2 O2 by electrocatalytic 2e- oxygen reduction reaction (ORR) has drawn considerable research attention, with a view to replacing the currently established anthraquinone process. Electrocatalysts with low cost, high activity, high selectivity, and superior stability are in high demand to realize precise control over electrochemical H2 O2 synthesis by 2e- ORR and the feasible commercialization of this system. This Review introduces a comprehensive overview of non-noble metal-based catalysts for electrochemical oxygen reduction to afford H2 O2 , providing an insight into catalyst design and corresponding reaction mechanisms. It starts with an in-depth discussion on the origins of 2e- /4e- selectivity towards ORR for catalysts. Recent advances in design strategies for non-noble metal-based catalysts, including carbon nanomaterials and transition metal-based materials, for electrochemical oxygen reduction to H2 O2 are then discussed, with an emphasis on the effects of electronic structure, nanostructure, and surface properties on catalytic performance. Finally, future challenges and opportunities are proposed for the further development of H2 O2 electrogeneration through 2e- ORR, from the standpoints of mechanistic studies and practical application.
Collapse
Affiliation(s)
- Hui Zhao
- School of Materials Science and Engineering, Liaocheng University, Liaocheng, Shandong, 252000, P. R. China
| | - Zhong-Yong Yuan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), School of Materials Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
84
|
Nair KM, Kumaravel V, Pillai SC. Carbonaceous cathode materials for electro-Fenton technology: Mechanism, kinetics, recent advances, opportunities and challenges. CHEMOSPHERE 2021; 269:129325. [PMID: 33385665 DOI: 10.1016/j.chemosphere.2020.129325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Electro-Fenton (EF) technique has gained significant attention in recent years owing to its high efficiency and environmental compatibility for the degradation of organic pollutants and contaminants of emerging concern (CECs). The efficiency of an EF reaction relies primarily on the formation of hydrogen peroxide (H2O2) via 2e─ oxygen reduction reaction (ORR) and the generation of hydroxyl radicals (●OH). This could be achieved through an efficient cathode material which operates over a wide pH range (pH 3-9). Herein, the current progresses on the advancements of carbonaceous cathode materials for EF reactions are comprehensively reviewed. The insights of various materials such as, activated carbon fibres (ACFs), carbon/graphite felt (CF/GF), carbon nanotubes (CNTs), graphene, carbon aerogels (CAs), ordered mesoporous carbon (OMCs), etc. are discussed inclusively. Transition metals and hetero atoms were used as dopants to enhance the efficiency of homogeneous and heterogeneous EF reactions. Iron-functionalized cathodes widened the working pH window (pH 1-9) and limited the energy consumption. The mechanism, reactor configuration, and kinetic models, are explained. Techno economic analysis of the EF reaction revealed that the anode and the raw materials contributed significantly to the overall cost. It is concluded that most reactions follow pseudo-first order kinetics and rotating cathodes provide the best H2O2 production efficiency in lab scale. The challenges, future prospects and commercialization of EF reaction for wastewater treatment are also discussed.
Collapse
Affiliation(s)
- Keerthi M Nair
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology, Sligo, F91 YW50, Ireland; Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, Institute of Technology, Sligo, F91 YW50, Ireland
| | - Vignesh Kumaravel
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology, Sligo, F91 YW50, Ireland; Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, Institute of Technology, Sligo, F91 YW50, Ireland
| | - Suresh C Pillai
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology, Sligo, F91 YW50, Ireland; Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, Institute of Technology, Sligo, F91 YW50, Ireland.
| |
Collapse
|
85
|
Takasugi S, Miseki Y, Konishi Y, Sasaki K, Fujita E, Sayama K. H 2O 2 production on a carbon cathode loaded with a nickel carbonate catalyst and on an oxide photoanode without an external bias. RSC Adv 2021; 11:11224-11232. [PMID: 35423623 PMCID: PMC8695953 DOI: 10.1039/d1ra01045j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/27/2021] [Indexed: 11/21/2022] Open
Abstract
Efficient H2O2 production both on a carbon cathode modified with various metal salts and on an oxide photoanode was investigated. The cathodic current density and faradaic efficiency for H2O2 production (FE(H2O2)) on a carbon cathode in KHCO3 aqueous solution were significantly improved by the loading of an insoluble nickel carbonate basic hydrate catalyst. This electrode was prepared by a precipitation method of nickel nitrate and KHCO3 aqueous solution at ambient temperature. The nickel carbonate basic hydrate electrode was very stable, and the accumulated concentration of H2O2 was reached at 1.0 wt% at a passed charge of 2500C (the average FE(H2O2) was 80%). A simple photoelectrochemical system for H2O2 production from both the cathode and a BiVO4/WO3 photoanode was demonstrated without an external bias or an ion-exchange membrane in a one-compartment reactor under simulated solar light. The apparent FE(H2O2) from both electrodes was calculated to be 168% in total, and the production rate of H2O2 was approximately 0.92 μmol min-1 cm-2. The solar-to-chemical energy conversion efficiency for H2O2 production (STCH2O2 ) without an external bias was approximately 1.75%.
