51
|
Lin X, Chen T. A Review of in vivo Toxicity of Quantum Dots in Animal Models. Int J Nanomedicine 2023; 18:8143-8168. [PMID: 38170122 PMCID: PMC10759915 DOI: 10.2147/ijn.s434842] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
Tremendous research efforts have been devoted to nanoparticles for applications in optoelectronics and biomedicine. Over the past decade, quantum dots (QDs) have become one of the fastest growing areas of research in nanotechnology because of outstanding photophysical properties, including narrow and symmetrical emission spectrum, broad fluorescence excitation spectrum, the tenability of the emission wavelength with the particle size and composition, anti-photobleaching ability and stable fluorescence. These characteristics are suitable for optical imaging, drug delivery and other biomedical applications. Research on QDs toxicology has demonstrated QDs affect or damage the biological system to some extent, and this situation is generally caused by the metal ions and some special properties in QDs, which hinders the further application of QDs in the biomedical field. The toxicological mechanism mainly stems from the release of heavy metal ions and generation of reactive oxygen species (ROS). At the same time, the contact reaction with QDs also cause disorders in organelles and changes in gene expression profiles. In this review, we try to present an overview of the toxicity and related toxicity mechanisms of QDs in different target organs. It is believed that the evaluation of toxicity and the synthesis of environmentally friendly QDs are the primary issues to be addressed for future widespread applications. However, considering the many different types and potential modifications, this review on the potential toxicity of QDs is still not clearly elucidated, and further research is needed on this meaningful topic.
Collapse
Affiliation(s)
- Xiaotan Lin
- School of Basic Medicine, Guangdong Medical University, DongGuan, People’s Republic of China
- Department of Family Planning, Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, People’s Republic of China
| | - Tingting Chen
- School of Basic Medicine, Guangdong Medical University, DongGuan, People’s Republic of China
| |
Collapse
|
52
|
Li J, Li L, Zhang Z, Chen P, Shu H, Yang C, Chu Y, Liu J. Ferroptosis: an important player in the inflammatory response in diabetic nephropathy. Front Immunol 2023; 14:1294317. [PMID: 38111578 PMCID: PMC10725962 DOI: 10.3389/fimmu.2023.1294317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/15/2023] [Indexed: 12/20/2023] Open
Abstract
Diabetic nephropathy (DN) is a chronic inflammatory disease that affects millions of diabetic patients worldwide. The key to treating of DN is early diagnosis and prevention. Once the patient enters the clinical proteinuria stage, renal damage is difficult to reverse. Therefore, developing early treatment methods is critical. DN pathogenesis results from various factors, among which the immune response and inflammation play major roles. Ferroptosis is a newly discovered type of programmed cell death characterized by iron-dependent lipid peroxidation and excessive ROS production. Recent studies have demonstrated that inflammation activation is closely related to the occurrence and development of ferroptosis. Moreover, hyperglycemia induces iron overload, lipid peroxidation, oxidative stress, inflammation, and renal fibrosis, all of which are related to DN pathogenesis, indicating that ferroptosis plays a key role in the development of DN. Therefore, this review focuses on the regulatory mechanisms of ferroptosis, and the mutual regulatory processes involved in the occurrence and development of DN and inflammation. By discussing and analyzing the relationship between ferroptosis and inflammation in the occurrence and development of DN, we can deepen our understanding of DN pathogenesis and develop new therapeutics targeting ferroptosis or inflammation-related regulatory mechanisms for patients with DN.
Collapse
Affiliation(s)
- Jialing Li
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Luxin Li
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Zhen Zhang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
- School of First Clinical Medical College, Mudanjiang Medical University, Mudanjiang, China
| | - Peijian Chen
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Haiying Shu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Can Yang
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Yanhui Chu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Jieting Liu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
53
|
Huang X, Li C, Wei T, Liu N, Zou L, Bai C, Yao Y, Wang Z, Xue Y, Wu T, Zhang T, Tang M. Ag/TiO 2 nanohybrids induce fibrosis-related epithelial-mesenchymal transition in lung epithelial cells and the influences of silver content and silver particle size. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165875. [PMID: 37517725 DOI: 10.1016/j.scitotenv.2023.165875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
The controlled synthesis of silver nanoparticles (AgNPs) decorated TiO2 nanohybrids (Ag/TiO2) for photocatalysis has received considerable attention. These photocatalysts are widely used in environment and energy, resulting in human exposure through inhalation. Pure TiO2 is generally considered a low-toxic nanomaterial. However, little is known about the toxicity after AgNPs loading. In this study, silver-decorated TiO2 nanohybrids were controllably synthesized by the photodeposition method, and their toxic effects on murine lung and human lung epithelial cells were explored. As a result, silver loading significantly enhanced the effect of TiO2 photocatalyst on EMT in lung epithelial cells, potentially acting as a pro-fibrogenic effect in murine lung. Meanwhile, the increase in autophagy vacuoles, LC3-II marker, stub-RFP-sens-GFP-LC3 fluorescence assay, and LC3 turnover assay showed that silver loading also significantly increased autophagy flux. Furthermore, analysis of autophagy inhibition by 3-Methyladenine indicated that the promotion of EMT by silver loading was related to the increased autophagy flux. Intriguingly, the autophagy and EMT biological effects could be alleviated when the silver loading amount was reduced or silver particle size was increased, and the enhanced pro-fibrogenic effect was mitigated at the same time. This study supplemented safety information of Ag-decorated TiO2 nanohybrids and provided methods of controlled synthesis for reducing toxicity.
