51
|
Xu Y, Lu J, Wang Y, Yuan C, Liu Z. Construct a novel anti-bacteria pool from hydrothermal liquefaction aqueous family. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127162. [PMID: 34537650 DOI: 10.1016/j.jhazmat.2021.127162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/23/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Hydrothermal liquefaction aqueous phase (HTL-AP) is complex and toxic, which severely hinders the scale-up of HTL technology. Distinguished from degrading organics and extracting chemical energy or nutrients from HTL-AP via biological fermentation or algae cultivation, here, we propose an innovative strategy to valorize the HTL-AP as a powerful anti-bacterial pool. Six model ingredients, i.e. lipids, cellulose, xylan, lignin, protein and the mixture were employed, to obtain a thirty-HTL-AP pool for characteristics database construction. We found that the xylan group at 230 °C on Escherichia coli (E. coli) and at 200 °C on Staphylococcus aureus (S. aureus) exhibited the highest anti-bacterial activities via plate experiments, nearly equal to 100 μg/ml streptomycin which far exceeded the working concentration of streptomycin (10-50 μg/ml). The liquid cultivation studies further revealed HTL-APs from the mixture feedstock, protein, real biomass microalgae and cornstalk had more stable anti-bacterial activities as chemically stable substances. Interestingly, the Gram-positive strain S. aureus was more susceptible than the Gram-negative E. coli on the HTL-APs, probably owing to the outer selectively permeable membrane difference and the strong reducibility and acidity of HTL-APs. This study provides a new vision to seek the anti-bacterial potential of HTL aqueous, supporting further investigations on its molecular mechanism and new bactericide development.
Collapse
Affiliation(s)
- Yongdong Xu
- Laboratory of Environment-Enhancing Energy (E2E), College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Jianwen Lu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Yueyao Wang
- Laboratory of Environment-Enhancing Energy (E2E), College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Changbin Yuan
- Laboratory of Environment-Enhancing Energy (E2E), College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Zhidan Liu
- Laboratory of Environment-Enhancing Energy (E2E), College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
52
|
Tawalbeh M, Al-Othman A, Salamah T, Alkasrawi M, Martis R, El-Rub ZA. A critical review on metal-based catalysts used in the pyrolysis of lignocellulosic biomass materials. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113597. [PMID: 34492435 DOI: 10.1016/j.jenvman.2021.113597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/30/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
This review discusses the technical aspects of improving the efficiency of the pyrolysis of lignocellulosic materials to increase the yield of the main products, which are bio-oil, biochar, and syngas. The latest aspects of catalyst development in the biomass pyrolysis process are presented focusing on the various catalyst structures, the physical and chemical performance of the catalysts, and the mode of the catalytic reaction. In bio-oil upgrading, atmospheric catalytic cracking is shown to be more economical than catalytic hydrotreating. Catalysts help in the upgrading process by facilitating several reaction pathways such as polymerization, aromatization, and alkyl condensation. However, the grade of bio-oil must be similar to that of diesel fuel. Hence, the properties of the pyrolysis liquid such as viscosity, kinematic viscosity, density, and boiling point are important and have been highlighted. Switching between types of catalysts has a significant influence on the final product yields and exhibits different levels of durability. Various catalysts have been shown to enhance gas yield at the expense of the yields of bio-oil and biochar that shift the overall purpose of pyrolysis. Therefore, the catalytic activity as a function of temperature, pressure, and catalyst biomass ratio is discussed in detail. These operational parameters are crucial because they determine the overall yield as well as the ratio of the oil, char, and gas products. Although significant progress has been made in catalytic pyrolysis, the economic feasibility of the process and the catalyst cost remain the major obstacles. This review concludes that the catalytic process would be feasible when the fuel selling price is reduced to less than US $ 4 per gallon of gasoline-equivalent, and when the selectivity of catalysts is further enhanced.
Collapse
Affiliation(s)
- Muhammad Tawalbeh
- Sustainable and Renewable Energy Engineering Department, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Amani Al-Othman
- Department of Chemical Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
| | - Tareq Salamah
- Sustainable and Renewable Energy Engineering Department, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Malek Alkasrawi
- Department of Chemistry, University of Wisconsin Parkside, Kenosha, WI 53, USA.
| | - Remston Martis
- Department of Chemical Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
| | - Ziad Abu El-Rub
- Pharmaceutical and Chemical Engineering Department, German Jordanian University, Amman, 11180, Jordan
| |
Collapse
|
53
|
Ghodke PK, Sharma AK, Pandey JK, Chen WH, Patel A, Ashokkumar V. Pyrolysis of sewage sludge for sustainable biofuels and value-added biochar production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113450. [PMID: 34388542 DOI: 10.1016/j.jenvman.2021.113450] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
The study deals with the pyrolysis of sewage sludge to produce eco-friendly and sustainable fuels along with value-added biochar products. The experiments were conducted in a fixed-bed cylindrical glass reactor in the temperature range of 250-700 °C and achieved the product yield of 22.4 wt% bio-oil, 18.9 wt % pyrolysis gases, and 58.7 wt% biochar at 500 °C optimum temperature. The chemical composition of bio-oil was investigated by gas chromatograph-mass spectroscopy and fourier transformation infrared techniques. The ASTM standard procedures were used to assess the fuel qualities of bio-oil, and they were found to be satisfactory. Bio-oil has a greater H/C ratio (3.49) and a lower O/C ratio (1.10), indicating that it is suitable for engine use. The gas chromatographic analysis of pyrolysis gases confirmed the presence of 41.16 wt % combustible gases, making it suitable for use in spark-ignition engines. X-ray fluorescence analysis of biochar showed that it had a good amount of carbon, nitrogen, phosphorus, and potassium along with some micro-and macro-nutrient which proves its potential to utilize as organic manure in the agriculture sector. In addition, the data obtained from the TGA analysis during the pyrolysis of sewage sludge was applied to calculate kinetic parameters via the Coats-Redfern method.
