51
|
Tian Q, Quan P, Fang L, Xu H, Liu C. A molecular mechanism investigation of the transdermal/topical absorption classification system on the basis of drug skin permeation and skin retention. Int J Pharm 2021; 608:121082. [PMID: 34506925 DOI: 10.1016/j.ijpharm.2021.121082] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/27/2021] [Accepted: 09/05/2021] [Indexed: 01/02/2023]
Abstract
A transdermal/topical absorption classification system for the characterization of the systemic or local delivery of drugs is the theoretical basis for the design and evaluation of transdermal/topical formulations. A classification system was established on the basis of the in vitro and in vivo skin permeation/retention behaviors of 12 model drugs. Drug skin penetration/retention exhibited a significant correlation with physicochemical parameters (log KO/W, molecular weight, polar surface area, and polarizability). Four representative model drugs were selected to clarify the molecular mechanisms of drug skin permeation/retention behaviors. The excellent lipid-disrupting effect and enhanced partitioning exhibited by propranolol (high permeation-high retention) and zolmitriptan (high permeation-low retention) via the formation of moderate H-bonds with skin lipids were proven by ATR-FTIR (ΔνasCH2 > 2 cm-1), Raman spectra (ΔLPP, SPP > 0.2 nm), and X-ray scattering (lipid crystallization) and were supported by 13C NMR results. The low lipid miscibility of zolmitriptan (ΔHzolmitriptan-lipid = 126.92 J/g) caused the low skin retention of this drug. High polarizabiltiy (α = 38.5 × 10-24 cm3) and low H-bond forming capability (EH-bond = 0 kcal/mol) restricted terbinafine (low permeation-high retention) in terms of partitioning (kD-SC = 0.09). Diclofenac (low permeation-low retention) stabilized skin lipids through the formation of strong H-bonds and exhibited excessive drug-lipid miscibility (ΔHdiclofenac-skin = -128.73 J/g), thus restricting its skin absorption. This classification system reflects the most essential drug skin absorption characteristics and provides a theoretical basis for the design of transdermal/topical formulations.
Collapse
Affiliation(s)
- Qi Tian
- School of Pharmacy, Shenyang Pharmaceutical University, No. 26 Huatuo Road, High & New Technology Development Zone, Benxi 117004, China
| | - Peng Quan
- School of Pharmacy, Shenyang Pharmaceutical University, No. 26 Huatuo Road, High & New Technology Development Zone, Benxi 117004, China
| | - Liang Fang
- School of Pharmacy, Shenyang Pharmaceutical University, No. 26 Huatuo Road, High & New Technology Development Zone, Benxi 117004, China
| | - Hui Xu
- School of Pharmacy, Shenyang Pharmaceutical University, No. 26 Huatuo Road, High & New Technology Development Zone, Benxi 117004, China
| | - Chao Liu
- School of Pharmacy, Shenyang Pharmaceutical University, No. 26 Huatuo Road, High & New Technology Development Zone, Benxi 117004, China.
| |
Collapse
|
52
|
Wu X, Zhu Q, Chen Z, Wu W, Lu Y, Qi J. Ionic liquids as a useful tool for tailoring active pharmaceutical ingredients. J Control Release 2021; 338:268-283. [PMID: 34425167 DOI: 10.1016/j.jconrel.2021.08.032] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023]
Abstract
Ionic liquids (ILs) have been widely used in biomedical and pharmaceutical fields as solvents or permeation enhancers. Recently, more and more researchers focused on optimizing the physicochemical properties of active pharmaceutical ingredient (API) by ILs technology. Converting APIs into ILs (API-ILs) has shown great potential for drug delivery by eliminating polymorphism, tailoring solubility, improving thermal stability, increasing dissolution, controlling drug release, modulating the surfactant properties, enhancing permeability of APIs and modulating cytotoxicity on tumor cells. In addition, API-ILs are also used in various formulations as active ingredients, such as solutions, emulsions, even tablets or nanoparticles. This paper aims to review current status of API-ILs, including the rational and design, preparation and characterization, the improvement on the physicochemical characteristics of APIs, the compatibility of API-ILs with various formulations, and the future prospects of API-ILs in biomedical and pharmaceutical fields.