Collapse
Affiliation(s)
- Xiaoquan Huang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Congcong Li
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Tingting Wei
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Na Liu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Lingyue Zou
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Changcun Bai
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Yongshuai Yao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Zhihui Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China.
| |
Collapse
|
54
|
Wang Y, Wang M, Wang Y. Irisin: A Potentially Fresh Insight into the Molecular Mechanisms Underlying Vascular Aging. Aging Dis 2023; 15:2491-2506. [PMID: 38029393 PMCID: PMC11567262 DOI: 10.14336/ad.2023.1112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/12/2023] [Indexed: 12/01/2023] Open
Abstract
Aging is a natural process that affects all living organisms, including humans. Aging is a complex process that involves the gradual deterioration of various biological processes and systems, including the cardiovascular system. Vascular aging refers to age-related changes in blood vessels. These changes can increase the risk of developing cardiovascular diseases, such as hypertension, atherosclerosis, and stroke. Recently, an exercise-induced muscle factor, irisin, was found to directly improve metabolism and regulate the balance of glucolipid metabolism, thereby counteracting obesity and insulin resistance. Based on a growing body of evidence, irisin modulates vascular aging. Adenosine monophosphate-activated protein kinase (AMPK) serves as a pivotal cellular energy sensor and metabolic modulator, acting as a central signaling cascade to coordinate various cellular processes necessary for maintaining vascular homeostasis. The vascular regulatory effects of irisin are closely intertwined with its interaction with the AMPK pathway. In conclusion, understanding the molecular processes used by irisin to regulate changes in vascular diseases caused by aging may inspire the development of techniques that promote healthy vascular aging. This review sought to describe the impact of irisin on the molecular mechanisms of vascular aging, including inflammation, oxidative stress, and epigenetics, from the perspective of endothelial cell function and vascular macroregulation, and summarize the multiple signaling pathways used by irisin to regulate vascular aging.
Collapse
Affiliation(s)
- Yinghui Wang
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, Jilin, China.
| | - Manying Wang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China.
| | - Yuehui Wang
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
55
|
Zhu L, Cao P, Yang S, Lin F, Wang J. Prolonged exposure to environmental levels of microcystin-LR triggers ferroptosis in brain via the activation of Erk/MAPK signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115651. [PMID: 37913581 DOI: 10.1016/j.ecoenv.2023.115651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
While existing research has illuminated the environmental dangers and neurotoxic effects of MC-LR exposure, the molecular underpinnings of brain damage from environmentally-relevant MC-LR exposure remain elusive. Employing a comprehensive approach involving RNA sequencing, histopathological examination, and biochemical analyses, we discovered genes differentially expressed and enriched in the ferroptosis pathway. This finding was associated with mitochondrial structural impairment and downregulation of Gpx4 and Slc7a11 in mice brains subjected to low-dose MC-LR over 180 days. Mirroring these findings, we noted reduced cell viability and GSH/GSSH ratio, along with an increased ROS level, in HT-22, BV-2, and bEnd.3 cells following MC-LR exposure. Intriguingly, MC-LR also amplified phospho-Erk levels in both in vivo and in vitro settings, and the effects were mitigated by treatment with PD98059, an Erk inhibitor. Taken together, our findings implicate the activation of the Erk/MAPK signaling pathway in MC-LR-induced ferroptosis, shedding valuable light on the neurotoxic mechanisms of MC-LR. These insights could guide future strategies to prevent MC-induced neurodegenerative diseases.
Collapse
Affiliation(s)
- Lingyun Zhu
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Pingping Cao
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Suisui Yang
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fan Lin
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Jing Wang
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
56
|
Zhang PC, Hong Y, Zong SQ, Chen L, Zhang C, Tian DZ, Ke D, Tian LM. Variation of Ferroptosis-Related Markers in HaCaT Cell Photoaging Models Induced by UVB. Clin Cosmet Investig Dermatol 2023; 16:3147-3155. [PMID: 37937317 PMCID: PMC10626151 DOI: 10.2147/ccid.s433071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/12/2023] [Indexed: 11/09/2023]
Abstract
Objective To investigate the variation of ferroptosis-related markers in HaCaT cell photoaging models induced by ultraviolet-B (UVB). Methods UVB-treated HaCaT cells served as the model (UVB group) for cellular photoaging, whereas untreated HaCaT cells served as the control group. HaCaT cells were exposed to UVB and the ferroptosis inhibitor Ferrostatin-1 (Fer-1) as part of the UVB+Fer-1 group, and co-cultured with the ferroptosis inducer Erastin as part of the UVB+Erastin group. Reactive oxygen species (ROS) detection kit and senescence-related β galactosidase (SA-β-gal) staining were used to evaluate the senescence of HaCaT cells. Lipid reactive oxygen species were detected by C11 BODIPY581/591 probe and mitochondrial morphology was observed by transmission electron microscopy. The mRNA expressions of glutathione peroxidase 4 (GPX4) and ferroptosis-suppressor-protein 1 (FSP1) were detected by real-time reverse transcription-PCR (RT-RCP), and the level of GPX4 protein was measured by immunofluorescence assay. Results The UVB group had considerably greater levels of ROS, SA-β-gal, and lipid reactive oxygen species than the control group. The UVB group's mitochondrial volume was reduced, the membrane density increased, and the mitochondrial crest decreased or even disappeared. GPX4 and FSP1 expression levels were similarly found to be lower in the UVB group. Furthermore, the positive rate of SA-β-gal and lipid reactive oxygen species in the UVB+Fer-1 group was much lower than in the UVB group, but it was reverse in the UVB+Erastin group. This study showed that induced ferroptosis can aggravate aging, and vice versa. Conclusion According to the findings, ferroptosis may be linked to UVB-induced skin photoaging, which could be attenuated by inhibition of ferroptosis.