Collapse
Affiliation(s)
- Soichi Takasugi
- Global Zero Emission Research Center (GZR), National Institute of Advanced Industrial Science and Technology (AIST) Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Yugo Miseki
- Global Zero Emission Research Center (GZR), National Institute of Advanced Industrial Science and Technology (AIST) Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Yoshinari Konishi
- Global Zero Emission Research Center (GZR), National Institute of Advanced Industrial Science and Technology (AIST) Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Kotaro Sasaki
- Chemistry Division, Brookhaven National Laboratory Upton New York 11973-5000 USA
| | - Etsuko Fujita
- Chemistry Division, Brookhaven National Laboratory Upton New York 11973-5000 USA
| | - Kazuhiro Sayama
- Global Zero Emission Research Center (GZR), National Institute of Advanced Industrial Science and Technology (AIST) Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| |
Collapse
|
86
|
Wang J, Li C, Rauf M, Luo H, Sun X, Jiang Y. Gas diffusion electrodes for H 2O 2 production and their applications for electrochemical degradation of organic pollutants in water: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143459. [PMID: 33223172 DOI: 10.1016/j.scitotenv.2020.143459] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/15/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Nowadays, it is a great challenge to minimize the negative impact of hazardous organic compounds in the environment. Highly efficient hydrogen peroxide (H2O2) production through electrochemical methods with gas diffusion electrodes (GDEs) is greatly demand for degradation of organic pollutants that present in drinking water and industrial wastewater. The GDEs as cathodic electrocatalyst manifest more cost-effective, lower energy consumption and higher oxygen utilization efficiency for H2O2 production as compared to other carbonaceous cathodes due to its worthy chemical and physical characteristics. In recent years, the crucial research and practical application of GDE for degradation of organic pollutants have been well developed. In this review, we focus on the novel design, fundamental aspects, influence factors, and electrochemical properties of GDEs. Furthermore, we investigate the generation of H2O2 through electrocatalytic processes and degradation mechanisms of refractory organic pollutants on GDEs. We describe the advanced methodologies towards electrochemical kinetics, which include the enhancement of GDEs electrochemical catalytic activity and mass transfer process. More importantly, we also highlight the other technologies assisted electrochemical process with GDEs to enlarge the practical application for water treatment. In addition, the developmental prospective and the existing research challenges of GDE-based electrocatalytic materials for real applications in H2O2 production and wastewater treatment are forecasted. According to our best knowledge, only few review articles have discussed GDEs in detail for H2O2 production and their applications for degradation of organic pollutants in water.
Collapse
Affiliation(s)
- Jingwen Wang
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Chaolin Li
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China.
| | - Muhammad Rauf
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| | - Haijian Luo
- Education Center of Experiments and Innovations, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Xue Sun
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Yiqi Jiang
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| |
Collapse
|
87
|
Huang X, Oleynikov P, He H, Mayoral A, Mu L, Lin F, Zhang YB. Docking MOF crystals on graphene support for highly selective electrocatalytic peroxide production. NANO RESEARCH 2021; 15:145-152. [PMID: 33680338 PMCID: PMC7921286 DOI: 10.1007/s12274-021-3382-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 05/24/2023]
Abstract
Tailoring the reaction kinetics is the central theme of designer electrocatalysts, which enables the selective conversion of abundant and inert atmospheric species into useful products. Here we show a supporting effect in tuning the electrocatalytic kinetics of oxygen reduction reaction (ORR) from four-electron to two-electron mechanism by docking metalloporphyrin-based metal-organic frameworks (MOFs) crystals on graphene support, leading to highly selective peroxide production with faradaic efficiency as high as 93.4%. A magic angle of 38.1° tilting for the co-facial alignment was uncovered by electron diffraction tomography, which is attributed to the maximization of π-π interaction for mitigating the lattice and symmetry mismatch between MOF and graphene. The facilitated electron migration and oxygen chemisorption could be ascribed to the supportive effect of graphene that disperses of the electron state of the active center, and ultimately regulates rate-determining step. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material (synthesis protocols for control samples, morphological and structural characterizations, porosity, electrochemical properties and activities including SEM, TEM, XPS, Raman, AFM investigations) is available in the online version of this article at 10.1007/s12274-021-3382-3.