Collapse
Affiliation(s)
- Xiying Wu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China; Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Wei Wu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China; Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yi Lu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China; Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jianping Qi
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China; Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
53
|
|
54
|
Islam MR, Uddin S, Chowdhury MR, Wakabayashi R, Moniruzzaman M, Goto M. Insulin Transdermal Delivery System for Diabetes Treatment Using a Biocompatible Ionic Liquid-Based Microemulsion. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42461-42472. [PMID: 34460218 DOI: 10.1021/acsami.1c11533] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Since injection administration for diabetes is invasive, it is important to develop an effective transdermal method for insulin. However, transdermal delivery remains challenging owing to the strong barrier function of the stratum corneum (SC) of the skin. Here, we developed ionic liquid (IL)-in-oil microemulsion formulations (MEFs) for transdermal insulin delivery using choline-fatty acids ([Chl][FAs])-comprising three different FAs (C18:0, C18:1, and C18:2)-as biocompatible surface-active ILs (SAILs). The MEFs were successfully developed using [Chl][FAs] as surfactants, sorbitan monolaurate (Span-20) as a cosurfactant, choline propionate IL as an internal polar phase, and isopropyl myristate as a continuous oil phase. Ternary phase behavior, dynamic light scattering, and transmission electron microscopy studies revealed that MEFs were thermodynamically stable with nanoparticle size. The MEFs significantly enhanced the transdermal permeation of insulin via the intercellular route by compromising the tight lamellar structure of SC lipids through a fluidity-enhancing mechanism. In vivo transdermal administration of low insulin doses (50 IU/kg) to diabetic mice showed that MEFs reduced blood glucose levels (BGLs) significantly compared with a commercial surfactant-based formulation by increasing the bioavailability of insulin in the systemic circulation and sustained the insulin level for a much longer period (half-life > 24 h) than subcutaneous injection (half-life 1.32 h). When [Chl][C18:2] SAIL-based MEF was transdermally administered, it reduced the BGL by 56% of its initial value. The MEFs were biocompatible and nontoxic (cell viability > 90%). They remained stable at room temperature for 3 months and their biological activity was retained for 4 months at 4 °C. We believe SAIL-based MEFs will alter current approaches to insulin therapy and may be a potential transdermal nanocarrier for protein and peptide delivery.
Collapse
Affiliation(s)
- Md Rafiqul Islam
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Shihab Uddin
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Md Raihan Chowdhury
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Advanced Transdermal Drug Delivery System Centre, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Muhammad Moniruzzaman
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Advanced Transdermal Drug Delivery System Centre, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Division of Biotechnology, Centre for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
55
|
Zeng L, Huang F, Zhang Q, Liu J, Quan D, Song W. Molecular perspective of efficiency and safety problems of chemical enhancers: bottlenecks and recent advances. Drug Deliv Transl Res 2021; 12:1376-1394. [PMID: 34476765 DOI: 10.1007/s13346-021-01044-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 12/12/2022]
Abstract
Chemical penetration enhancer (CPE) is a preferred approach to improve drug permeability through the skin, due to its unique advantages of simple use and high compatibility. However, CPEs efficiency and safety problems frequently arise, which greatly restrains the further application in transdermal drug delivery systems (TDDS). To get access to the root of problems, the efficiency and safety of CPEs are reviewed especially from molecular perspectives, which include (1) the possible factors of CPEs low efficiency; (2) the possible contribution of CPEs in the evolution of safety problems such as skin irritation and allergic reaction; (3) the interactive relationship between CPEs efficiency and safety, as well as the bottlenecks of achieving their balance. More importantly, based on these, recent advances are summarized in improving efficiency or safety of CPEs, which offers a guidance of rationally selecting CPEs in future research.