Collapse
Affiliation(s)
- Peng-Cheng Zhang
- Department of Dermatology, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
- Hubei Provincial Key Laboratory of Skin Infection and Immunity, Wuhan No.1 Hospital, Wuhan, 430022, People's Republic of China
| | - Yi Hong
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China
| | - Shi-Qin Zong
- Department of Dermatology, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
- Hubei Provincial Key Laboratory of Skin Infection and Immunity, Wuhan No.1 Hospital, Wuhan, 430022, People's Republic of China
| | - Long Chen
- Department of Dermatology, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
- Hubei Provincial Key Laboratory of Skin Infection and Immunity, Wuhan No.1 Hospital, Wuhan, 430022, People's Republic of China
| | - Chong Zhang
- Institute of Geriatrics, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China
| | - Dai-Zhi Tian
- Institute of Geriatrics, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China
| | - Dan Ke
- Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400000, People's Republic of China
| | - Li-Ming Tian
- Department of Dermatology, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
- Hubei Provincial Key Laboratory of Skin Infection and Immunity, Wuhan No.1 Hospital, Wuhan, 430022, People's Republic of China
- Institute of Geriatrics, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China
| |
Collapse
|
57
|
Deng X, Chu W, Zhang H, Peng Y. Nrf2 and Ferroptosis: A New Research Direction for Ischemic Stroke. Cell Mol Neurobiol 2023; 43:3885-3896. [PMID: 37728817 PMCID: PMC11407729 DOI: 10.1007/s10571-023-01411-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 09/04/2023] [Indexed: 09/21/2023]
Abstract
Ischemic stroke (IS) is one of the leading causes of death and morbidity worldwide. As a novel form of cell death, ferroptosis is an important mechanism of ischemic stroke. Nuclear factor E2-related factor 2 (Nrf2) is the primary regulator of cellular antioxidant response. In addition to alleviating ischemic stroke nerve damage by reducing oxidative stress, Nrf2 regulates genes associated with ferroptosis, suggesting that Nrf2 may inhibit ferroptosis after ischemic stroke. However, the specific pathway of Nrf2 on ferroptosis in the field of ischemic stroke remains unclear. Therefore, this paper provides a concise overview of the mechanisms underlying ferroptosis, with a particular focus on the regulatory role of Nrf2. The discussion highlights the potential connections between Nrf2 and the mitigation of oxidative stress, regulation of iron metabolism, modulation of the interplay between ferroptosis and inflammation, as well as apoptosis. This paper focuses on the specific pathway of Nrf2 regulation of ferroptosis after ischemic stroke, providing scientific research ideas for further research on the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Xiaoman Deng
- Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Wenming Chu
- Henan University of Chinese Medicine, Zhengzhou, 450000, Henan Province, China
| | - Hanrui Zhang
- Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Yongjun Peng
- Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China.
| |
Collapse
|
58
|
Chen T, Zhang L, Yao L, Luan J, Zhou X, Cong R, Guo X, Qin C, Song N. Zinc oxide nanoparticles-induced testis damage at single-cell resolution: Depletion of spermatogonia reservoir and disorder of Sertoli cell homeostasis. ENVIRONMENT INTERNATIONAL 2023; 181:108292. [PMID: 37918063 DOI: 10.1016/j.envint.2023.108292] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023]
Abstract
The widespread application of zinc oxide nanoparticles (ZnO NPs) in our daily life has initiated an enhanced awareness of their biosafety concern. An incredible boom of evidence of organismal disorder has accumulated for ZnO NPs, yet there has been no relevant study at the single-cell level. Here, we profiled > 28,000 single-cell transcriptomes and assayed > 25,000 genes in testicular tissues from two healthy Sprague Dawley (SD) rats and two SD rats orally exposed to ZnO NPs. We identified 10 cell types in the rat testis. ZnO NPs had more deleterious effects on spermatogonia, Sertoli cells, and macrophages than on the other cell types. Cell-cell communication analysis indicated a sharp decrease of interaction intensity for all cell types except macrophages in the ZnO NPs group than in the control group. Interestingly, two distinct maturation states of spermatogonia were detected during pseudotime analysis, and ZnO NPs induced reservoir exhaustion of undifferentiated spermatogonia. Mechanically, ZnO NPs triggered fatty acid accumulation in GC-1 cells through protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling and peroxisome proliferator-activated receptor alpha (PPARα)/acyl-CoA oxidase 1 (Acox1) axis, contributing to cell apoptosis. In terms of Sertoli cells, downregulated genes were highly enriched for tight junction. In vitro and in vivo experiments verified that ZnO NPs disrupted blood-testis barrier formation and growth factors synthesis, which subsequently inhibited the proliferation and induced the apoptosis of spermatogonia. As for the macrophages, ZnO NPs activated oxidative stress of Raw264.7 cells through nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway and promoted cell apoptosis through extracellular signal-regulated kinase (ERK) 1/2 pathway. Collectively, our work reveals the cell type-specific and cellularly heterogenetic mechanism of ZnO NPs-induced testis damage and paves the path for identifying putative biomarkers and therapeutics against this disorder.
Collapse
Affiliation(s)
- Tong Chen
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 210000 Nanjing, PR China
| | - Lin Zhang
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, 250001 Jinan, PR China; Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Shandong University, 250001 Jinan, PR China
| | - Liangyu Yao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 210000 Nanjing, PR China
| | - Jiaochen Luan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 210000 Nanjing, PR China
| | - Xiang Zhou
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 210000 Nanjing, PR China
| | - Rong Cong
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 210000 Nanjing, PR China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Chao Qin
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 210000 Nanjing, PR China.
| | - Ninghong Song
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 210000 Nanjing, PR China.