Collapse
Affiliation(s)
- Xiaofeng Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210 China
| | - Peter Oleynikov
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210 China
| | - Hailong He
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210 China
| | - Alvaro Mayoral
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210 China
| | - Linqin Mu
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061 USA
| | - Feng Lin
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061 USA
| | - Yue-Biao Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210 China
| |
Collapse
|
88
|
Hydrogen peroxide electrosynthesis via regulating the oxygen reduction reaction pathway on Pt noble metal with ion poisoning. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137721] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
89
|
Su H, Chu Y, Miao B. Degreasing cotton used as pore-creating agent to prepare hydrophobic and porous carbon cathode for the electro-Fenton system: enhanced H 2O 2 generation and RhB degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-12965-z. [PMID: 33641103 DOI: 10.1007/s11356-021-12965-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
A porous carbon cathode was prepared using graphite, polytetrafluoroethylene (PTFE), and degreasing cotton (DC) through sintering treatment. The carbonization of DC by heat treatment played an ideal role in pore-creating, which weakened the mass transfer resistance of O2, and as a result, the adoption of degreasing cotton significantly improved the performance of H2O2 electro-generation. The optimized cathode was able to generate 567 mg L-1 H2O2 with a current efficiency (CE) of 86.7% by the electrochemical reaction of 60 min in a divided reactor. Furthermore, the degradation of rhodamine B (RhB) was carried out by an electro-Fenton system using the optimal cathode selected. The developed electro-Fenton system exhibited an excellent RhB degradation performance. The RhB solution of 50 mg L-1 was decolorized completely by the treatment of 10 min. Moreover, the degradation of 50~90 mg L-1 RhB solution presented over 90% TOC removal by the treatment of 120 min, indicating the ideal mineralization of organic pollutants. In addition, it was found that •OH was the major oxidizing specie responsible for the organics degradation. Finally, the possible pathway of RhB degradation in the electro-Fenton system was proposed by GC-MS analysis. The adoption of natural fibers for pore-creating provides an innovative and low-cost method to prepare porous cathode, which may promote the application of electro-Fenton oxidation in wastewater treatment.
Collapse
Affiliation(s)
- Hongzhao Su
- School of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, China
| | - Yanyang Chu
- School of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, China.
| | - Baoyu Miao
- School of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, China
| |
Collapse
|
90
|
Zhu Y, Deng F, Qiu S, Ma F, Zheng Y, Lian R. Enhanced electro-Fenton degradation of sulfonamides using the N, S co-doped cathode: Mechanism for H 2O 2 formation and pollutants decay. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123950. [PMID: 33264994 DOI: 10.1016/j.jhazmat.2020.123950] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 06/12/2023]
Abstract
Facing low reactivity/selectivity of oxygen reduction reaction (ORR) in electro-Fenton (EF), N, S atoms were introduced into carbon-based cathode. "End-on" O2 adsorption was achieved by adjusting electronic nature via N doping, while *OOH binding capability was tuned by spin density variation via S doping. Results showed the optimized N, S co-doped cathode presented a 42.47% improvement of H2O2 accumulation (7.95 ± 0.02 mg L-1 cm-2). According to density functional theory (DFT), N, S co-doped structure favored the "end-on" O2 adsorption as adsorption energy dropped to - 2.24 eV. Moreover, O-O/C-O bond lengths variation proved a possibility for *OOH desorption. The elaborated cathode was used in EF for sulfonamides (SAs) decay. A 100% removal rate of sulfadiazine (SDZ), sulfathiazole (STZ) and sulfadimethoxine (SDM) was achieved within 60 min, among which SDZ tended to be degraded easily. Because the absolute hardness (η) of those pollutants is ranked as follows: ηSDM> ηSTZ> ηSDZ. Degradation pathways were proposed based on the detected byproducts, along with toxicity was evaluated by ecological structure-activity relationship (ECOSAR) program. Results showed that toxic intermediates generated were reduced or even disappeared. EF with N, S co-doped cathode provides a promising process for antibiotics wastewater treatment.