Collapse
Affiliation(s)
- Lijuan Zeng
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Jiangning District, 639 Longmian Avenue, Nanjing, 211198, P.R. China
| | - Feifei Huang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Jiangning District, 639 Longmian Avenue, Nanjing, 211198, P.R. China
| | - Qin Zhang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Jiangning District, 639 Longmian Avenue, Nanjing, 211198, P.R. China
| | - Jianping Liu
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Jiangning District, 639 Longmian Avenue, Nanjing, 211198, P.R. China
| | - Danyi Quan
- Institute of Advanced Drug Delivery Technology, No. 10 Xinghuo Ave Jiangbei New Area, Nanjing, 210032, P.R. China.
| | - Wenting Song
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Jiangning District, 639 Longmian Avenue, Nanjing, 211198, P.R. China.
| |
Collapse
|
56
|
Sallam MA, Prakash S, Kumbhojkar N, Shields CW, Mitragotri S. Formulation-based approaches for dermal delivery of vaccines and therapeutic nucleic acids: Recent advances and future perspectives. Bioeng Transl Med 2021; 6:e10215. [PMID: 34589595 PMCID: PMC8459604 DOI: 10.1002/btm2.10215] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/21/2021] [Accepted: 03/01/2021] [Indexed: 12/31/2022] Open
Abstract
A growing variety of biological macromolecules are in development for use as active ingredients in topical therapies and vaccines. Dermal delivery of biomacromolecules offers several advantages compared to other delivery methods, including improved targetability, reduced systemic toxicity, and decreased degradation of drugs. However, this route of delivery is hampered by the barrier function of the skin. Recently, a large body of research has been directed toward improving the delivery of macromolecules to the skin, ranging from nucleic acids (NAs) to antigens, using noninvasive means. In this review, we discuss the latest formulation-based efforts to deliver antigens and NAs for vaccination and treatment of skin diseases. We provide a perspective of their advantages, limitations, and potential for clinical translation. The delivery platforms discussed in this review may provide formulation scientists and clinicians with a better vision of the alternatives for dermal delivery of biomacromolecules, which may facilitate the development of new patient-friendly prophylactic and therapeutic medicines.
Collapse
Affiliation(s)
- Marwa A. Sallam
- John A. Paulson School of Engineering and Applied Sciences, Wyss Institute of Biologically Inspired Engineering, Harvard UniversityCambridgeMassachusettsUSA
- Present address:
Department of Industrial PharmacyFaculty of Pharmacy, Alexandria UniversityEgypt
| | - Supriya Prakash
- John A. Paulson School of Engineering and Applied Sciences, Wyss Institute of Biologically Inspired Engineering, Harvard UniversityCambridgeMassachusettsUSA
| | - Ninad Kumbhojkar
- John A. Paulson School of Engineering and Applied Sciences, Wyss Institute of Biologically Inspired Engineering, Harvard UniversityCambridgeMassachusettsUSA
| | - Charles Wyatt Shields
- Department of Chemical & Biological EngineeringUniversity of ColoradoBoulderColoradoUSA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Wyss Institute of Biologically Inspired Engineering, Harvard UniversityCambridgeMassachusettsUSA
| |
Collapse
|
57
|
Albadawi H, Zhang Z, Altun I, Hu J, Jamal L, Ibsen KN, Tanner EEL, Mitragotri S, Oklu R. Percutaneous liquid ablation agent for tumor treatment and drug delivery. Sci Transl Med 2021; 13:13/580/eabe3889. [PMID: 33568519 DOI: 10.1126/scitranslmed.abe3889] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/15/2021] [Indexed: 12/18/2022]
Abstract
Percutaneous locoregional therapies (LRTs), such as thermal ablation, are performed to limit the progression of hepatocellular carcinoma (HCC) and offer a bridge for patients waiting for liver transplantation. However, physiological challenges related to tumor location, size, and existence of multiple lesions as well as safety concerns related to potential thermal injury to adjacent tissues may preclude the use of thermal ablation or lead to its failure. Here, we showed a successful injection of an ionic liquid into tissue under image guidance, ablation of tumors in response to the injected ionic liquid, and persistence (28 days) of coinjected chemotherapy with the ionic liquid in the ablation zone. In a rat HCC model, the rabbit VX2 liver tumor model, and 12 human resected tumors, injection of the ionic liquid led to consistent tumor ablation. Combining the ionic liquid with the chemotherapy agent, doxorubicin, resulted in synergistic cytotoxicity when tested with cultured HCC cells and uniform drug distribution throughout the ablation zone when percutaneously injected into liver tumors in the rabbit liver tumor model. Because this ionic liquid preparation is simple to use, is efficacious, and has a low cost, we propose that this new LRT may bridge more patients to liver transplantation.