| |
Collapse
|
59
|
Wan X, Zhang H, Tian J, Hao P, Liu L, Zhou Y, Zhang J, Song X, Ge C. The Chains of Ferroptosis Interact in the Whole Progression of Atherosclerosis. J Inflamm Res 2023; 16:4575-4592. [PMID: 37868832 PMCID: PMC10588755 DOI: 10.2147/jir.s430885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/03/2023] [Indexed: 10/24/2023] Open
Abstract
Atherosclerosis (AS), a category of cardiovascular disease (CVD) that can cause other more severe disabilities, increasingly jeopardizes human health. Owing to its imperceptible and chronic symptoms, it is hard to determine the pathogenesis and precise therapeutics for AS. A novel type of programmed cell death called ferroptosis was discovered in recent years that is distinctively different from other traditional cell death pathways in morphological and biochemical aspects. Characterized by iron overload, redox disequilibrium, and accumulation of lipid hydroperoxides (L-OOH), ferroptosis influences endothelial cells, vascular smooth muscle cells (VSMCs), and macrophages, as well as inflammation, partaking in the pathology of many cardiovascular diseases such as atherosclerosis, stroke, ischemia-reperfusion injury, and heart failure. The mechanisms behind ferroptosis are so sophisticated and interwoven that many molecules involved in this procedure are unknown. This review systematically depicts the initiation and modulation of ferroptosis and summarizes the contribution of ferroptosis to AS, which may open a feasible approach for target treatment in the alleviation of AS progression.
Collapse
Affiliation(s)
- Xueqi Wan
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Huan Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Jinfan Tian
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Peng Hao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Libo Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yuquan Zhou
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Jing Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Xiantao Song
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Changjiang Ge
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
60
|
Xu X, Wang SS, Zhang L, Lu AX, Lin Y, Liu JX, Yan CH. Methylmercury induced ferroptosis by interference of iron homeostasis and glutathione metabolism in CTX cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122278. [PMID: 37517642 DOI: 10.1016/j.envpol.2023.122278] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/01/2023]
Abstract
Environmental methylmercury (MeHg) exposure has gained global attention owing to its serious health hazards, especially neurotoxicity. Ferroptosis is a novel form of programmed cell death characterized by lipid peroxidation and iron overload. However, the occurrence of ferroptosis and its underlying mechanisms have not been fully elucidated in the methylmercury-induced neurotoxicity and the role of Nrf2 in MeHg-induced ferroptosis remains unexplored. In this study, we verified that MeHg decreased cell viability in a dose- and time-dependent manner in the Rat Brain Astrocytes cells (CTX cells). MeHg (3.5 μmol/L) exposure induced CTX cells to undergo ferroptosis, as evidenced by glutathione (GSH) depletion, lipid peroxidation, and iron overload, which was significantly rescued by the ferroptosis-specific inhibitors Ferrostatin-1 and Deferoxamine. MeHg directly disrupted the process of GSH metabolism by downregulating of SLC7A11 and GPX4 and interfered with intracellular iron homeostasis through inhibition of iron storage and export. Simultaneously, the expression of Nrf2 was upregulated by MeHg in CTX cells. Hence, the inhibition of Nrf2 activity further downregulated the levels of GPX4, SLC7A11, FTH1, and SLC40A1, which aggravated MeHg-induced ferroptosis to a greater extent. Overall, our findings provided evidence that ferroptosis played a critical role in MeHg-induced neurotoxicity, and suppressing Nrf2 activity further exacerbated MeHg-induced ferroptosis in CTX cells.
Collapse
Affiliation(s)
- Xi Xu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Su-Su Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - An-Xin Lu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yin Lin
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun-Xia Liu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chong-Huai Yan
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
61
|
Li Q, Yang Q, Guo P, Feng Y, Wang S, Guo J, Tang Z, Yu W, Liao J. Mitophagy contributes to zinc-induced ferroptosis in porcine testis cells. Food Chem Toxicol 2023; 179:113950. [PMID: 37481227 DOI: 10.1016/j.fct.2023.113950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
Zinc (Zn) is a critical microelement for physiological process, but excess exposure can cause testicular dysfunction. However, the underlying mechanism of Zn-induced ferroptosis via regulating mitophagy is unknown. In this study, a total of 60 male weaned pigs were randomly divided into three groups and the content of Zn were 75 mg/kg (control), 750 mg/kg (Zn-I), 1500 mg/kg (Zn-II). Meanwhile, testicular cells were treated with ZnSO4 (0, 50 and 100 μM), and in combination of ZnSO4 (100 μM) and ferrostation-1, ML-210, or 3-methyladenine for 24 h. Our results verified that Zn could cause ferroptosis and lipid peroxidation, which were characterized by down-regulating level of SLC7A11, GPX4, and ferritin, and up-regulating levels of MDA, CD71, TF, and HMGB1 by Western blot, immunohistochemistry, immunofluorescence, peroxidase assay, et.ac. The opposite effect was shown after treatment with ferrostation-1 or ML-210. Meanwhile, the mitophagy-related proteins (PINK, Parkin, ATG5, LC3-II/LC3-I) were significantly upregulated in vivo and in vitro. Most importantly, 3-methyladenine observably relieved ferroptosis under Zn treatment through inhibiting mitophagy. Collectively, we demonstrated that mitophagy contributes to Zn-induced ferroptosis in porcine testis cells, providing a new insight into Zn toxicology.
Collapse
Affiliation(s)
- Quanwei Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Qingwen Yang
- Laboratory of Veterinary Pharmacology, Department of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing, PR China
| | - Pan Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Yuanhong Feng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Shaofeng Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Wenlan Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China.