Collapse
Affiliation(s)
- Yingshi Zhu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Fengxia Deng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shan Qiu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Yanshi Zheng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Ruqian Lian
- Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, PR China
| |
Collapse
|
91
|
Sun C, Chen T, Huang Q, Duan X, Zhan M, Ji L, Li X, Wang S, Yan J. Biochar cathode: Reinforcing electro-Fenton pathway against four-electron reduction by controlled carbonization and surface chemistry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142136. [PMID: 32911157 DOI: 10.1016/j.scitotenv.2020.142136] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
Porous biochars have attracted tremendous interests in electrochemical applications. In this study, a family of biochars were prepared from cellulose subject to different carbonization temperatures ranging from 400 to 700 °C, and the biochars were in-situ activated by a molten salt (ZnCl2) to construct a hierarchically porous architecture. The activated porous biochars (ZnBC) were used as a carbocatalyst for electro-Fenton (EF) oxidation of organic contaminants. Results showed that high-temperature carbonization improved the activity of biochar for four-electron oxygen reduction reaction (ORR) due to the rich carbon defects, while the mild-temperature treatment regulated the species and distribution of oxygen functional groups to increase the production of hydrogen peroxide (H2O2) via a selective two-electron ORR pathway. ZnBC-550 was the best cathode material with a high ORR activity without compromise in H2O2 selectivity; a high production rate of H2O2 (796.1 mg/g/h) was attained at -0.25 V vs RHE at pH of 1. Furthermore, Fe(II) addition induced an electro-Fenton system to attain fast decomposition of various organic pollutants at -0.25 V vs RHE (reversible hydrogen electrode) and pH of 3 with a satisfactory mineralization efficiency toward phenolic pollutants. The EF system maintains its excellent stability for 10 cycles. Hydroxyl radicals were identified as the dominant reactive oxygen species based on in situ electron paramagnetic resonance (EPR) analysis and radical quenching tests. This study gains new insights into electrocatalytic H2O2 production over porous biochars and provides a low-cost, robust and high-performance electro-Fenton cathode for wastewater purification.
Collapse
Affiliation(s)
- Chen Sun
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Tong Chen
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| | - Qunxing Huang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Mingxiu Zhan
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, China
| | - Longjie Ji
- National Engineering Laboratory for Site Remediation Technologies, Beijing Construction Engineering Group Environmental Remediation Co. Ltd., Beijing 100015, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaodong Li
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Jianhua Yan
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
92
|
Woo J, Lim JS, Kim JH, Joo SH. Heteroatom-doped carbon-based oxygen reduction electrocatalysts with tailored four-electron and two-electron selectivity. Chem Commun (Camb) 2021; 57:7350-7361. [PMID: 34231572 DOI: 10.1039/d1cc02667d] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxygen reduction reaction (ORR) plays a pivotal role in electrochemical energy conversion and commodity chemical production. Oxygen reduction involving a complete four-electron (4e-) transfer is important for the efficient operation of polymer electrolyte fuel cells, whereas the ORR with a partial 2e- transfer can serve as a versatile method for producing industrially important hydrogen peroxide (H2O2). For both the 4e- and 2e- pathway ORR, platinum-group metals (PGMs) have been materials of prevalent choice owing to their high intrinsic activity, but they are costly and scarce. Hence, the development of highly active and selective non-precious metal catalysts is of crucial importance for advancing electrocatalysis of the ORR. Heteroatom-doped carbon-based electrocatalysts have emerged as promising alternatives to PGM catalysts owing to their appreciable activity, tunable selectivity, and facile preparation. This review provides an overview of the design of heteroatom-doped carbon ORR catalysts with tailored 4e- or 2e- selectivities. We highlight catalyst design strategies that promote 4e- or 2e- ORR activity. We also summarise the major active sites and activity descriptors of the respective ORR pathways and describe the catalyst properties controlling the ORR mechanisms. We conclude the review with a summary and suggestions for future research.
Collapse
Affiliation(s)
- Jinwoo Woo
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| | - June Sung Lim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| | - Jae Hyung Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea. and Department of Chemistry, College of Natural Sciences, Seoul National University (SNU), 1 Gwanak-ro, Seoul 08826, Republic of Korea
| | - Sang Hoon Joo
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea. and Department of Chemistry, UNIST, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| |
Collapse
|
93
|
Shao H, Zhuang Q, Gao H, Wang Y, Ji L, Wang X, Zhang T, Duan L, Bai J, Niu Z, Liu J. Nitrogen and oxygen tailoring of a solid carbon active site for two-electron selectivity electrocatalysis. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01089h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The second nearest C atoms of pyridinic N were predicted to be an active site for 2e− ORR using DFT calculations, and were experimentally demonstrated to possess a tailoring function of a pyridinic N structure and O dopants on carbon materials.