Collapse
Affiliation(s)
- Hassan Albadawi
- Minimally Invasive Therapeutics Laboratory, Department of Vascular and Interventional Radiology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Zefu Zhang
- Minimally Invasive Therapeutics Laboratory, Department of Vascular and Interventional Radiology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Izzet Altun
- Minimally Invasive Therapeutics Laboratory, Department of Vascular and Interventional Radiology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Jingjie Hu
- Minimally Invasive Therapeutics Laboratory, Department of Vascular and Interventional Radiology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Leila Jamal
- Minimally Invasive Therapeutics Laboratory, Department of Vascular and Interventional Radiology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Kelly N Ibsen
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Eden E L Tanner
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| | - Rahmi Oklu
- Minimally Invasive Therapeutics Laboratory, Department of Vascular and Interventional Radiology, Mayo Clinic, Phoenix, AZ 85054, USA.
| |
Collapse
|
58
|
Peng K, Gao Y, Angsantikul P, LaBarbiera A, Goetz M, Curreri AM, Rodrigues D, Tanner EEL, Mitragotri S. Modulation of Gastrointestinal Mucus Properties with Ionic Liquids for Drug Delivery. Adv Healthc Mater 2021; 10:e2002192. [PMID: 34050617 DOI: 10.1002/adhm.202002192] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/08/2021] [Indexed: 12/24/2022]
Abstract
The mucus barrier lining the gastrointestinal tract poses a significant barrier to the oral delivery of macromolecular drugs. Successful approaches to overcoming this barrier have primarily focused on reducing drug and carrier interactions with mucus or disrupting the mucus layer directly. Choline-based ionic liquids (ILs) such as choline geranate and choline glycolate (CGLY) have recently been shown to be effective in enhancing the intestinal absorption of macromolecules such as insulin and immunoglobulin (IgG), respectively. Herein, the use of choline-based ILs as mucus-modulating agents for safely improving drug penetration through mucus is described. Choline-based ILs significantly increase the diffusion rates of cationic dextrans through mucin solution. Choline-maleic acid (CMLC 2:1) enhances the diffusion of 4 kDa cationic dextran in mucin solution by more than fourfold when compared to phosphate-buffered saline control. Choline-based ILs also reduce mucus viscosity without significantly impacting the native mucus gel structure. In vitro studies in a mucus-secreting coculture model with Caco-2 and HT29MTX-E12 cells further demonstrate the effectiveness of ILs in improving transport of cationic molecules in the presence of secreted mucus. This work demonstrates the potential for choline-based ionic liquids to be used as nondestructive mucus-modulating agents for enabling enhanced oral delivery of macromolecular drugs.
Collapse
Affiliation(s)
- Kevin Peng
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
- Wyss Institute for Biologically Inspired Engineering Harvard University Boston MA 02115 USA
| | - Yongsheng Gao
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
- Wyss Institute for Biologically Inspired Engineering Harvard University Boston MA 02115 USA
| | - Pavimol Angsantikul
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
| | - Anthony LaBarbiera
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
| | - Morgan Goetz
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
- Wyss Institute for Biologically Inspired Engineering Harvard University Boston MA 02115 USA
| | - Alexander M. Curreri
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
- Wyss Institute for Biologically Inspired Engineering Harvard University Boston MA 02115 USA
| | - Danika Rodrigues
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
- Wyss Institute for Biologically Inspired Engineering Harvard University Boston MA 02115 USA
| | - Eden E. L. Tanner
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
- Wyss Institute for Biologically Inspired Engineering Harvard University Boston MA 02115 USA
| |
Collapse
|
59
|
Zhang W, Harty B, Zheng Y, Zhang Z, Li X, Wang D, Kohane DS. Permeation of polyethylene glycols across the tympanic membrane. GIANT (OXFORD, ENGLAND) 2021; 6:100057. [PMID: 34806058 PMCID: PMC8601659 DOI: 10.1016/j.giant.2021.100057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Localized and non-invasive delivery of therapeutics across barriers in the body is challenging. Examples include the flux of drugs across the tympanic membrane (TM) for the treatment of middle ear infections, and across the round window to treat inner ear disease. With the emergence of macromolecular therapies, the question arises as to whether such delivery can be achieved with macromolecules. Here, we have used polyethylene glycols (PEGs) in solutions to investigate macromolecular permeation across the TM in the chinchilla ex vivo. As the molecular weight of PEG increased, flux across the TM decreased, with an exponential relationship between the apparent diffusion coefficient and the molecular weight of the polymers. PEG flux was further decreased if it was released from a poloxamer 407 hydrogel, and lessened with increasing hydrogel concentration. Our results provide a framework for understanding the permeation of macromolecules noninvasively across barriers.
