51
|
Abstract
Mucins are large glycoproteins that are ubiquitous in the animal kingdom. Mucins coat the surfaces of many cell types and can be secreted to form mucus gels that assume important physiological roles in many animals. Our growing understanding of the structure and function of mucin molecules and their functionalities has sparked interest in investigating the use of mucins as building blocks for innovative functional biomaterials. These pioneering studies have explored how new biomaterials can benefit from the barrier properties, hydration and lubrication properties, unique chemical diversity, and bioactivities of mucins. Owing to their multifunctionality, mucins have been used in a wide variety of applications, including as antifouling coatings, as selective filters, and artificial tears and saliva, as basis for cosmetics, as drug delivery materials, and as natural detergents. In this review, we summarize the current knowledge regarding key mucin properties and survey how they have been put to use. We offer a vision for how mucins could be used in the near future and what challenges await the field before biomaterials made of mucins and mucin-mimics can be translated into commercial products.
Collapse
Affiliation(s)
- Georgia Petrou
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Kungliga Tekniska Hogskolan, Stockholm, Sweden.
| | | |
Collapse
|
52
|
Wang X, Huang D, Cheng B, Wang L. New insight into the adsorption behaviour of effluent organic matter on organic-inorganic ultrafiltration membranes: a combined QCM-D and AFM study. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180586. [PMID: 30225052 PMCID: PMC6124109 DOI: 10.1098/rsos.180586] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/04/2018] [Indexed: 06/08/2023]
Abstract
Adsorption of organic matter on membranes plays a major role in determining the fouling behaviour of membranes. This study investigated effluent organic matter (EfOM) adsorption behaviour onto poly(vinylidene fluoride) (PVDF) membrane blended with SiO2 nanoparticles using quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM). The QCM-D results suggested that low adsorption of EfOM and an EfOM layer with a non-rigid and open structure was formed on SiO2-terminated membrane surfaces. Conformational assessment showed that EfOM undergoes adsorption via two steps: (i) in the initial stage, a rapid adsorption of EfOM accumulated onto the membrane; (ii) the change in dissipation was still occurring when the adsorption frequency reached balance, and the layer tended towards a more rearranged or organized secondary structure upon adsorption onto the more hydrophilic surface. For the AFM force test, when a self-made EfOM-coated probe approached the membrane, a 'jump-in' was observed for the hydrophobic membrane after repulsion at a small distance, while only repulsive forces were observed for PVDF/SiO2 membranes. This study demonstrated that the PVDF/SiO2 membrane changed the entire filtration process, forming a 'soft' open conformation in the foulant layer.
Collapse
Affiliation(s)
- Xudong Wang
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
- Key Laboratory of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
- Research Institute of Membrane Separation Technology of Shaanxi Province, Xi'an 710055, People's Republic of China
| | - Danxi Huang
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
- Key Laboratory of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
- Research Institute of Membrane Separation Technology of Shaanxi Province, Xi'an 710055, People's Republic of China
| | - Botao Cheng
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
- Key Laboratory of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
- Research Institute of Membrane Separation Technology of Shaanxi Province, Xi'an 710055, People's Republic of China
| | - Lei Wang
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
- Key Laboratory of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
- Research Institute of Membrane Separation Technology of Shaanxi Province, Xi'an 710055, People's Republic of China
| |
Collapse
|
53
|
Xiao M, Xiao J, Wu G, Ke Y, Fang L, Deng C, Liao H. Anchoring TGF-β1 on biomaterial surface via affinitive interactions: Effects on spatial structures and bioactivity. Colloids Surf B Biointerfaces 2018; 166:254-261. [DOI: 10.1016/j.colsurfb.2018.02.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/03/2018] [Accepted: 02/27/2018] [Indexed: 01/16/2023]
|
54
|
Wan F, Nylander T, Klodzinska SN, Foged C, Yang M, Baldursdottir SG, M Nielsen H. Lipid Shell-Enveloped Polymeric Nanoparticles with High Integrity of Lipid Shells Improve Mucus Penetration and Interaction with Cystic Fibrosis-Related Bacterial Biofilms. ACS APPLIED MATERIALS & INTERFACES 2018; 10:10678-10687. [PMID: 29473725 DOI: 10.1021/acsami.7b19762] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanoparticle (NP) mediated drug delivery into viscous biomatrices, e.g., mucus and bacterial biofilms, is challenging. Lipid shell-enveloped polymeric NPs (Lipid@NPs), composed of a polymeric NP core coated with a lipid shell, represent a promising alternative to the current delivery systems. Here, we describe the facile methods to prepare Lipid@NPs with high integrity of lipid shells and demonstrate the potential of Lipid@NPs in an effective mucus penetration and interaction with cystic fibrosis-related bacterial biofilms. Lipid shell-enveloped polystyrene NPs with high integrity of lipid shells ( cLipid@PSNPs) were prepared by using an electrostatically mediated layer-by-layer approach, where the model polystyrene NPs (PSNPs) were first modified with positively charged poly-l-lysine (PLL) and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), followed by subsequent fusion with zwitterionic, PEGylated small unilamellar vesicles (SUVs). The interaction of the PSNPs with SUVs was significantly enhanced by modifying the PSNPs with PLL and DOTAP, which eventually resulted in the formation of cLipid@PSNPs, i.e., Lipid@PLL-PSNPs and Lipid@DOTAP-PSNPs. Improved mucus-penetrating property of cLipid@PSNPs was demonstrated by quartz crystal microbalance with dissipation monitoring measurements. Furthermore, fluorescence resonance energy transfer measurements showed that the interaction of the cLipid@PSNPs with bacterial biofilms was significantly promoted. In conclusion, we prepared cLipid@PSNPs via an electrostatically mediated layer-by-layer approach. Our results suggest that the integrity of the lipid envelopes is crucial for enabling the diffusion of Lipid@PSNPs into the mucus layer and promoting the interaction of Lipid@PSNPs with a bacterial biofilm.
Collapse
Affiliation(s)
- Feng Wan
- Department of Pharmacy , University of Copenhagen , Universitetsparken 2 , DK-2100 Copenhagen , Denmark
| | - Tommy Nylander
- Department of Physical Chemistry , Lund University , SE-221 00 Lund , Sweden
| | - Sylvia Natalie Klodzinska
- Department of Pharmacy , University of Copenhagen , Universitetsparken 2 , DK-2100 Copenhagen , Denmark
| | - Camilla Foged
- Department of Pharmacy , University of Copenhagen , Universitetsparken 2 , DK-2100 Copenhagen , Denmark
| | - Mingshi Yang
- Department of Pharmacy , University of Copenhagen , Universitetsparken 2 , DK-2100 Copenhagen , Denmark
| | - Stefania G Baldursdottir
- Department of Pharmacy , University of Copenhagen , Universitetsparken 2 , DK-2100 Copenhagen , Denmark
| | - Hanne M Nielsen
- Department of Pharmacy , University of Copenhagen , Universitetsparken 2 , DK-2100 Copenhagen , Denmark
| |
Collapse
|
55
|
Che HX, Gwee SJ, Ng WM, Ahmad AL, Lim J. Design of core-shell magnetic nanocomposite by using linear and branched polycation as an ad-layer: Influences of the structural and viscoelastic properties. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.12.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
56
|
Abadian PN, Buch PJ, Goluch ED, Li J, Zhang Z. Real-Time Monitoring of Urinary Encrustation Using a Quartz Crystal Microbalance. Anal Chem 2018; 90:1531-1535. [DOI: 10.1021/acs.analchem.7b04047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | - Jun Li
- Global
Advanced Engineering, Teleflex Inc., Cambridge, Massachusetts 02139, United States
| | - Zheng Zhang
- Global
Advanced Engineering, Teleflex Inc., Cambridge, Massachusetts 02139, United States
| |
Collapse
|
57
|
KOJIMA T. Surface Modification Enhanced Reflection Intensity of Quartz Crystal Microbalance Sensors upon Molecular Adsorption. ANAL SCI 2018. [DOI: 10.2116/analsci.34.363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Taisuke KOJIMA
- Department of Biomedical Engineering, Georgia Institute of Technology
- Department of Biomolecular Engineering, Tokyo Institute of Technology
| |
Collapse
|
58
|
Fries MR, Stopper D, Braun MK, Hinderhofer A, Zhang F, Jacobs RMJ, Skoda MWA, Hansen-Goos H, Roth R, Schreiber F. Multivalent-Ion-Activated Protein Adsorption Reflecting Bulk Reentrant Behavior. PHYSICAL REVIEW LETTERS 2017; 119:228001. [PMID: 29286772 DOI: 10.1103/physrevlett.119.228001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Indexed: 06/07/2023]
Abstract
Protein adsorption at the solid-liquid interface is an important phenomenon that often can be observed as a first step in biological processes. Despite its inherent importance, still relatively little is known about the underlying microscopic mechanisms. Here, using multivalent ions, we demonstrate the control of the interactions and the corresponding adsorption of net-negatively charged proteins (bovine serum albumin) at a solid-liquid interface. This is demonstrated by ellipsometry and corroborated by neutron reflectivity and quartz-crystal microbalance experiments. We show that the reentrant condensation observed within the rich bulk phase behavior of the system featuring a nonmonotonic dependence of the second virial coefficient on salt concentration c_{s} is reflected in an intriguing way in the protein adsorption d(c_{s}) at the interface. Our findings are successfully described and understood by a model of ion-activated patchy interactions within the framework of the classical density functional theory. In addition to the general challenge of connecting bulk and interface behavior, our work has implications for, inter alia, nucleation at interfaces.