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China.
| |
Collapse
|
62
|
Wang X, Tan X, Zhang J, Wu J, Shi H. The emerging roles of MAPK-AMPK in ferroptosis regulatory network. Cell Commun Signal 2023; 21:200. [PMID: 37580745 PMCID: PMC10424420 DOI: 10.1186/s12964-023-01170-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/20/2023] [Indexed: 08/16/2023] Open
Abstract
Ferroptosis, a newform of programmed cell death, driven by peroxidative damages of polyunsaturated-fatty-acid-containing phospholipids in cellular membranes and is extremely dependent on iron ions, which is differs characteristics from traditional cell death has attracted greater attention. Based on the curiosity of this new form of regulated cell death, there has a tremendous progress in the field of mechanistic understanding of ferroptosis recent years. Ferroptosis is closely associated with the development of many diseases and involved in many diseases related signaling pathways. Not only a variety of oncoproteins and tumor suppressors can regulate ferroptosis, but multiple oncogenic signaling pathways can also have a regulatory effect on ferroptosis. Ferroptosis results in the accumulation of large amounts of lipid peroxides thus involving the onset of oxidative stress and energy stress responses. The MAPK pathway plays a critical role in oxidative stress and AMPK acts as a sensor of cellular energy and is involved in the regulation of the energy stress response. Moreover, activation of AMPK can induce the occurrence of autophagy-dependent ferroptosis and p53-activated ferroptosis. In recent years, there have been new advances in the study of molecular mechanisms related to the regulation of ferroptosis by both pathways. In this review, we will summarize the molecular mechanisms by which the MAPK-AMPK signaling pathway regulates ferroptosis. Meanwhile, we sorted out the mysterious relationship between MAPK and AMPK, described the crosstalk among ferroptosis and MAPK-AMPK signaling pathways, and summarized the relevant ferroptosis inducers targeting this regulatory network. This will provide a new field for future research on ferroptosis mechanisms and provide a new vision for cancer treatment strategies. Video Abstract.
Collapse
Affiliation(s)
- Xinyue Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Xiao Tan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China.
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| | - Jinping Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Jiaping Wu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Hongjuan Shi
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| |
Collapse
|
63
|
Yehia A, Sousa RAL, Abulseoud OA. Sex difference in the association between blood alcohol concentration and serum ferritin. Front Psychiatry 2023; 14:1230406. [PMID: 37547205 PMCID: PMC10401063 DOI: 10.3389/fpsyt.2023.1230406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/07/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction The sex difference in alcohol use disorder (AUD) is ingrained in distinctive neurobiological responses between men and women, which necessitates further investigation for a more tailored management. Methods Minding the findings of iron dysregulation in AUD and the sex difference in iron homeostasis in multiple physiological and pathological settings, we examined the sex difference in the association between serum ferritin and blood alcohol concentration (BAC) in intoxicated males (n = 125) and females (n = 59). We included patients with both serum ferritin tested of any value and a BAC above the level of detection during the same hospital admission period. We investigated sex difference in the relationship between BAC, serum ferritin and liver enzymes in intoxicated critically ill and noncritically ill patients. Results We found a negative association between serum ferritin and BAC in critically ill, intoxicated females [R2 = 0.44, F(1,14) = 11.02, p = 0.005], with much attenuated serum ferritin in females compared to their male counterparts (194.5 ± 280.4 vs. 806.3 ± 3405.7 ng/L, p = 0.002). We found a positive association between serum ferritin and liver enzymes [alanine transaminase (ALT) and aspartate transferase (AST)] in critically ill intoxicated females [ALT: R2 = 0.48, F(1,10) = 9.1, p = 0.013; AST: R2 = 0.68, F(1,10) = 21.2, p = 0.001] and in noncritically ill intoxicated males [ALT: R2 = 0.1, F(1,83) = 9.4, p = 0.003; AST: R2 = 0.1, F(1,78) = 10.5, p = 0.002]. The effect of BAC on serum ferritin was not mediated by ALT [indirect effect: (B = 0.13, p = 0.1)]. We also found a significant effect of sex, anemia, intensive care unit (ICU) admission and mortality on serum ferritin. Discussion Our results suggest that high BAC in intoxicated female patients is associated with attenuated serum ferritin levels, questioning the role of low serum ferritin in female vulnerability to alcohol.
Collapse
Affiliation(s)
- Asmaa Yehia
- Department of Neuroscience, Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Phoenix, AZ, United States
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ricardo A L Sousa
- Department of Psychiatry and Psychology, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Osama A Abulseoud
- Department of Neuroscience, Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Phoenix, AZ, United States
- Department of Psychiatry and Psychology, Mayo Clinic Arizona, Phoenix, AZ, United States
| |
Collapse
|
64
|
Liu X, Pan B, Wang X, Xu J, Wang X, Song Z, Zhang E, Wang F, Wang W. Ischemia/reperfusion-activated ferroptosis in the early stage triggers excessive inflammation to aggregate lung injury in rats. Front Med (Lausanne) 2023; 10:1181286. [PMID: 37425328 PMCID: PMC10327590 DOI: 10.3389/fmed.2023.1181286] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Objective Lung ischemia/reperfusion injury (LIRI) is a clinical syndrome of acute lung injury that occurs after lung transplantation or remote organ ischemia. Ferroptosis and inflammation are involved in the pathogenesis of LIRI according to the results of several studies on animal models. However, the interactive mechanisms between ferroptosis and inflammation contributing to LIRI remain unclear. Methods HE staining and indicators of oxidative stress were used to evaluated the lung injury. The reactive oxygen species (ROS) level was examined by DHE staining. The quantitative Real-time PCR (qRT-PCR) and western blot analysis were employed to detect the level of inflammation and ferroptosis, and deferoxamine (DFO) was used to assess the importance of ferroptosis in LIRI and its effect on inflammation. Results In the present study, the link of ferroptosis with inflammation was evaluated at reperfusion 30-, 60- and 180-minute time points, respectively. As the results at reperfusion 30-minute point shown, the pro-ferroptotic indicators, especially cyclooxygenase (COX)-2 and acyl-CoA synthetase long-chain family member 4 (ACSL4), were upregulated while the anti-ferroptotic factors glutathione peroxidase 4 (GPX4), cystine-glumate antiporter (XCT) and ferritin heavy chain (FTH1) were downregulated. Meanwhile, the increased level of interleukin (IL)-6, tumor necrosis factor alpha (TNF-α) and IL-1β were observed beginning at reperfusion 60-minute point but mostly activated at reperfusion 180-minute point. Furthermore, deferoxamine (DFO) was employed to block ferroptosis, which can alleviate lung injury. Expectedly, the survival rate of rats was increased and the lung injury was mitigated containing the improvement of type II alveolar cells ultrastructure and ROS production. In addition, at the reperfusion 180-minute point, the inflammation was observed to be dramatically inhibited after DFO administration as verified by IL-6, TNF-α and IL-1β detection. Conclusion These findings suggest that ischemia/reperfusion-activated ferroptosis plays an important role as the trigger for inflammation to further deteriorate lung damages. Inhibiting ferroptosis may have therapeutic potential for LIRI in clinical practice.