Collapse
|
60
|
Kist JA, Zhao H, Mitchell-Koch KR, Baker GA. The study and application of biomolecules in deep eutectic solvents. J Mater Chem B 2021; 9:536-566. [DOI: 10.1039/d0tb01656j] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Deep eutectic solvents offer stimulating possibilities for biomolecular stabilization and manipulation, biocatalysis, bioextraction, biomass processing, and drug delivery and therapy.
Collapse
Affiliation(s)
- Jennifer A. Kist
- Department of Chemistry
- University of Missouri-Columbia
- Columbia
- USA
| | - Hua Zhao
- Department of Chemistry and Biochemistry
- University of Northern Colorado
- Greeley
- USA
| | | | - Gary A. Baker
- Department of Chemistry
- University of Missouri-Columbia
- Columbia
- USA
| |
Collapse
|
61
|
Amaral M, Pereiro AB, Gaspar MM, Reis CP. Recent advances in ionic liquids and nanotechnology for drug delivery. Nanomedicine (Lond) 2020; 16:63-80. [PMID: 33356551 DOI: 10.2217/nnm-2020-0340] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In drug discovery and drug development, it is estimated that around 40% of commercialized and 90% of under-study drugs have inadequate pharmaceutical properties, severely impairing its therapeutic efficacy. Thus, there is a strong demand to find strategies to enhance the delivery of such drugs. Ionic liquids are a novel class of liquids composed of a combination of organic salts that are of particular interest alone or in combination with drug delivery systems. This review is focused on the recent efforts using ionic liquids in drug solubility, formulation and drug delivery with specific emphasis on nanotechnology. The latest developments using hybrid delivery systems obtained upon the combination of drug delivery systems and ionic liquids will also be addressed.
Collapse
Affiliation(s)
- Mariana Amaral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, 1649-003, Portugal
| | - Ana B Pereiro
- LAQV, REQUIMTE, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, 1649-003, Portugal
| | - Catarina Pinto Reis
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, 1649-003, Portugal.,IBEB, Institute of Biophysics & Biomedical Engineering, Faculdade de Ciências, Universidade de Lisboa, Lisboa, 1749-016, Portugal
| |
Collapse
|
62
|
Pandurangan S, Murugesan P, Ramudu KN, Krishnaswamy B, Ayyadurai N. Enhanced Cellular Uptake and Sustained Transdermal Delivery of Collagen for Skin Regeneration. ACS APPLIED BIO MATERIALS 2020; 3:7540-7549. [PMID: 35019495 DOI: 10.1021/acsabm.0c00755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The present study reports a method for transporting high molecular weight collagen for skin regeneration. An independent engineered enzymatic vehicle that has the ability for efficient transdermal delivery of regenerative biomaterial was developed for tissue regeneration. Collagen has been well recognized as a skin regeneration molecule due to its interaction with the extracellular matrix to stimulate skin cell growth, proliferation, and differentiation. However, the transdermal delivery of collagen poses a significant challenge due to its high molecular weight as well as a lack of efficient approaches. Here, to improve the transdermal delivery efficiency, α-1,4-glycosidic hydrolase was engineered with genetically encoded 3,4-dihydroxy-L-phenylalanine, which enhanced its biological activity as revealed by microscale thermophoresis. The remodeled catalytic pocket resulted in enhanced substrate binding activity of the enzyme with a predominant glycosaminoglycan (chondroitin sulfate) present in the extracellular matrix of the skin. The engineered enzyme rapidly opened up the skin extracellular matrix fiber (15 min) to ferry collagen across the wall, without disturbing the cellular bundle architecture. Confocal microscopy indicated that macromolecules had diffused three times deeper into the engineered enzyme-treated skin than the native enzyme-treated skin. Gene expression, histopathology, and hematology analysis also supported the penetration of macromolecules. Cytotoxicity (mammalian cell culture) and in vivo (Caenorhabditis elegans and Rattus noryegicus) studies revealed that the congener enzyme could potentially be used as a penetration enhancer, which is of paramount importance for the multimillion cosmetic industries. Hence, it offers promise as a pharmaceutical enzyme for transdermal delivery bioenhancement and dermatological applications.