Collapse
Affiliation(s)
- Madeleine R Fries
- Institute for Applied Physics, University of Tübingen, 72076 Tübingen, Germany
| | - Daniel Stopper
- Institute for Theoretical Physics, University of Tübingen, 72076 Tübingen, Germany
| | - Michal K Braun
- Institute for Applied Physics, University of Tübingen, 72076 Tübingen, Germany
| | | | - Fajun Zhang
- Institute for Applied Physics, University of Tübingen, 72076 Tübingen, Germany
| | - Robert M J Jacobs
- Department for Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, United Kingdom
| | | | - Hendrik Hansen-Goos
- Institute for Theoretical Physics, University of Tübingen, 72076 Tübingen, Germany
| | - Roland Roth
- Institute for Theoretical Physics, University of Tübingen, 72076 Tübingen, Germany
| | - Frank Schreiber
- Institute for Applied Physics, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
59
|
Kılıç A, Fazeli Jadidi M, Özer HÖ, Kök FN. The effect of thiolated phospholipids on formation of supported lipid bilayers on gold substrates investigated by surface-sensitive methods. Colloids Surf B Biointerfaces 2017; 160:117-125. [DOI: 10.1016/j.colsurfb.2017.09.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/19/2017] [Accepted: 09/06/2017] [Indexed: 10/18/2022]
|
60
|
Jiang F, Qian C, Esker AR, Roman M. Effect of Nonionic Surfactants on Dispersion and Polar Interactions in the Adsorption of Cellulases onto Lignin. J Phys Chem B 2017; 121:9607-9620. [DOI: 10.1021/acs.jpcb.7b07716] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Feng Jiang
- Macromolecules
Innovation Institute,‡Department of Chemistry, and §Department of
Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Chen Qian
- Macromolecules
Innovation Institute,‡Department of Chemistry, and §Department of
Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Alan R. Esker
- Macromolecules
Innovation Institute,‡Department of Chemistry, and §Department of
Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Maren Roman
- Macromolecules
Innovation Institute,‡Department of Chemistry, and §Department of
Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
61
|
Berts I, Fragneto G, Porcar L, Hellsing MS, Rennie AR. Controlling adsorption of albumin with hyaluronan on silica surfaces and sulfonated latex particles. J Colloid Interface Sci 2017; 504:315-324. [DOI: 10.1016/j.jcis.2017.05.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 01/08/2023]
|
62
|
Szuwarzyński M, Wolski K, Pomorska A, Uchacz T, Gut A, Łapok Ł, Zapotoczny S. Photoactive Surface-Grafted Polymer Brushes with Phthalocyanine Bridging Groups as an Advanced Architecture for Light-Harvesting. Chemistry 2017. [PMID: 28644908 DOI: 10.1002/chem.201702737] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Surface-grafted polymer brushes of novel ladder-like architecture were proposed for inducing ordering of chromophores embedded therein. The brushes with acetylene side groups were obtained by surface-initiated photoiniferter-mediated polymerization. The acetylene moieties reacted then through a "click" process with an axially azide-bifunctionalized silicon phthalocyanine bridging the neighboring chains that inherently adopt extended conformations in dense brushes. FTIR, quartz crystal microbalance, and atomic force microscopy were used to study formation and structure of the photoactive brushes varying in grafting densities. Importantly, photophysical properties of the chromophores were virtually unaffected upon embedding them into the brushes, as evidenced by UV/Vis absorption and emission spectroscopy. Owing to the unique ordering of the chromophores, the proposed method may open new opportunities for the fabrication of light-harvesting systems suitable for photovoltaic or sensing applications.
Collapse
Affiliation(s)
- Michał Szuwarzyński
- AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Al. Mickiewicza 30, 30-059, Krakow, Poland.,Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060, Krakow, Poland
| | - Karol Wolski
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060, Krakow, Poland
| | - Agata Pomorska
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060, Krakow, Poland.,Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239, Krakow, Poland
| | - Tomasz Uchacz
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060, Krakow, Poland
| | - Arkadiusz Gut
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060, Krakow, Poland
| | - Łukasz Łapok
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060, Krakow, Poland
| | - Szczepan Zapotoczny
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060, Krakow, Poland
| |
Collapse
|
63
|
Käsdorf BT, Weber F, Petrou G, Srivastava V, Crouzier T, Lieleg O. Mucin-Inspired Lubrication on Hydrophobic Surfaces. Biomacromolecules 2017. [DOI: 10.1021/acs.biomac.7b00605] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Benjamin T. Käsdorf
- Department
of Mechanical Engineering and Munich School of Bioengineering, Technical University of Munich, Boltzmannstrasse 11, 85748, Garching, Germany
| | - Florian Weber
- Department
of Mechanical Engineering and Munich School of Bioengineering, Technical University of Munich, Boltzmannstrasse 11, 85748, Garching, Germany
| | - Georgia Petrou
- Division
of Glycoscience, School of Biotechnology, Royal Institute of Technology, Albanova University Center, 10691 Stockholm, Sweden
| | - Vaibhav Srivastava
- Division
of Glycoscience, School of Biotechnology, Royal Institute of Technology, Albanova University Center, 10691 Stockholm, Sweden
| | - Thomas Crouzier
- Division
of Glycoscience, School of Biotechnology, Royal Institute of Technology, Albanova University Center, 10691 Stockholm, Sweden
| | - Oliver Lieleg
- Department
of Mechanical Engineering and Munich School of Bioengineering, Technical University of Munich, Boltzmannstrasse 11, 85748, Garching, Germany
| |
Collapse
|
64
|
Sharma I, Pattanayek SK. Effect of surface energy of solid surfaces on the micro- and macroscopic properties of adsorbed BSA and lysozyme. Biophys Chem 2017; 226:14-22. [DOI: 10.1016/j.bpc.2017.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/28/2017] [Accepted: 03/31/2017] [Indexed: 10/19/2022]
|
65
|
Raudino M, Giamblanco N, Montis C, Berti D, Marletta G, Baglioni P. Probing the Cleaning of Polymeric Coatings by Nanostructured Fluids: A QCM-D Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:5675-5684. [PMID: 28537736 DOI: 10.1021/acs.langmuir.7b00968] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Complex fluids composed of water, an organic solvent, and a surfactant have been recently employed as cleaning systems to remove hydrophobic materials, such as polymeric coatings, from solid surfaces. The simultaneous presence of surfactants and an organic solvent with good affinity for the polymer was proven necessary for the polymer's removal, but the comprehension of the cleaning mechanism is poorly understood. In this Article, we investigated the mechanism of removal, highlighting the specific role of each component in the interaction with the polymer film. In particular, the results from quartz crystal microbalance with dissipation monitoring (QCM-D) were compared with those obtained by using confocal microscopy to follow in situ the effect of a nanostructured fluid, i.e., a ternary formulation containing water, 2-butanone (MEK) as a good solvent for the polymer, and a nonionic surfactant (C9-11 ethoxylated alcohol, BR) on acrylic copolymer films (Paraloid B72). The results indicate a two-step process: (i) the penetration of the good solvent across the film causes the swelling of the polymer, the weakening of polymer-polymer interactions, and an increase of molecular mobility, followed by (ii) the slow adsorption of amphiphilic aggregates promoting the film detachment from the solid substrate. A different behavior is observed in the presence of similar formulations containing an anionic surfactant (sodium dodecyl sulfate, SDS), where the adsorption of SDS micelles on the surface of the polymeric film hinders solvent access into the polymer layer, rather than promoting its detachment from the solid substrate.