Collapse
Affiliation(s)
- Praveen Kumar Ghodke
- Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode, 673601, Kerala, India
| | - Amit Kumar Sharma
- Department of Chemistry, Centre for Alternate and Renewable Energy Research, R&D, University of Petroleum & Energy Studies (UPES), School of Engineering, Energy Acres Building, Bidholi, Dehradun, 248007, Uttarakhand, India.
| | - J K Pandey
- Department of Chemistry, School of Basic and Applied Sciences, Adamas University, Kolkata, 700 126, India
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung, 411, Taiwan
| | - Alok Patel
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87, Luleå, Sweden
| | - Veeramuthu Ashokkumar
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Department of Energy and Environmental Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
| |
Collapse
|
54
|
Assessment and Recommendations for a Fossil Free Future for Track Work Machinery. SUSTAINABILITY 2021. [DOI: 10.3390/su132011444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Current railway track work machinery is mainly operated with diesel fuel. As a result, track maintenance of Austrian Federal Railways (OeBB) amounts to nearly 9000 t CO2 equivalent per year according to calculations from Graz University of Technology. OeBB’s total length of railway lines only accounts for 0.56% of the world’s length of lines. This indicates huge potential for mitigating greenhouse gas emissions considering the need for track maintenance worldwide. Environmental concerns have led to the introduction of alternative drives in the transport sector. Until now, R&D (Research & Development) of alternative propulsion technologies for track work machinery has been widely neglected. This paper examines the possibility of achieving zero direct emissions during maintenance and construction work in railways by switching to alternative drives. The goal is to analyze alternative propulsion solutions arising from the transport sector and to assess their applicability to track work machinery. Research results, together with a calculation tool, show that available battery technology is recommendable for energy demands lower than 300 kWh per construction shift. Hydrogen fuel cell technology is an alternative for energy demands higher than 800 kWh. For machinery with energy requirements in between, enhancements in battery technology are necessary and desirable for the coming years.
Collapse
|
55
|
Rodríguez A, Hernández-Herreros N, García JL, Auxiliadora Prieto M. Enhancement of biohydrogen production rate in Rhodospirillum rubrum by a dynamic CO-feeding strategy using dark fermentation. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:168. [PMID: 34362414 PMCID: PMC8343937 DOI: 10.1186/s13068-021-02017-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Rhodospirillum rubrum is a purple non-sulphur bacterium that produces H2 by photofermentation of several organic compounds or by water gas-shift reaction during CO fermentation. Successful strategies for both processes have been developed in light-dependent systems. This work explores a dark fermentation bioprocess for H2 production from water using CO as the electron donor. RESULTS The study of the influence of the stirring and the initial CO partial pressure (pCO) demonstrated that the process was inhibited at pCO of 1.00 atm. Optimal pCO value was established in 0.60 atm. CO dose adaptation to bacterial growth in fed-batch fermentations increased the global rate of H2 production, yielding 27.2 mmol H2 l-1 h-1 and reduced by 50% the operation time. A kinetic model was proposed to describe the evolution of the molecular species involved in gas and liquid phases in a wide range of pCO conditions from 0.10 to 1.00 atm. CONCLUSIONS Dark fermentation in R. rubrum expands the ways to produce biohydrogen from CO. This work optimizes this bioprocess at lab-bioreactor scale studying the influence of the stirring speed, the initial CO partial pressure and the operation in batch and fed-batch regimes. Dynamic CO supply adapted to the biomass growth enhances the productivity reached in darkness by other strategies described in the literature, being similar to that obtained under light continuous syngas fermentations. The kinetic model proposed describes all the conditions tested.
Collapse
Affiliation(s)
- Alberto Rodríguez
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐of the Spanish National Research Council (SusPlast‐CSIC), Madrid, Spain
- Polymer Biotechnology Group, Department of Plant and Microbial Biotechnology, Biological Research Center, Margarita Salas”-CSIC, 28040 Madrid, Spain
| | - Natalia Hernández-Herreros
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐of the Spanish National Research Council (SusPlast‐CSIC), Madrid, Spain
- Polymer Biotechnology Group, Department of Plant and Microbial Biotechnology, Biological Research Center, Margarita Salas”-CSIC, 28040 Madrid, Spain
| | - José L. García
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐of the Spanish National Research Council (SusPlast‐CSIC), Madrid, Spain
- Environmental Biotechnology Group, Department of Plant and Microbial Biotechnology, Biological Research Center, Margarita Salas”-CSIC 28040, Madrid, Spain
| | - M. Auxiliadora Prieto
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐of the Spanish National Research Council (SusPlast‐CSIC), Madrid, Spain
- Polymer Biotechnology Group, Department of Plant and Microbial Biotechnology, Biological Research Center, Margarita Salas”-CSIC, 28040 Madrid, Spain
| |
Collapse
|