Collapse
Affiliation(s)
- Suryalakshmi Pandurangan
- Division of Biochemistry and Biotechnology Council of Scientific and Industrial Research, Central Leather Research Institute, Chennai 600 020, India.,Academy of Scientific and Innovative Research Central Leather Research Institute Campus, Chennai 600 020, India
| | | | - Kamini Numbi Ramudu
- Division of Biochemistry and Biotechnology Council of Scientific and Industrial Research, Central Leather Research Institute, Chennai 600 020, India.,Academy of Scientific and Innovative Research Central Leather Research Institute Campus, Chennai 600 020, India
| | | | - Niraikulam Ayyadurai
- Division of Biochemistry and Biotechnology Council of Scientific and Industrial Research, Central Leather Research Institute, Chennai 600 020, India.,Academy of Scientific and Innovative Research Central Leather Research Institute Campus, Chennai 600 020, India
| |
Collapse
|
63
|
Kumari P, Pillai VVS, Benedetto A. Mechanisms of action of ionic liquids on living cells: the state of the art. Biophys Rev 2020; 12:1187-1215. [PMID: 32936423 PMCID: PMC7575683 DOI: 10.1007/s12551-020-00754-w] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
Ionic liquids (ILs) are a relatively new class of organic electrolytes composed of an organic cation and either an organic or inorganic anion, whose melting temperature falls around room-temperature. In the last 20 years, the toxicity of ILs towards cells and micro-organisms has been heavily investigated with the main aim to assess the risks associated with their potential use in (industrial) applications, and to develop strategies to design greener ILs. Toxicity, however, is synonym with affinity, and this has stimulated, in turn, a series of biophysical and chemical-physical investigations as well as few biochemical studies focused on the mechanisms of action (MoAs) of ILs, key step in the development of applications in bio-nanomedicine and bio-nanotechnology. This review has the intent to present an overview of the state of the art of the MoAs of ILs, which have been the focus of a limited number of studies but still sufficient enough to provide a first glimpse on the subject. The overall picture that emerges is quite intriguing and shows that ILs interact with cells in a variety of different mechanisms, including alteration of lipid distribution and cell membrane viscoelasticity, disruption of cell and nuclear membranes, mitochondrial permeabilization and dysfunction, generation of reactive oxygen species, chloroplast damage (in plants), alteration of transmembrane and cytoplasmatic proteins/enzyme functions, alteration of signaling pathways, and DNA fragmentation. Together with our earlier review work on the biophysics and chemical-physics of IL-cell membrane interactions (Biophys. Rev. 9:309, 2017), we hope that the present review, focused instead on the biochemical aspects, will stimulate a series of new investigations and discoveries in the still new and interdisciplinary field of "ILs, biomolecules, and cells."
Collapse
Affiliation(s)
- Pallavi Kumari
- Department of Sciences, University of Roma Tre, 00146, Rome, Italy
- School of Physics, University College Dublin, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Visakh V S Pillai
- Department of Sciences, University of Roma Tre, 00146, Rome, Italy
- School of Physics, University College Dublin, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Antonio Benedetto
- Department of Sciences, University of Roma Tre, 00146, Rome, Italy.