Collapse
Affiliation(s)
- Martina Raudino
- Department of Chemistry and CSGI, University of Florence , Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Nicoletta Giamblanco
- Department of Chemical Science, Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN), University of Catania and CSGI , Viale A. Doria 6, 95129 Catania, Italy
| | - Costanza Montis
- Department of Chemistry and CSGI, University of Florence , Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Debora Berti
- Department of Chemistry and CSGI, University of Florence , Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Giovanni Marletta
- Department of Chemical Science, Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN), University of Catania and CSGI , Viale A. Doria 6, 95129 Catania, Italy
| | - Piero Baglioni
- Department of Chemistry and CSGI, University of Florence , Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
66
|
Development of a QCM-D biosensor for Ochratoxin A detection in red wine. Talanta 2017; 166:193-197. [PMID: 28213222 DOI: 10.1016/j.talanta.2017.01.054] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/13/2017] [Accepted: 01/18/2017] [Indexed: 01/27/2023]
Abstract
Ochratoxin A (OTA), a highly toxic compound, is one of the most widely spread mycotoxins that contaminates a large variety of agricultural commodities. Due to its presence in the food chain, it imposes a hazard on both human and animal health. Therefore, there is a need for precise, fast and simple methods for toxin quantification. Herein, a novel sensor based on a quartz crystal microbalance with dissipation monitoring (QCM-D) and antibodies for specific analyte recognition was developed for rapid and sensitive detection of OTA in red wine. The combination of indirect competitive assay with QCM-D gives a straightforward device, which can simultaneously measure frequency (Δf) and dissipation (ΔD) changes resulting in detailed information about the mass attached to the sensor surface as well as conformational changes, viscoelastic properties and the hydration state of the film. Small molecules (such as OTA) suffer from poor LOD due to the high concentration of primary antibody needed to generate adequate signal. In the present study, amplification of the QCM-D signal was obtained by applying secondary antibodies conjugated with gold nanoparticles (AuNPs). Thanks to this, a linear detection range of 0.2-40ngmL-1 has been achieved with an excellent LOD of 0.16ngmL-1, which is one order of magnitude lower than LOD specified by European Union legislation concerning the limit of OTA in food. Moreover, a matrix effect (caused by the occurrence of polyphenols in wine) and associated non-specific interactions with the sensor surface was completely eliminated by a simple pre-treatment of the wine with the addition of 3% poly(vinylpyrrolidone) (PVP).
Collapse
|
67
|
Park JH, Sut TN, Jackman JA, Ferhan AR, Yoon BK, Cho NJ. Controlling adsorption and passivation properties of bovine serum albumin on silica surfaces by ionic strength modulation and cross-linking. Phys Chem Chem Phys 2017; 19:8854-8865. [DOI: 10.1039/c7cp01310h] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the physicochemical factors that influence protein adsorption onto solid supports holds wide relevance for fundamental insights into protein structure and function as well as for applications such as surface passivation.
Collapse
Affiliation(s)
- Jae Hyeon Park
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
- Centre for Biomimetic Sensor Science
- Nanyang Technological University
| | - Tun Naw Sut
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
- Centre for Biomimetic Sensor Science
- Nanyang Technological University
| | - Joshua A. Jackman
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
- Centre for Biomimetic Sensor Science
- Nanyang Technological University
| | - Abdul Rahim Ferhan
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
- Centre for Biomimetic Sensor Science
- Nanyang Technological University
| | - Bo Kyeong Yoon
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
- Centre for Biomimetic Sensor Science
- Nanyang Technological University
| | - Nam-Joon Cho
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
- Centre for Biomimetic Sensor Science
- Nanyang Technological University
| |
Collapse
|
68
|
Harrison ET, Weidner T, Castner DG, Interlandi G. Predicting the orientation of protein G B1 on hydrophobic surfaces using Monte Carlo simulations. Biointerphases 2016; 12:02D401. [PMID: 27923271 PMCID: PMC5148762 DOI: 10.1116/1.4971381] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/06/2016] [Accepted: 11/18/2016] [Indexed: 01/17/2023] Open
Abstract
A Monte Carlo algorithm was developed to predict the most likely orientations of protein G B1, an immunoglobulin G (IgG) antibody-binding domain of protein G, adsorbed onto a hydrophobic surface. At each Monte Carlo step, the protein was rotated and translated as a rigid body. The assumption about rigidity was supported by quartz crystal microbalance with dissipation monitoring experiments, which indicated that protein G B1 adsorbed on a polystyrene surface with its native structure conserved and showed that its IgG antibody-binding activity was retained. The Monte Carlo simulations predicted that protein G B1 is likely adsorbed onto a hydrophobic surface in two different orientations, characterized as two mutually exclusive sets of amino acids contacting the surface. This was consistent with sum frequency generation (SFG) vibrational spectroscopy results. In fact, theoretical SFG spectra calculated from an equal combination of the two predicted orientations exhibited reasonable agreement with measured spectra of protein G B1 on polystyrene surfaces. Also, in explicit solvent molecular dynamics simulations, protein G B1 maintained its predicted orientation in three out of four runs. This work shows that using a Monte Carlo approach can provide an accurate estimate of a protein orientation on a hydrophobic surface, which complements experimental surface analysis techniques and provides an initial system to study the interaction between a protein and a surface in molecular dynamics simulations.
Collapse
Affiliation(s)
- Elisa T Harrison
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195
| | - Tobias Weidner
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark and Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - David G Castner
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195 and Department of Bioengineering, University of Washington, Seattle, Washington 98195
| | - Gianluca Interlandi
- Department of Bioengineering, University of Washington, Seattle, Washington 98195
| |
Collapse
|
69
|
Oh S, Borrós S. Mucoadhesion vs mucus permeability of thiolated chitosan polymers and their resulting nanoparticles using a quartz crystal microbalance with dissipation (QCM-D). Colloids Surf B Biointerfaces 2016; 147:434-441. [DOI: 10.1016/j.colsurfb.2016.08.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 07/16/2016] [Accepted: 08/18/2016] [Indexed: 12/12/2022]
|
70
|
Nikogeorgos N, Patil NJ, Zappone B, Lee S. Interaction of porcine gastric mucin with various polycations and its influence on the boundary lubrication properties. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.08.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
71
|
Wang J, Wang L, Miao R, Lv Y, Wang X, Meng X, Yang R, Zhang X. Enhanced gypsum scaling by organic fouling layer on nanofiltration membrane: Characteristics and mechanisms. WATER RESEARCH 2016; 91:203-213. [PMID: 26799710 DOI: 10.1016/j.watres.2016.01.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/06/2016] [Accepted: 01/10/2016] [Indexed: 06/05/2023]
Abstract
To investigate how the characteristics of pregenerated organic fouling layers on nanofiltration (NF) membranes influence the subsequent gypsum scaling behavior, filtration experiments with gypsum were carried out with organic-fouled poly(piperazineamide) NF membranes. Organic fouling layer on membrane was induced by bovine serum albumin (BSA), humic acid (HA), and sodium alginate (SA), respectively. The morphology and components of the scalants, the role of Ca(2+) adsorption on the organic fouling layer during gypsum crystallization, and the interaction forces of gypsum on the membrane surface were investigated. The results indicated that SA- and HA-fouled membranes had higher surface crystallization tendency along with more severe flux decline during gypsum scaling than BSA-fouled and virgin membranes because HA and SA macromolecules acted as nuclei for crystallization. Based on the analyses of Ca(2+) adsorption onto organic adlayers and adhesion forces, it was found that the flux decline rate and extent in the gypsum scaling experiment was positively related to the Ca(2+)-binding capacity of the organic matter. Although the dominant gypsum scaling mechanism was affected by coupling physicochemical effects, the controlling factors varied among foulants. Nevertheless, the carboxyl density of organic matter played an important role in determining surface crystallization on organic-fouled membrane.