Collapse
Affiliation(s)
- Xiujie Liu
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, China
- Institute of Ischemia/Reperfusion Injury, Wenzhou Medical University, Wenzhou, China
| | - Binhui Pan
- Nephrology Department, Wenzhou Central Hospital, Wenzhou, China
| | - Xiaoting Wang
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, China
- Institute of Ischemia/Reperfusion Injury, Wenzhou Medical University, Wenzhou, China
| | - Junpeng Xu
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, China
- Institute of Ischemia/Reperfusion Injury, Wenzhou Medical University, Wenzhou, China
| | - Xinyu Wang
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, China
- Institute of Ischemia/Reperfusion Injury, Wenzhou Medical University, Wenzhou, China
| | - Zhengyang Song
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, China
- Institute of Ischemia/Reperfusion Injury, Wenzhou Medical University, Wenzhou, China
| | - Eryao Zhang
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fangyan Wang
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, China
- Institute of Ischemia/Reperfusion Injury, Wenzhou Medical University, Wenzhou, China
| | - Wantie Wang
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, China
- Institute of Ischemia/Reperfusion Injury, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
65
|
Huang T, Zhang K, Wang J, He K, Zhou X, Nie S. Quercetin Alleviates Acrylamide-Induced Liver Injury by Inhibiting Autophagy-Dependent Ferroptosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7427-7439. [PMID: 37134181 DOI: 10.1021/acs.jafc.3c01378] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Acrylamide (ACR) generated in carbohydrate-rich foods during thermal processing has been demonstrated to exhibit hepatotoxicity. As one of the most consumed flavonoids with diet, quercetin (QCT) possesses the ability to protect against ACR-induced toxicity, albeit its mechanism is unclear. Herein, we discovered that QCT alleviated ACR-induced elevated levels of reactive oxygen species (ROS), AST, and ALT in mice. RNA-seq analysis revealed that QCT reversed the ferroptosis signaling pathway upregulated by ACR. Subsequently, experiments indicated that QCT inhibited ACR-induced ferroptosis through the reduction of oxidative stress. With autophagy inhibitor chloroquine, we further confirmed that QCT suppressed ACR-induced ferroptosis by inhibiting oxidative stress-driven autophagy. Additionally, QCT specifically reacted with autophagic cargo receptor NCOA4, blocked the degradation of iron storage protein FTH1, and eventually downregulated the intracellular iron levels and the consequent ferroptosis. Collectively, our results presented a unique approach to alleviate ACR-induced liver injury by targeting ferroptosis with QCT.
Collapse
Affiliation(s)
- Tongwen Huang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Ke Zhang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Junqiao Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Kaihong He
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Xingtao Zhou
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| |
Collapse
|
66
|
Tkachenko A, Onishchenko A, Myasoedov V, Yefimova S, Havranek O. Assessing regulated cell death modalities as an efficient tool for in vitro nanotoxicity screening: a review. Nanotoxicology 2023; 17:218-248. [PMID: 37083543 DOI: 10.1080/17435390.2023.2203239] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Nanomedicine is a fast-growing field of nanotechnology. One of the major obstacles for a wider use of nanomaterials for medical application is the lack of standardized toxicity screening protocols for assessing the safety of newly synthesized nanomaterials. In this review, we focus on less frequently studied nanomaterials-induced regulated cell death (RCD) modalities, including eryptosis, necroptosis, pyroptosis, and ferroptosis, as a tool for in vitro nanomaterials safety evaluation. We summarize the latest insights into the mechanisms that mediate these RCDs in response to nanomaterials exposure. Comprehensive data from reviewed studies suggest that ROS (reactive oxygen species) overproduction and ROS-mediated pathways play a central role in nanomaterials-induced RCDs activation. On the other hand, studies also suggest that individual properties of nanomaterials, including size, shape, or surface charge, could determine specific toxicity pathways with consequent RCD induction as well. We anticipate that the evaluation of RCDs can become one of the mechanism-based screening methods in nanotoxicology. In addition to the toxicity assessment, evaluation of necroptosis-, pyroptosis-, and ferroptosis-promoting capacity of nanomaterials could simultaneously provide useful information for specific medical applications as could be their anti-tumor potential. Moreover, a detailed understanding of molecular mechanisms driving nanomaterials-mediated induction of immunogenic RCDs will substantially aid novel anti-tumor nanodrugs development.
Collapse
Affiliation(s)
- Anton Tkachenko
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Anatolii Onishchenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Valeriy Myasoedov
- Department of Medical Biology, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Svetlana Yefimova
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Ondrej Havranek
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Department of Hematology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| |
Collapse
|
67
|
Jin X, Jiang C, Zou Z, Huang H, Li X, Xu S, Tan R. Ferritinophagy in the etiopathogenic mechanism of related diseases. J Nutr Biochem 2023; 117:109339. [PMID: 37061010 DOI: 10.1016/j.jnutbio.2023.109339] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 04/17/2023]
Abstract
Iron is an essential trace element that is involved in a variety of physiological processes. Ferritinophagy is selective autophagy mediated by nuclear receptor coactivator 4 (NCOA4), which regulates iron homeostasis in the body. Upon iron depletion or starvation, ferritinophagy is activated, releasing large amounts of Fe2+ and increasing reactive oxygen species (ROS), leading to ferroptosis. This plays a significant role in the etiopathogenesis of many diseases, such as metabolic diseases, neurodegenerative diseases, infectious diseases, tumors, cardiomyopathy, and ischemia-reperfusion ischemia-reperfusion injury. Here, we first review the regulation and functions of ferritinophagy and then describe its involvement in different diseases, with hopes of providing new understanding and insights into iron metabolism and iron disorder-related diseases and the therapeutic opportunity for targeting ferritinophagy.