Collapse
|
94
|
Lu S, Liu L, Demissie H, An G, Wang D. Design and application of metal-organic frameworks and derivatives as heterogeneous Fenton-like catalysts for organic wastewater treatment: A review. ENVIRONMENT INTERNATIONAL 2021; 146:106273. [PMID: 33264734 DOI: 10.1016/j.envint.2020.106273] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 05/25/2023]
Abstract
Advanced oxidation process (AOP), with a high oxidation efficiency, fast reaction speed (relatively no secondary pollution), has become one of the core technologies of industrial wastewater and advanced drinking water treatment. Heterogeneous Fenton-like oxidation process (HFOP) is a kind of AOP, which developed rapidly in recent years in such a way to overcome the disadvantages of traditional Fenton reaction. Metal-organic frameworks (MOFs) and their derivatives become essential heterogeneous catalysts for organics mineralization due to the large specific surface area, abundant active sites, and ease of structural regulation. However, the knowledge gap on the mechanism and the fate of heterogeneous catalyst species during organics degradation activities by MOFs presents considerable impediments, particularly for a wide application and scaling up the process. This work has the potential to provide guidance and ideas for researchers and engineers in the fields of environmental remediation, environmental catalysis and functional materials. This review focuses on clarifying the critical mechanism of •OH production from MOFs and derivatives as well as its action on the organic's degradation process. The recent developments in MOF based HFOP are compared, and more attention is paid for the following aspects in this review: (1) classifies systematically progressive modification methods of MOFs by chemical and physical treatments; (2) analyzes the fate of catalytic species during treating organic wastewater; (3) proposes design ideas and principles for improving the performance of MOFs catalysts; (4) discusses the main factors influencing the catalytic properties and practical application; (5) summarizes the possible research challenges and directions for MOFs and their derivatives as catalysts applied to wastewater treatment in the future.
Collapse
Affiliation(s)
- Sen Lu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Libing Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hailu Demissie
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guangyu An
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Dongsheng Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
95
|
Xu H, Zhang S, Geng J, Wang G, Zhang H. Cobalt single atom catalysts for the efficient electrosynthesis of hydrogen peroxide. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00158b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cobalt single atoms anchored on N-doped graphitic carbon were successfully synthesised and exhibited superior two-electron oxygen reduction reaction activity with a H2O2 selectivity of ∼76.0% at 0.5 V (vs. RHE).
Collapse
Affiliation(s)
- Hui Xu
- Key Laboratory of Materials Physics
- Centre for Environmental and Energy Nanomaterials
- Anhui Key Laboratory of Nanomaterials and Nanotechnology
- CAS Center for Excellence in Nanoscience
- Institute of Solid State Physics
| | - Shengbo Zhang
- Key Laboratory of Materials Physics
- Centre for Environmental and Energy Nanomaterials
- Anhui Key Laboratory of Nanomaterials and Nanotechnology
- CAS Center for Excellence in Nanoscience
- Institute of Solid State Physics
| | - Jing Geng
- Key Laboratory of Materials Physics
- Centre for Environmental and Energy Nanomaterials
- Anhui Key Laboratory of Nanomaterials and Nanotechnology
- CAS Center for Excellence in Nanoscience
- Institute of Solid State Physics
| | - Guozhong Wang
- Key Laboratory of Materials Physics
- Centre for Environmental and Energy Nanomaterials
- Anhui Key Laboratory of Nanomaterials and Nanotechnology
- CAS Center for Excellence in Nanoscience
- Institute of Solid State Physics
| | - Haimin Zhang
- Key Laboratory of Materials Physics
- Centre for Environmental and Energy Nanomaterials
- Anhui Key Laboratory of Nanomaterials and Nanotechnology
- CAS Center for Excellence in Nanoscience
- Institute of Solid State Physics
| |
Collapse
|
96
|
Liu Y, Guo J, Chen Y, Tan N, Wang J. High-Efficient Generation of H 2O 2 by Aluminum-Graphite Composite through Selective Oxygen Reduction for Degradation of Organic Contaminants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14085-14095. [PMID: 33100000 DOI: 10.1021/acs.est.0c05974] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hydrogen peroxide (H2O2) is an effective green oxidant, which has been widely applied for environmental remediation. Here, we prepared a novel aluminum-graphite (Al-Gr) composite, which was capable of high-efficient production of H2O2 through selective O2 reduction via a two-electron pathway. We discovered the production of H2O2 at a wide pH range, which could be enhanced by optimizing Al-Gr synthesis conditions. Poly(ethylene glycol) (PEG) addition could promote the formation of a welding interface and porous structure between Al and Gr in the Al-Gr composite, which enhanced the galvanic corrosion of Al0, the selectivity of oxygen reduction via the two-electron pathway, and the mass transfer of O2 in the Al-Gr/O2 system. The formation of Al4C3 could be regulated by sintering temperature and sintering time, which could promote the intergranular corrosion of Al0 and enhance the mass transfer of O2 by reaction with water to generate the porous structure in the Al-Gr composite. The concentration of H2O2 reached 777.5 mg/L at an initial pH of 9.0, an Al-Gr dosage of 8 g/L, and an O2 gas flow rate of 400 mL/min. The possible mechanisms of Al-Gr synthesis and H2O2 production in the Al-Gr/O2 system were proposed. The Al-Gr composite was effective for the in situ production of H2O2, which could be further decomposed into a hydroxyl radical (•OH) by Al0 in the Al-Gr composite. This composite could be used not only to decolorize the Rhodamine B dye but also to degrade various organic contaminants in different water matrices, indicating its environmental significance.