Collapse
Affiliation(s)
- Jiaxuan Wang
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No. 13, Xi'an 710055, China; Leibniz Institute of Surface Modification, Permoserstraße 15, Leipzig D-04318, Germany
| | - Lei Wang
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No. 13, Xi'an 710055, China.
| | - Rui Miao
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No. 13, Xi'an 710055, China
| | - Yongtao Lv
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No. 13, Xi'an 710055, China
| | - Xudong Wang
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No. 13, Xi'an 710055, China
| | - Xiaorong Meng
- School of Science, Xi'an University of Architecture and Technology, Yan Ta Road, No. 13, Xi'an 710055, China
| | - Ruosong Yang
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No. 13, Xi'an 710055, China
| | - Xiaoting Zhang
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No. 13, Xi'an 710055, China
| |
Collapse
|
72
|
Neves MAD, Blaszykowski C, Thompson M. Utilizing a Key Aptamer Structure-Switching Mechanism for the Ultrahigh Frequency Detection of Cocaine. Anal Chem 2016; 88:3098-106. [PMID: 26871312 DOI: 10.1021/acs.analchem.5b04010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Aptasensing of small molecules remains a challenge as detection often requires the use of labels or signal amplification methodologies, resulting in both difficult-to-prepare sensor platforms and multistep, complex assays. Furthermore, many aptasensors rely on the binding mechanism or structural changes associated with target capture by the aptameric probe, resulting in a detection scheme customized to each aptamer. It is in this context that we report herein a sensitive cocaine aptasensor that offers both real-time and label-free measurement capabilities. Detection relies on the electromagnetic piezoelectric acoustic sensor (EMPAS) platform. The sensing interface consists of a S-(11-trichlorosilyl-undecanyl)benzenethiosulfonate (BTS) adlayer-coated quartz disc onto which a structure-switching cocaine aptamer (MN6) is immobilized, completing the preparation of the MN6 cocaine aptasensor (M6CA). The EMPAS system has recently been employed as the foundation of a cocaine aptasensor based on a structurally rigid cocaine aptamer variant (MN4), an aptasensor referred to by analogy as M4CA. M6CA represents a significant increase in terms of analytical performance, compared to not only M4CA but also other cocaine aptamer-based sensors that do not rely on signal amplification, producing an apparent K(d) of 27 ± 6 μM and a 0.3 μM detection limit. Remarkably, the latter is in the range of that achieved by cocaine aptasensors relying on signal amplification. Furthermore, M6CA proved to be capable not only of regaining its cocaine-binding ability via simple buffer flow over the sensing interface (i.e., without the necessity to implement an additional regeneration step, such as in the case of M4CA), but also of detecting cocaine in a multicomponent matrix possessing potentially assay-interfering species. Finally, through observation of the distinct shape of its response profiles to cocaine injection, demonstration was made that the EMPAS system in practice offers the possibility to distinguish between the binding mechanisms of structure-switching (MN6) vs rigid (MN4) aptameric probes, an ability that could allow the EMPAS to provide a more universal aptasensing platform than what is ordinarily observed in the literature.
Collapse
Affiliation(s)
- Miguel A D Neves
- Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, Ontario, Canada M5S 3H6
| | | | - Michael Thompson
- Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, Ontario, Canada M5S 3H6.,Econous Systems, Inc. , 80 St. George Street, Toronto, Ontario, Canada M5S 3H6
| |
Collapse
|
73
|
Nübel C, Appel B, Hospach I, Mai M, Krasteva N, Nelles G, Petruschka L, Müller S. Challenges and Opportunities in the Development of Aptamers for TNFα. Appl Biochem Biotechnol 2016; 179:398-414. [PMID: 26922730 DOI: 10.1007/s12010-016-2002-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/27/2016] [Indexed: 11/24/2022]
Abstract
RNA aptamers for tumor necrosis factor-alpha (TNFα), for which functionality was demonstrated in L929 cells, show only little affinity for the protein in vitro. Detailed investigation of the aptamer-protein interaction by surface plasmon resonance and quartz crystal microbalance analysis revealed that affinity is not the only crucial parameter for efficacy and functionality of those aptamers. Instead, the sensitive equilibrium of the monomeric and homotrimeric form of soluble TNFα decides on aptamer binding. Our results show that the field of application and the source of TNFα have to be carefully defined before selection of aptamer sequences.
Collapse
Affiliation(s)
- Claudia Nübel
- Institut für Biochemie, Ernst-Moritz-Arndt Universität Greifswald, Greifswald, Germany
| | - Bettina Appel
- Institut für Biochemie, Ernst-Moritz-Arndt Universität Greifswald, Greifswald, Germany
| | - Ingeborg Hospach
- Materials Science Laboratory, Sony Deutschland GmbH, Stuttgart, Germany.,Institute of Electronics and Sensor Materials, Technical University Freiberg, Freiberg, Germany
| | - Michaela Mai
- Materials Science Laboratory, Sony Deutschland GmbH, Stuttgart, Germany
| | - Nadejda Krasteva
- Materials Science Laboratory, Sony Deutschland GmbH, Stuttgart, Germany
| | - Gabriele Nelles
- Materials Science Laboratory, Sony Deutschland GmbH, Stuttgart, Germany
| | - Lothar Petruschka
- Interfakultäres Institut für Genetik und funktionelle Genomforschung, Ernst-Moritz-Arndt Universität Greifswald, Greifswald, Germany
| | - Sabine Müller
- Institut für Biochemie, Ernst-Moritz-Arndt Universität Greifswald, Greifswald, Germany.
| |
Collapse
|
74
|
Messina GML, De Zotti M, Lettieri R, Gatto E, Venanzi M, Formaggio F, Toniolo C, Marletta G. Design of lipidic platforms anchored within nanometric cavities by peptide hooks. RSC Adv 2016. [DOI: 10.1039/c6ra06054d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A stable confinement of liposomes within arrays of hybrid polymer/Au nanocavities was achieved using peptide hooks covalently linked to the Au floor.