Collapse
Affiliation(s)
- Xuemei Jin
- Department of Preventive Medicine, School of Medicine, Yanbian University, Yanji, China; Department of Clinical Nutrition, Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Chunjie Jiang
- Department of Clinical Nutrition, Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Zhizhou Zou
- Department of Preventive Medicine, School of Medicine, Yanbian University, Yanji, China; Department of Clinical Nutrition, Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - He Huang
- Department of Preventive Medicine, School of Medicine, Yanbian University, Yanji, China; Department of Clinical Nutrition, Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Xiaojian Li
- Department of Burn, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Songji Xu
- Department of Preventive Medicine, School of Medicine, Yanbian University, Yanji, China
| | - Rongshao Tan
- Department of Clinical Nutrition, Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
68
|
Chen Y, Fang ZM, Yi X, Wei X, Jiang DS. The interaction between ferroptosis and inflammatory signaling pathways. Cell Death Dis 2023; 14:205. [PMID: 36944609 PMCID: PMC10030804 DOI: 10.1038/s41419-023-05716-0] [Citation(s) in RCA: 202] [Impact Index Per Article: 101.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/23/2023]
Abstract
Ferroptosis is an iron-dependent regulated cell death driven by excessive lipid peroxidation. Inflammation is one common and effective physiological event that protects against various stimuli to maintain tissue homeostasis. However, the dysregulation of inflammatory responses can cause imbalance of the immune system, cell dysfunction and death. Recent studies have pointed out that activation of inflammation, including the activation of multiple inflammation-related signaling pathways, can lead to ferroptosis. Among the related signal transduction pathways, we focused on five classical inflammatory pathways, namely, the JAK-STAT, NF-κB, inflammasome, cGAS-STING and MAPK signaling pathways, and expounded on their roles in ferroptosis. To date, many agents have shown therapeutic effects on ferroptosis-related diseases by modulating the aforementioned pathways in vivo and in vitro. Moreover, the regulatory effects of these pathways on iron metabolism and lipid peroxidation have been described in detail, contributing to further understanding of the pathophysiological process of ferroptosis. Taken together, targeting these pathways related to inflammation will provide appropriate ways to intervene ferroptosis and diseases.
Collapse
Affiliation(s)
- Yue Chen
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ze-Min Fang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
| | - Ding-Sheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
| |
Collapse
|
69
|
Zou HX, Hu T, Zhao JY, Qiu BQ, Zou CC, Xu QR, Liu JC, Lai SQ, Huang H. Exploring Dysregulated Ferroptosis-Related Genes in Septic Myocardial Injury Based on Human Heart Transcriptomes: Evidence and New Insights. J Inflamm Res 2023; 16:995-1015. [PMID: 36923465 PMCID: PMC10010745 DOI: 10.2147/jir.s400107] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/25/2023] [Indexed: 03/18/2023] Open
Abstract
Introduction Sepsis is currently a common condition in emergency and intensive care units, and is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Cardiac dysfunction caused by septic myocardial injury (SMI) is associated with adverse prognosis and has significant economic and human costs. The pathophysiological mechanisms underlying SMI have long been a subject of interest. Recent studies have identified ferroptosis, a form of programmed cell death associated with iron accumulation and lipid peroxidation, as a pathological factor in the development of SMI. However, the current understanding of how ferroptosis functions and regulates in SMI remains limited, particularly in the absence of direct evidence from human heart. Methods We performed a sequential comprehensive bioinformatics analysis of human sepsis cardiac transcriptome data obtained through the GEO database. The lipopolysaccharide-induced mouse SMI model was used to validate the ferroptosis features and transcriptional expression of key genes. Results We identified widespread dysregulation of ferroptosis-related genes (FRGs) in SMI based on the human septic heart transcriptomes, deeply explored the underlying biological mechanisms and crosstalks, followed by the identification of key functional modules and hub genes through the construction of protein-protein interaction network. Eight key FRGs that regulate ferroptosis in SMI, including HIF1A, MAPK3, NOX4, PPARA, PTEN, RELA, STAT3 and TP53, were identified, as well as the ferroptosis features. All the key FRGs showed excellent diagnostic capability for SMI, part of them was associated with the prognosis of sepsis patients and the immune infiltration in the septic hearts, and potential ferroptosis-modulating drugs for SMI were predicted based on key FRGs. Conclusion This study provides human septic heart transcriptome-based evidence and brings new insights into the role of ferroptosis in SMI, which is significant for expanding the understanding of the pathobiological mechanisms of SMI and exploring promising diagnostic and therapeutic targets for SMI.