Collapse
Affiliation(s)
- Yong Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, P. R. China
| | - Jinrui Guo
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Yong Chen
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Ni Tan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, P. R. China
- Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
97
|
Liu JM, Ji ZY, Shi YB, Yuan P, Guo XF, Zhao LM, Li SM, Li H, Yuan JS. Effective treatment of levofloxacin wastewater by an electro-Fenton process with hydrothermal-activated graphite felt as cathode. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115348. [PMID: 32841862 DOI: 10.1016/j.envpol.2020.115348] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
The performance of the cathode significantly affects the ability of the electro-Fenton (EF) process to degrade chemicals. In this study, a simple method to modify the graphite felt (GF) cathode was proposed, i.e. oxidizing GF by hydrothermal treatment in nitric acid. The surface physical and electrochemical properties of modified graphite felt were characterized by several techniques: scanning electron microscope (SEM), water contact angle, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and linear scanning voltammetry (LSV). Compared with an unmodified GF (GF-0), the oxygen reduction reaction (ORR) activity of a modified GF was significantly improved due to the introduction of more oxygen-containing functional groups (OGs). Furthermore, the results showed that GF was optimally modified after 9 h (GF-9) of treatment. As an example, the H2O2 generation by GF-9 was 2.26 times higher than that of GF-0. After optimizing the process parameters, which include the initial Fe2+ concentration and current density, the apparent degradation rate constant of levofloxacin (LEV) could reach as high as 0.40 min-1. Moreover, the total organic carbon (TOC) removal rate and mineralization current efficiency (MCE) of the modified cathode were much higher than that of the GF-0. Conclusively, GF-9 is a promising cathode for the future development in organic pollutant removal via EF.
Collapse
Affiliation(s)
- Jia-Ming Liu
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Engineering Research Center of Seawater Utilization of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin, 300130, China
| | - Zhi-Yong Ji
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Engineering Research Center of Seawater Utilization of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin, 300130, China.
| | - Ya-Bin Shi
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin, 300130, China; Department of Chemical Engineering, Beijing Jiaotong University Haibin College, Huanghua, 061199, China
| | - Peng Yuan
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Engineering Research Center of Seawater Utilization of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin, 300130, China
| | - Xiao-Fu Guo
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Engineering Research Center of Seawater Utilization of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin, 300130, China
| | - Li-Ming Zhao
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Engineering Research Center of Seawater Utilization of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin, 300130, China
| | - Shu-Ming Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Engineering Research Center of Seawater Utilization of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin, 300130, China
| | - Hong Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Engineering Research Center of Seawater Utilization of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin, 300130, China
| | - Jun-Sheng Yuan
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Engineering Research Center of Seawater Utilization of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin, 300130, China
| |
Collapse
|
98
|
Electroless deposition of gold nanoparticles on a glassy carbon surface to attain methylene blue degradation via oxygen reduction reactions. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136966] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
99
|
Toledo-Carrillo E, Zhang X, Laxman K, Dutta J. Asymmetric electrode capacitive deionization for energy efficient desalination. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136939] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
100
|
Eliyahu M, Korin E, Bettelheim A. Tuning the electrocatalytic 2- and 4-electron reduction of oxygen by electrodeposited hybrid graphene-Co/Mn porphyrin coatings. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|