Collapse
Affiliation(s)
- G. M. L. Messina
- Laboratory for Molecular Surfaces and Nanotechnologies (LAMSUN)
- Department of Chemical Sciences
- University of Catania
- Center for Colloids and Surface Science (CSGI)
- 95129 Catania
| | - M. De Zotti
- ICB Padova Unit
- CNR
- Department of Chemistry
- University of Padova
- 35131 Padova
| | - R. Lettieri
- Department of Chemical Sciences and Technologies
- University of Rome “Tor Vergata”
- CSGI
- 00133 Rome
- Italy
| | - E. Gatto
- Department of Chemical Sciences and Technologies
- University of Rome “Tor Vergata”
- CSGI
- 00133 Rome
- Italy
| | - M. Venanzi
- Department of Chemical Sciences and Technologies
- University of Rome “Tor Vergata”
- CSGI
- 00133 Rome
- Italy
| | - F. Formaggio
- ICB Padova Unit
- CNR
- Department of Chemistry
- University of Padova
- 35131 Padova
| | - C. Toniolo
- ICB Padova Unit
- CNR
- Department of Chemistry
- University of Padova
- 35131 Padova
| | - G. Marletta
- Laboratory for Molecular Surfaces and Nanotechnologies (LAMSUN)
- Department of Chemical Sciences
- University of Catania
- Center for Colloids and Surface Science (CSGI)
- 95129 Catania
| |
Collapse
|
75
|
Schömig VJ, Käsdorf BT, Scholz C, Bidmon K, Lieleg O, Berensmeier S. An optimized purification process for porcine gastric mucin with preservation of its native functional properties. RSC Adv 2016. [DOI: 10.1039/c6ra07424c] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The purification of porcine gastric mucin was optimized and key properties such as gel formation at acidic pH, lubrication behavior and interactions of mucins with charged molecules were preserved.
Collapse
Affiliation(s)
- Veronika J. Schömig
- Bioseparation Engineering Group
- Department of Mechanical Engineering
- Technical University of Munich
- D-85748 Garching
- Germany
| | - Benjamin T. Käsdorf
- Institute of Medical Engineering and Department of Mechanical Engineering
- Technical University of Munich
- D-85748 Garching
- Germany
| | - Christoph Scholz
- Bioseparation Engineering Group
- Department of Mechanical Engineering
- Technical University of Munich
- D-85748 Garching
- Germany
| | - Konstantinia Bidmon
- Institute of Medical Engineering and Department of Mechanical Engineering
- Technical University of Munich
- D-85748 Garching
- Germany
| | - Oliver Lieleg
- Institute of Medical Engineering and Department of Mechanical Engineering
- Technical University of Munich
- D-85748 Garching
- Germany
| | - Sonja Berensmeier
- Bioseparation Engineering Group
- Department of Mechanical Engineering
- Technical University of Munich
- D-85748 Garching
- Germany
| |
Collapse
|
76
|
Qin Y, Qiu X, Liang W, Yang D. Investigation of Adsorption Characteristics of Sodium Lignosulfonate on the Surface of Disperse Dye Using a Quartz Crystal Microbalance with Dissipation. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b03582] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yanlin Qin
- School of Chemistry and Chemical
Engineering and ‡State Key Lab of Pulp and Paper
Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Xueqing Qiu
- School of Chemistry and Chemical
Engineering and ‡State Key Lab of Pulp and Paper
Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Wanshan Liang
- School of Chemistry and Chemical
Engineering and ‡State Key Lab of Pulp and Paper
Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Dongjie Yang
- School of Chemistry and Chemical
Engineering and ‡State Key Lab of Pulp and Paper
Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| |
Collapse
|
77
|
Nelson GW, Parker EM, Singh K, Blanford CF, Moloney MG, Foord JS. Surface Characterization and in situ Protein Adsorption Studies on Carbene-Modified Polymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:11086-11096. [PMID: 26391812 DOI: 10.1021/acs.langmuir.5b01644] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Polystyrene thin films were functionalized using a facile two-step chemical protocol involving carbene insertion followed by azo-coupling, permitting the introduction of a range of chemical functional groups, including aniline, hexyl, amine, carboxyl, phenyl, phosphonate diester, and ethylene glycol. X-ray photoelectron spectroscopy (XPS) confirmed the success of the two-step chemical modification with a grafting density of at least 1/10th of the typical loading density (10(14)-10(15)) of a self-assembled monolayer (SAM). In situ, real-time quartz crystal microbalance with dissipation (QCM-D) studies show that the dynamics of binding of bovine serum albumin (BSA) are different at each modified surface. Mass, viscoelastic, and kinetic data were analyzed, and compared to cheminformatic descriptors (i.e., c log P, polar surface area) typically used for drug discovery. Results show that functionalities may either resist or adsorb BSA, and uniquely influence its adsorption dynamics. It is concluded that carbene-based surface modification can usefully influence BSA binding dynamics in a manner consistent with, and more robust than, traditional systems based on SAM chemistry.
Collapse
Affiliation(s)
- Geoffrey W Nelson
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
- Department of Materials, Imperial College London , Exhibition Road, London, SW7 2AZ, United Kingdom
| | - Emily M Parker
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Kulveer Singh
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
- School of Materials and Manchester Institute of Biotechnology, University of Manchester , 131 Princess Street, Manchester, M1 6GN, United Kingdom
| | - Christopher F Blanford
- School of Materials and Manchester Institute of Biotechnology, University of Manchester , 131 Princess Street, Manchester, M1 6GN, United Kingdom
| | - Mark G Moloney
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - John S Foord
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| |
Collapse
|
78
|
Jiang L, Han J, Yang L, Ma H, Huang B. Interactions of hyaluronan grafted on protein surfaces studied using a quartz crystal microbalance and a surface force balance. SOFT MATTER 2015; 11:7276-7287. [PMID: 26274046 DOI: 10.1039/c5sm01086a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Vocal folds are complex and multilayer-structured where the main layer is widely composed of hyaluronan (HA). The viscoelasticity of HA is key to voice production in the vocal fold as it affects the initiation and maintenance of phonation. In this study a simple layer-structured surface model was set up to mimic the structure of the vocal folds. The interactions between two opposing surfaces bearing HA were measured and characterised to analyse HA's response to the normal and shear compression at a stress level similar to that in the vocal fold. From the measurements of the quartz crystal microbalance, atomic force microscopy and the surface force balance, the osmotic pressure, normal interactions, elasticity change, volume fraction, refractive index and friction of both HA and the supporting protein layer were obtained. These findings may shed light on the physical mechanism of HA function in the vocal fold and the specific role of HA as an important component in the effective treatment of the vocal fold disease.
Collapse
Affiliation(s)
- Lei Jiang
- State Key Laboratory of Heavy Oil Processing, Centre for Bioengineering and Biotechnology, China University of Petroleum, 66 Changjiang West Road, Qingdao, Shandong 266580, China.
| | | | | | | | | |
Collapse
|
79
|
Optimal design for studying mucoadhesive polymers interaction with gastric mucin using a quartz crystal microbalance with dissipation (QCM-D): Comparison of two different mucin origins. Eur J Pharm Biopharm 2015; 96:477-83. [DOI: 10.1016/j.ejpb.2015.08.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 07/31/2015] [Accepted: 08/05/2015] [Indexed: 01/22/2023]
|
80
|
Miao R, Wang L, Mi N, Gao Z, Liu T, Lv Y, Wang X, Meng X, Yang Y. Enhancement and Mitigation Mechanisms of Protein Fouling of Ultrafiltration Membranes under Different Ionic Strengths. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:6574-80. [PMID: 25938181 DOI: 10.1021/es505830h] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
To determine further the enhancement and mitigation mechanisms of protein fouling, filtration experiments were carried out with polyvinylidene fluoride (PVDF) ultrafiltration (UF) membranes and bovine serum albumin (BSA) over a range of ionic strengths. The interaction forces, the adsorption behavior of BSA on the membrane surface, and the structure of the BSA adsorbed layers at corresponding ionic strengths were investigated. Results indicate that when the ionic strength increased from 0 to 1 mM, there was a decrease in the PVDF-BSA and BSA-BSA electrostatic repulsion forces, resulting in a higher deposition rate of BSA onto the membrane surface, and the formation of a denser BSA layer; consequently, membrane fouling was enhanced. However, at ionic strengths of 10 and 100 mM, membrane fouling and the BSA removal rate decreased significantly. This was mainly due to the increased hydration repulsion forces, which caused a decrease in the PVDF-BSA and BSA-BSA interaction forces accompanied by a decreased hydrodynamic radius and increased diffusion coefficient of BSA. Consequently, BSA passed more easily through the membrane and into permeate. There was less accumulation of BSA on the membrane surface. A more nonrigid and open structure BSA layer was formed on the membrane surface.