- School of Physics, University College Dublin, Dublin 4, Ireland.
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland.
- Laboratory for Neutron Scattering, Paul Scherrer Institute, 5232, Villigen, Switzerland.
| |
Collapse
|
64
|
Tahara Y, Morita K, Wakabayashi R, Kamiya N, Goto M. Biocompatible Ionic Liquid Enhances Transdermal Antigen Peptide Delivery and Preventive Vaccination Effect. Mol Pharm 2020; 17:3845-3856. [DOI: 10.1021/acs.molpharmaceut.0c00598] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Yoshiro Tahara
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kaho Morita
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Advanced Transdermal Drug Delivery System Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Advanced Transdermal Drug Delivery System Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Advanced Transdermal Drug Delivery System Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
65
|
Peng K, Shi Y, LaBarbiera A, Mitragotri S. Mucoadhesive Ionic Liquid Gel Patches for Oral Delivery. ACS Biomater Sci Eng 2020. [DOI: 10.1021/acsbiomaterials.0c01024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Kevin Peng
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | - Yujie Shi
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Anthony LaBarbiera
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| |
Collapse
|
66
|
Mandal A, Kumbhojkar N, Reilly C, Dharamdasani V, Ukidve A, Ingber DE, Mitragotri S. Treatment of psoriasis with NFKBIZ siRNA using topical ionic liquid formulations. SCIENCE ADVANCES 2020; 6:eabb6049. [PMID: 32832675 PMCID: PMC7439648 DOI: 10.1126/sciadv.abb6049] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/05/2020] [Indexed: 05/09/2023]
Abstract
Systemic antibodies targeting tumor necrosis factor-α (TNF-α) and interleukin-17A (IL-17A) are effective in plaque psoriasis. Despite their popularity, safety concerns pose a challenge for systemic biologics. While anti-TNF-α and anti-IL-17A antibodies effectively inhibit respective proteins, we hypothesize that an approach based on local silencing of an upstream target such as NFKBIZ can be advantageous for treating psoriasis. However, effective delivery of small interfering RNA (siRNA) into the skin is a substantial hurdle due to skin's barrier function and poor stability of siRNA. Using ionic liquids as an enabling technology, we report on the effective delivery of NFKBIZ siRNA into the skin and its therapeutic efficacy in a psoriasis model. Treatment with IL-siRNA suppressed aberrant gene expression and resulted in down-regulation of psoriasis-related signals including TNF-α and IL-17A. These results provide a framework for a topical delivery platform for siRNA.
Collapse
Affiliation(s)
- Abhirup Mandal
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Ninad Kumbhojkar
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Charles Reilly
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Vimisha Dharamdasani
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Anvay Ukidve
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Donald E. Ingber
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
- Corresponding author.
| |
Collapse
|
67
|
Physical Properties of an Ionic Liquid Composed of Two Water-Soluble Vitamins and Enhanced Skin Permeation of Both Vitamins. Pharmaceutics 2020; 12:pharmaceutics12050427. [PMID: 32384778 PMCID: PMC7284971 DOI: 10.3390/pharmaceutics12050427] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 01/18/2023] Open
Abstract
: A highly viscous substance was prepared by evaporating an ethanol solution containing two hydrophilic vitamins; vitamin C, and vitamin B6. The viscous substance and physical mixture of the two vitamins were tested using a differential scanning calorimeter and an X-ray diffractometer. The highly viscous substance was found to be a liquid crystal (LC) made of these two hydrophilic vitamins. Determination by proton nuclear magnetic resonance measurement suggested that intramolecular hydrogen bonding in vitamin B6 was eliminated by the LC formation. This LC compound showed high solubility in 1,3-butanediol (almost 87%). Much higher skin permeation of both vitamin C and B6 was also observed from the LC compound than that from the physical mixture. The present LC compound containing vitamin C and vitamin B6 may be useful for pharmaceutical and cosmeceutical applications.