Collapse
|
81
|
Sobers CJ, Wood SE, Mrksich M. A gene expression-based comparison of cell adhesion to extracellular matrix and RGD-terminated monolayers. Biomaterials 2015; 52:385-94. [PMID: 25818445 PMCID: PMC4379455 DOI: 10.1016/j.biomaterials.2015.02.045] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 02/03/2015] [Accepted: 02/06/2015] [Indexed: 01/08/2023]
Abstract
This work uses global gene expression analysis to compare the extent to which model substrates presenting peptide adhesion motifs mimic the use of conventional extracellular matrix protein coated substrates for cell culture. We compared the transcriptional activities of genes in cells that were cultured on matrix-coated substrates with those cultured on self-assembled monolayers presenting either a linear or cyclic RGD peptide. Cells adherent to cyclic RGD were most similar to those cultured on native ECM, while cells cultured on monolayers presenting the linear RGD peptide had transcriptional activities that were more similar to cells cultured on the uncoated substrates. This study suggests that biomaterials presenting the cyclic RGD peptide are substantially better mimics of extracellular matrix than are uncoated materials or materials presenting the common linear RGD peptide.
Collapse
Affiliation(s)
- Courtney J Sobers
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA; Department of Cell and Molecular Biology, Northwestern University, Chicago, IL 60611, USA
| | - Sarah E Wood
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Milan Mrksich
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA; Department of Cell and Molecular Biology, Northwestern University, Chicago, IL 60611, USA; Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
82
|
Neves MAD, Blaszykowski C, Bokhari S, Thompson M. Ultra-high frequency piezoelectric aptasensor for the label-free detection of cocaine. Biosens Bioelectron 2015; 72:383-92. [PMID: 26022784 DOI: 10.1016/j.bios.2015.05.038] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/30/2015] [Accepted: 05/16/2015] [Indexed: 11/26/2022]
Abstract
This paper describes a label-free and real-time piezoelectric aptasensor for the detection of cocaine. The acoustic wave sensing platform is a quartz substrate functionalized with an adlayer of S-(11-trichlorosilyl-undecanyl)-benzenethiosulfonate (BTS) cross-linker onto which the anti-cocaine MN4 DNA aptamer is next immobilized. Preparation of the sensor surface was monitored using X-ray photoelectron spectroscopy (XPS), while the binding of cocaine to surface-attached MN4 was evaluated using the electromagnetic piezoelectric acoustic sensor (EMPAS). The MN4 aptamer, unlike other cocaine aptamer variants, has its secondary structure preformed in the unbound state with only tertiary structure changes occurring during target binding. It is postulated that the highly sensitive EMPAS detected the binding of cocaine through target mass loading coupled to aptamer tertiary structure folding. The sensor achieved an apparent Kd of 45 ± 12 µM, and a limit of detection of 0.9 µM. Repeated regenerability of the sensor platform was also demonstrated. This work constitutes the first application of EMPAS technology in the field of aptasensors. Furthermore, it is so far one of the very few examples of a bulk acoustic wave aptasensor that is able to directly detect the binding interaction between an aptamer and a small molecule in a facile one-step protocol without the use of a complex assay or signal amplification step.
Collapse
Affiliation(s)
- Miguel A D Neves
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada M5S 3H6
| | | | - Sumra Bokhari
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, Canada M5S 3G9
| | - Michael Thompson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada M5S 3H6; Econous Systems Inc., 80 St. George Street, Toronto, Ontario, Canada M5S 3H6; Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, Canada M5S 3G9.
| |
Collapse
|
83
|
Madsen JB, Pakkanen KI, Duelund L, Svensson B, Hachem MA, Lee S. A simplified chromatographic approach to purify commercially available bovine submaxillary mucins (BSM). Prep Biochem Biotechnol 2015; 45:84-99. [PMID: 24547990 DOI: 10.1080/10826068.2014.887583] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In this study, a simple purification protocol is developed to reduce the bovine serum albumin (BSA) content in commercially available bovine submaxillary mucin (BSM). This involved purification of the BSM by one-column anion-exchange chromatography protocol resulting in BSM with greatly reduced BSA content and homogeneously distributed size, and in a high yield of ∼43% from BSM as received from the manufacturer. The purity and composition of commercially acquired BSM were assessed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and mass spectrometry, which verified that BSA is the most abundant nonmucinous protein component. The purification effect was evident from a significantly altered circular dichroism (CD) spectrum of BSM after anion-exchange chromatography.
Collapse
Affiliation(s)
- Jan Busk Madsen
- a Department of Mechanical Engineering , Technical University of Denmark , Kgs. Lyngby , Denmark
| | | | | | | | | | | |
Collapse
|
84
|
Thompson M, Blaszykowski C, Sheikh S, Romaschin A. A true theranostic approach to medicine: Towards tandem sensor detection and removal of endotoxin in blood. Biosens Bioelectron 2015; 67:3-10. [DOI: 10.1016/j.bios.2014.07.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/18/2014] [Accepted: 07/04/2014] [Indexed: 11/25/2022]
|
85
|
Nikogeorgos N, Efler P, Kayitmazer AB, Lee S. "Bio-glues" to enhance slipperiness of mucins: improved lubricity and wear resistance of porcine gastric mucin (PGM) layers assisted by mucoadhesion with chitosan. SOFT MATTER 2015; 11:489-498. [PMID: 25413148 DOI: 10.1039/c4sm02021a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A synergetic lubricating effect between porcine gastric mucin (PGM) and chitosan based on their mucoadhesive interaction is reported at a hydrophobic interface comprised of self-mated polydimethylsiloxane (PDMS) surfaces. In acidic solution (pH 3.2) and low concentrations (0.1 mg mL(-1)), the interaction of PGM with chitosan led to surface recharge and size shrinkage of their aggregates. This resulted in higher mass adsorption on the PDMS surface with an increasing weight ratio of [chitosan]/[PGM + chitosan] up to 0.50. While neither PGM nor chitosan exhibited slippery characteristics, the coefficient of friction being close to 1, their mixture improved considerably the lubricating efficiency (the coefficient of friction is 0.011 at an optimum mixing ratio) and wear resistance of the adsorbed layers. These findings are explained by the role of chitosan as a physical crosslinker within the adsorbed PGM layers, resulting in higher cohesion and lower interlayer chain interpenetration and bridging.
Collapse
Affiliation(s)
- Nikolaos Nikogeorgos
- Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | | | | | | |
Collapse
|
86
|
Relationships between molecular mobility, fibrillogenesis of collagen molecules, and the inflammatory response: An experimental study in vitro and in vivo. J Colloid Interface Sci 2014; 433:16-25. [DOI: 10.1016/j.jcis.2014.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/06/2014] [Accepted: 06/07/2014] [Indexed: 11/21/2022]
|
87
|
Nikogeorgos N, Madsen JB, Lee S. Influence of impurities and contact scale on the lubricating properties of bovine submaxillary mucin (BSM) films on a hydrophobic surface. Colloids Surf B Biointerfaces 2014; 122:760-766. [PMID: 25189473 DOI: 10.1016/j.colsurfb.2014.08.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 08/05/2014] [Accepted: 08/13/2014] [Indexed: 01/01/2023]
Abstract
Lubricating properties of bovine submaxillary mucin (BSM) on a compliant, hydrophobic surface were studied as influenced by impurities, in particular bovine serum albumin (BSA), at macro and nanoscale contacts by means of pin-on-disk tribometry and friction force microscopy (FFM), respectively. At both contact scales, the purity of BSM and the presence of BSA were quantitatively discriminated. The presence of BSA was responsible for higher frictional forces observed from BSM samples containing relatively larger amount of BSA. But, the mechanisms contributing to higher friction forces by BSA were different at different contact scales. At the macroscale contact, higher friction forces were caused by faster and dominant adsorption of BSA into the contacting area under a continuous cycle of desorption and re-adsorption of the macromolecules from tribostress. Nevertheless, all BSMs lowered the interfacial friction forces due to large contact area and a large number of BSM molecules in the contact area. At the nanoscale contact, however, no significant desorption of the macromolecules is expected in tribological contacts because of too small contact area and extremely small number of BSM molecules involved in the contact area. Instead, increasingly higher friction forces with increasing amount of BSA in BSM layer are attributed to higher viscosity caused by BSA in the layer. Comparable size of AFM probes with BSM molecules allowed them to penetrate through the BSM layers and to scratch on the underlying substrates, and thus induced higher friction forces compared to the sliding contact on bare substrates.
Collapse
Affiliation(s)
- Nikolaos Nikogeorgos
- Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Jan Busk Madsen
- Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Seunghwan Lee
- Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| |
Collapse
|
88
|
Chowdhury I, Duch MC, Mansukhani ND, Hersam MC, Bouchard D. Interactions of graphene oxide nanomaterials with natural organic matter and metal oxide surfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:9382-9390. [PMID: 25026416 DOI: 10.1021/es5020828] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Interactions of graphene oxide (GO) nanomaterials with natural organic matter (NOM) and metal oxide surfaces were investigated using a quartz crystal microbalance with dissipation monitoring (QCM-D). Three different types of NOM were studied: Suwannee River humic and fulvic acids (SRHA and SRFA) and alginate. Aluminum oxide surface was used as a model metal oxide surface. Deposition trends show that GO has the highest attachment on alginate, followed by SRFA, SRHA, and aluminum oxide surfaces, and that GO displayed higher interactions with all investigated surfaces than with silica. Deposition and release behavior of GO on aluminum oxide surface is very similar to positively charged poly-L-lysine-coated surface. Higher interactions of GO with NOM-coated surfaces are attributed to the hydroxyl, epoxy, and carboxyl functional groups of GO; higher deposition on alginate-coated surfaces is attributed to the rougher surface created by the extended conformation of the larger alginate macromolecules. Both ionic strength (IS) and ion valence (Na(+) vs Ca(2+)) had notable impact on interactions of GO with different environmental surfaces. Due to charge screening, increased IS resulted in greater deposition for NOM-coated surfaces. Release behavior of deposited GO varied significantly between different environmental surfaces. All surfaces showed significant release of deposited GO upon introduction of low IS water, indicating that deposition of GO on these surfaces is reversible. Release of GO from NOM-coated surfaces decreased with IS due to charge screening. Release rates of deposited GO from alginate-coated surface were significantly lower than from SRHA and SRFA-coated surfaces due to trapping of GO within the rough surface of the alginate layer.
Collapse
Affiliation(s)
- Indranil Chowdhury
- National Research Council Research Associate, Athens, Georgia 30605, United States
| | | | | | | | | |
Collapse
|
89
|
Thermostability of bovine submaxillary mucin (BSM) in bulk solution and at a sliding interface. J Colloid Interface Sci 2014; 424:113-9. [DOI: 10.1016/j.jcis.2014.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/28/2014] [Accepted: 03/01/2014] [Indexed: 11/22/2022]
|
90
|
An J, Dėdinaitė A, Nilsson A, Holgersson J, Claesson PM. Comparison of a Brush-with-Anchor and a Train-of-Brushes Mucin on Poly(methyl methacrylate) Surfaces: Adsorption, Surface Forces, and Friction. Biomacromolecules 2014; 15:1515-25. [DOI: 10.1021/bm500173s] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Junxue An
- School
of Chemical Science and Engineering, Department of Chemistry, Division
of Surface and Corrosion Science, KTH Royal Institute of Technology, Drottning Kristinas väg 51, SE-100 44 Stockholm, Sweden
| | - Andra Dėdinaitė
- School
of Chemical Science and Engineering, Department of Chemistry, Division
of Surface and Corrosion Science, KTH Royal Institute of Technology, Drottning Kristinas väg 51, SE-100 44 Stockholm, Sweden
- Chemistry,
Materials and Surfaces, SP Technical Research Institute of Sweden, P. O. Box 5607, SE-114 86 Stockholm, Sweden
| | - Anki Nilsson
- Recopharma
AB, Arvid Wallgrens backe 20, 413 46 Gothenburg, Sweden
| | - Jan Holgersson
- Department
of Clinical Chemistry and Transfusion Medicine, The Sahlgrenska Academy, University of Gothenburg and Sahlgrenska University Hospital, Vita stråket
13, SE-413 45 Gothenburg, Sweden
| | - Per M. Claesson
- School
of Chemical Science and Engineering, Department of Chemistry, Division
of Surface and Corrosion Science, KTH Royal Institute of Technology, Drottning Kristinas väg 51, SE-100 44 Stockholm, Sweden
- Chemistry,
Materials and Surfaces, SP Technical Research Institute of Sweden, P. O. Box 5607, SE-114 86 Stockholm, Sweden
| |
Collapse
|
91
|
Dargahi M, Omanovic S. A comparative PM-IRRAS and ellipsometry study of the adsorptive behaviour of bovine serum albumin on a gold surface. Colloids Surf B Biointerfaces 2014; 116:383-8. [DOI: 10.1016/j.colsurfb.2013.12.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 12/12/2013] [Accepted: 12/16/2013] [Indexed: 10/25/2022]
|
92
|
Zhu X, Wang Z, Zhao A, Huang N, Chen H, Zhou S, Xie X. Cell adhesion on supported lipid bilayers functionalized with RGD peptides monitored by using a quartz crystal microbalance with dissipation. Colloids Surf B Biointerfaces 2014; 116:459-64. [DOI: 10.1016/j.colsurfb.2014.01.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 01/02/2014] [Accepted: 01/22/2014] [Indexed: 11/29/2022]
|
93
|
Ragaliauskas T, Mickevicius M, Budvytyte R, Niaura G, Carbonnier B, Valincius G. Adsorption of β-amyloid oligomers on octadecanethiol monolayers. J Colloid Interface Sci 2014; 425:159-67. [PMID: 24776678 DOI: 10.1016/j.jcis.2014.03.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/14/2014] [Accepted: 03/15/2014] [Indexed: 10/25/2022]
Abstract
HYPOTHESIS β-Amyloid oligomers of different aggregation and physiological functions exhibit distinct adsorption behavior allowing them to be discriminated in preparations. EXPERIMENTS Two forms of amyloid oligomers, small 1-4 nm and large 5-10nm were formulated using synthetic 42 amino acids β-amyloid peptide. Forms differ in their size and physiological function. A systematic study of adsorption of these amyloid species on self-assembled monolayers of octadecanethiol on gold was performed. Structural changes upon adsorption of oligomers were interrogated by the reflection absorption infrared spectroscopy. FINDINGS The amount of adsorbed peptide material, as detected by surface plasmon resonance spectroscopy, is similar in case of both small and large oligomers. However, adsorption of small oligomers leads to a transformation from beta sheet rich to beta sheet depleted secondary structure. These changes were accompanied by the unique morphology patterns detectable by atomic force microscopy (AFM), while the quartz microbalance with dissipation indicated a formation of a compact adsorbate layer in case of small oligomers. These effects may be integrated and utilized in bioanalytical systems for sensing and detection of Alzheimer's disease related peptide forms in artificial, and possibly, real preparations.