Collapse
|
68
|
Topical delivery of siRNA into skin using ionic liquids. J Control Release 2020; 323:475-482. [PMID: 32339547 DOI: 10.1016/j.jconrel.2020.04.038] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/30/2020] [Accepted: 04/22/2020] [Indexed: 12/27/2022]
Abstract
Skin diseases such as lupus, cancer, psoriasis, and hyperhidrosis can potentially be treated effectively by suppressing allele-specific genes using small interfering RNA (siRNA). Injections of siRNA into skin, though effective, are painful and cover small surface areas and thus are not suitable as a long-term treatment option. Topical delivery of siRNA is an attractive alternative option to mediate RNA interference (RNAi). However, the barrier function of the epidermis impedes effective permeation of siRNA into the skin. Herein, we describe topical delivery of siRNA using ionic liquids (ILs) capable of complexing with siRNA non-covalently and delivering it effectively. Using complementary and synergistic strategies of ionic liquids, we report delivery of effective doses of siRNA into skin. The first strategy involved the use of hydrophobic cations to robe the siRNA and the second strategy involved the use of choline-geranic acid ionic liquid (CAGE) to enhance its dermal penetration. In vitro studies in porcine skin confirmed the synergistic effect of these strategies in enhancing epidermal and dermal penetration. In vivo application of siRNA formulation to SKH-1E hairless mice significantly suppressed GAPDH expression with no clinical evidence of toxicity. This is a simple, personalized, and scalable platform for effective topical delivery of siRNA for treating genetic skin diseases.
Collapse
|
69
|
Zheng L, Zhao Z, Yang Y, Li Y, Wang C. Novel skin permeation enhancers based on amino acid ester ionic liquid: Design and permeation mechanism. Int J Pharm 2020; 576:119031. [DOI: 10.1016/j.ijpharm.2020.119031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/15/2019] [Accepted: 01/10/2020] [Indexed: 12/16/2022]
|
70
|
Uddin S, Chowdhury MR, Wakabayashi R, Kamiya N, Moniruzzaman M, Goto M. Lipid based biocompatible ionic liquids: synthesis, characterization and biocompatibility evaluation. Chem Commun (Camb) 2020; 56:13756-13759. [DOI: 10.1039/d0cc04491a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This study reports a new series of lipid-based biocompatible ionic liquids consisting of long-chain phosphonium compound, 1,2-dimyristoyl-sn-glycero-3-ethyl- phosphatidylcholine, as a cation and long chain fatty acids as anions.
Collapse
Affiliation(s)
- Shihab Uddin
- Department of Applied Chemistry
- Graduate School of Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Md. Raihan Chowdhury
- Department of Applied Chemistry
- Graduate School of Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Rie Wakabayashi
- Department of Applied Chemistry
- Graduate School of Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Noriho Kamiya
- Department of Applied Chemistry
- Graduate School of Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Muhammad Moniruzzaman
- Chemical Engineering Department
- Universiti Teknologi Petronas
- 32610 Seri Iskandar
- Malaysia
| | - Masahiro Goto
- Department of Applied Chemistry
- Graduate School of Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| |
Collapse
|
71
|
Zandu SK, Chopra H, Singh I. Ionic Liquids for Therapeutic and Drug Delivery Applications. Curr Drug Res Rev 2020; 12:26-41. [PMID: 31763972 DOI: 10.2174/2589977511666191125103338] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Ionic liquids (ILs) are ionic compounds with highly tunable and remarkable properties which make them an important candidate in multiple domains such as extraction, synthesis, analytics, catalysis, biotechnology, therapeutics as well as pharmaceutical sciences. OBJECTIVE This review systematically highlights the classification, properties and toxicity of ionic liquids. It focuses on exploring the biological activity of ionic liquids, which includes antimicrobial and anticancer property along with an emphasis on the concept of Active Pharmaceutical Ingredient- Ionic Liquids (API-ILs) for explaining the emulsifier and solubility enhancement property of ILs. An elaborative discussion on the application of ILs for the development of oral, transdermal and topical drug delivery systems has also been presented with suitable literature support. CONCLUSION Ionic liquids possess exceptional potential in the field of medicine, biology and chemistry.
Collapse
Affiliation(s)
- Simran K Zandu
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|