Collapse
Affiliation(s)
- Tadas Ragaliauskas
- Institute of Biochemistry, Vilnius University, Mokslininku 12, LT-08662 Vilnius, Lithuania.
| | - Mindaugas Mickevicius
- Institute of Biochemistry, Vilnius University, Mokslininku 12, LT-08662 Vilnius, Lithuania.
| | - Rima Budvytyte
- Institute of Biochemistry, Vilnius University, Mokslininku 12, LT-08662 Vilnius, Lithuania.
| | - Gediminas Niaura
- Institute of Biochemistry, Vilnius University, Mokslininku 12, LT-08662 Vilnius, Lithuania.
| | - Benjamin Carbonnier
- Institut de Chimie et des Matériaux Paris-Est, Université Paris-Est, 2 rue Henri Dunant, 94320 Thiais, France.
| | - Gintaras Valincius
- Institute of Biochemistry, Vilnius University, Mokslininku 12, LT-08662 Vilnius, Lithuania.
| |
Collapse
|
94
|
Chowdhury I, Duch MC, Mansukhani ND, Hersam MC, Bouchard D. Deposition and release of graphene oxide nanomaterials using a quartz crystal microbalance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:961-969. [PMID: 24345218 DOI: 10.1021/es403247k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Interactions of graphene oxide (GO) with silica surfaces were investigated using a quartz crystal microbalance with dissipation monitoring (QCM-D). Both GO deposition and release were monitored on silica- and poly-l-lysine (PLL) coated surfaces as a function of GO concentration and in NaCl, CaCl2, and MgCl2 as a function of ionic strength (IS). Under favorable conditions (PLL-coated positive surface), GO deposition rates increased with GO concentration, as expected from colloidal theory. Increased NaCl concentration resulted in a greater deposition attachment efficiency of GO on the silica surface, indicating that deposition of GO follows Derjaguin-Landau-Verwey-Overbeek (DLVO) theory; GO deposition rates decreased at high IS, however, due to large aggregate formation. GO critical deposition concentration (CDC) on the silica surface is determined to be 40 mM NaCl which is higher than the reported CDC values of fullerenes and lower than carbon nanotubes. A similar trend is observed for MgCl2 which has a CDC value of 1.2 mM MgCl2. Only a minimal amount of GO (frequency shift <2 Hz) was deposited on the silica surface in CaCl2 due to the bridging ability of Ca(2+) ions with GO functional groups. Significant GO release from silica surface was observed after adding deionized water, indicating that GO deposition is reversible. The release rates of GO were at least 10-fold higher than the deposition rates under similar conditions indicating potential high release and mobility of GO in the environment. Under favorable conditions, a significant amount of GO was released which indicates potential multilayer GO deposition. However, a negligible amount of deposited GO was released in CaCl2 under favorable conditions due to the binding of GO layers with Ca(2+) ions. Release of GO was significantly dependent on salt type with an overall trend of NaCl > MgCl2 > CaCl2.
Collapse
Affiliation(s)
- Indranil Chowdhury
- National Research Council Research Associate , Athens, Georgia United States
| | | | | | | | | |
Collapse
|
95
|
Liu H, Gu X, Hu M, Hu Y, Wang C. Facile fabrication of nanocomposite microcapsules by combining layer-by-layer self-assembly and Pickering emulsion templating. RSC Adv 2014. [DOI: 10.1039/c4ra00089g] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Nanocomposite multilayer microcapsules are prepared by layer-by-layer self-assembly based on Pickering emulsions.
Collapse
Affiliation(s)
- Hao Liu
- Research Institute of Materials Science
- South China University of Technology
- Guangzhou 510640, China
| | - Xiaoyu Gu
- Research Institute of Materials Science
- South China University of Technology
- Guangzhou 510640, China
| | - Meng Hu
- Research Institute of Materials Science
- South China University of Technology
- Guangzhou 510640, China
| | - Yang Hu
- Research Institute of Materials Science
- South China University of Technology
- Guangzhou 510640, China
| | - Chaoyang Wang
- Research Institute of Materials Science
- South China University of Technology
- Guangzhou 510640, China
| |
Collapse
|
96
|
Wu G, Wang J, Chen X, Wang Y. Impact of self-assembled monolayer films with specific chemical group on bFGF adsorption and endothelial cell growth on gold surface. J Biomed Mater Res A 2013; 102:3439-45. [PMID: 24178301 DOI: 10.1002/jbm.a.35007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 09/29/2013] [Accepted: 10/11/2013] [Indexed: 11/12/2022]
Abstract
In this study, thiols ended with methyl, carboxyl, hydroxy, and amino groups are self-assembled on gold surfaces. The X-ray photoelectron spectroscopy test results show that chemical components on the self-assembled surface are similar to those in the theoretical calculations. The atomic force microscope test results show that the molecule assembled on the surface causes no significant variation in the surface roughness before and after the molecule assembly. The water surface contact angle increases with the increasing hydrophilicity of the end groups of the self-assembled monolayer. The surface zeta potential reveals that -COOH surface has the most electronegativity. The resulting substrates are then made to adsorb base fibroblast growth factor (bFGF). The quartz crystal microbalance test results show that the amounts of bFGF adsorbed onto different self-assembled surfaces are -COOH≈-OH>-CH₃ >-NH₂. According to cell culture experiments, endothelial cells have different morphologies after adhering to different surfaces. Furthermore, endothelial cells achieve the quickest proliferation on the -COOH self-assembled surface and the slowest proliferation on the -CH₃ self-assembled surface.
Collapse
Affiliation(s)
- Gang Wu
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China; Regenerative Biomaterials Group, National Engineering Research Center for Tissue Reconstruction and Restoration, Guangzhou, 510006, China
| | | | | | | |
Collapse
|
97
|
Lejardi A, López AE, Sarasua JR, Sleytr UB, Toca-Herrera JL. Making novel bio-interfaces through bacterial protein recrystallization on biocompatible polylactide derivative films. J Chem Phys 2013; 139:121903. [DOI: 10.1063/1.4811778] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
98
|
Chang X, Bouchard DC. Multiwalled carbon nanotube deposition on model environmental surfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:10372-10380. [PMID: 23957606 DOI: 10.1021/es402200h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Deposition of multiwalled carbon nanotubes (MWNTs) on model environmental surfaces was investigated using a quartz crystal microbalance with dissipation monitoring (QCM-D). Deposition behaviors of MWNTs on positively and negatively charged surfaces were in good agreement with Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, although hydrophobic interactions dominated MWNTs deposition on a hydrophobic polystyrene surface. Initial deposition rates (rf) and deposition attachment efficiencies (αD) depended on solution ionic strengths (IS) and surface electrostatic properties. Identical rf and αD values at constant IS on similar surfaces suggested that deposition was insensitive to surface morphology (i.e., bare crystal surface vs coated surface). The dissipation unit (D) was used with frequency (f) to investigate nanoparticle deposition: |ΔD/Δf| values varied for deposition on different surfaces, indicating that the nature of MWNT association with surfaces varied despite constant rf and αD values.
Collapse
Affiliation(s)
- Xiaojun Chang
- U.S. Environmental Protection Agency , Athens, Georgia 30605, United States
| | | |
Collapse
|
99
|
Responses of platelets and endothelial cells to heparin/fibronectin complex on titanium: In situ investigation by quartz crystal microbalance with dissipation and immunochemistry. J Biosci Bioeng 2013; 116:235-45. [DOI: 10.1016/j.jbiosc.2013.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/06/2013] [Accepted: 02/18/2013] [Indexed: 01/17/2023]
|
100
|
Cifuentes A, Borrós S. Comparison of two different plasma surface-modification techniques for the covalent immobilization of protein monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:6645-6651. [PMID: 23697919 DOI: 10.1021/la400597e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The immobilization of biologically active species is crucial for the fabrication of smart bioactive surfaces. For this purpose, plasma polymerization is frequently used to modify the surface nature without affecting the bulk properties of the material. Thus, it is possible to create materials with surface functional groups that can promote the anchoring of all kinds of biomolecules. Different methodologies in protein immobilization have been developed in recent years, although some drawbacks are still not solved, such as the difficulties that some procedures involve and/or the denaturalization of the protein due to the immobilization process. In this work, two different strategies to covalently attach bovine serum albumin (BSA) protein are developed. Both techniques are compared in order to understand how the nature of the surface modification affects the conformation of the protein upon immobilization.
Collapse
Affiliation(s)
- Anna Cifuentes
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, Spain
| | | |
Collapse
|