Collapse
Affiliation(s)
- Hua-Xi Zou
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Tie Hu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Jia-Yi Zhao
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Medical Innovation Experimental Program, Huan Kui College, Nanchang University, Nanchang, People’s Republic of China
| | - Bai-Quan Qiu
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Chen-Chao Zou
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Qi-Rong Xu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Ji-Chun Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Song-Qing Lai
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Huang Huang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
70
|
Bartos A, Sikora J. Bioinorganic Modulators of Ferroptosis: A Review of Recent Findings. Int J Mol Sci 2023; 24:3634. [PMID: 36835045 PMCID: PMC9967694 DOI: 10.3390/ijms24043634] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Ferroptosis was first reported as a separate modality of regulated cell death in 2008 and distinguished under its current name in 2012 after it was first induced with erastin. In the following decade, multiple other chemical agents were researched for their pro- or anti-ferroptotic properties. Complex organic structures with numerous aromatic moieties make up the majority of this list. This review fills a more overlooked niche by gathering, outlining and setting out conclusions regarding less prominent cases of ferroptosis induced by bioinorganic compounds and reported on within the last few years. The article contains a short summary of the application of bioinorganic chemicals based on gallium, several chalcogens, transition metals and elements known as human toxicants used for the purpose of evoking ferroptotic cell death in vitro or in vivo. These are used in the form of free ions, salts, chelates, gaseous and solid oxides or nanoparticles. Knowledge of how exactly these modulators promote or inhibit ferroptosis could be beneficial in the context of future therapies aimed against cancer or neurodegenerative diseases, respectively.
Collapse
Affiliation(s)
- Adrian Bartos
- Department of Bioinorganic Chemistry, Faculty of Pharmacy, Medical University of Lodz, Jana Muszynskiego 1, 90-151 Lodz, Poland
| | - Joanna Sikora
- Department of Bioinorganic Chemistry, Faculty of Pharmacy, Medical University of Lodz, Jana Muszynskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
71
|
Savic D, Steinbichler TB, Ingruber J, Negro G, Aschenbrenner B, Riechelmann H, Ganswindt U, Skvortsov S, Dudás J, Skvortsova II. Erk1/2-Dependent HNSCC Cell Susceptibility to Erastin-Induced Ferroptosis. Cells 2023; 12:336. [PMID: 36672272 PMCID: PMC9856753 DOI: 10.3390/cells12020336] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Unfavorable clinical outcomes mean that cancer researchers must attempt to develop novel therapeutic strategies to overcome therapeutic resistance in patients with HNSCC. Recently, ferroptosis was shown to be a promising pathway possessing druggable targets, such as xCT (SLC7A11). Unfortunately, little is known about the molecular mechanisms underlying the susceptibility of HNSCC cells to ferroptosis. The goal of this study was to determine whether HNSCC cells with activated Erk1/2 are vulnerable to ferroptosis induction. Our results have shown that xCT (SLC7A11) was overexpressed in malignant tissues obtained from the patients with HNSCC, whereas normal mucosa demonstrated weak expression of the protein. In order to investigate the role of Erk1/2 in the decrease in cell viability caused by erastin, xCT-overexpressing FaDu and SCC25 HNSCC cells were used. The ravoxertinib-dependent inhibition of Erk1/2 signaling led to the decrease in erastin efficacy due to the effect on ROS production and the upregulation of ROS scavengers SOD1 and SOD2, resulting in repressed lipid peroxidation. Therefore, it was concluded that the erastin-dependent activation of ferroptosis seems to be a promising approach which can be further developed as an additional strategy for the treatment of HNSCC. As ferroptosis induction via erastin is strongly dependent on the expression of Erk1/2, this MAP kinase can be considered as a predictor for cancer cells' response to erastin.
Collapse
Affiliation(s)
- Dragana Savic
- Laboratory for Experimental and Translational Research on Radiation Oncology (EXTRO-Lab), Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, A-6020 Innsbruck, Austria
- Tyrolean Cancer Research Institute (TKFI), A-6020 Innsbruck, Austria
| | - Teresa Bernadette Steinbichler
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical University of Innsbruck, A-6020 Innsbruck, Austria
- University Hospital of Tyrol, A-6020 Innsbruck, Austria
| | - Julia Ingruber
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical University of Innsbruck, A-6020 Innsbruck, Austria
- University Hospital of Tyrol, A-6020 Innsbruck, Austria
| | - Giulia Negro
- Laboratory for Experimental and Translational Research on Radiation Oncology (EXTRO-Lab), Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, A-6020 Innsbruck, Austria
- Tyrolean Cancer Research Institute (TKFI), A-6020 Innsbruck, Austria
| | | | - Herbert Riechelmann
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | - Ute Ganswindt
- Department of Therapeutic Radiology and Oncology, A-6020 Innsbruck, Austria
| | - Sergej Skvortsov
- Laboratory for Experimental and Translational Research on Radiation Oncology (EXTRO-Lab), Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, A-6020 Innsbruck, Austria
- Tyrolean Cancer Research Institute (TKFI), A-6020 Innsbruck, Austria
- Department of Therapeutic Radiology and Oncology, A-6020 Innsbruck, Austria
| | - József Dudás
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | - Ira-Ida Skvortsova
- Laboratory for Experimental and Translational Research on Radiation Oncology (EXTRO-Lab), Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, A-6020 Innsbruck, Austria
- Tyrolean Cancer Research Institute (TKFI), A-6020 Innsbruck, Austria
| |
Collapse
|
72
|
Hsa_circ_0015278 Regulates FLT3-ITD AML Progression via Ferroptosis-Related Genes. Cancers (Basel) 2022; 15:cancers15010071. [PMID: 36612069 PMCID: PMC9817690 DOI: 10.3390/cancers15010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
AML with the FLT3-ITD mutation seriously threatens human health. The mechanism by which circRNAs regulate the pathogenesis of FLT3-ITD mutant-type AML through ferroptosis-related genes (FerRGs) remains unclear. Differentially expressed circRNAs and mRNAs were identified from multiple integrated data sources. The target miRNAs and mRNAs of the circRNAs were predicted using various databases. The PPI network, ceRNA regulatory network, GO, and KEGG enrichment analyses were performed. The "survival" and the "pROC" R packages were used for K-M and ROC analysis, respectively. GSEA, immune infiltration analysis, and clinical subgroup analysis were performed. Finally, circRNAs were validated by Sanger sequencing and qRT-PCR. In our study, 77 DECircs-1 and 690 DECircs-2 were identified. Subsequently, 11 co-up-regulated DECircs were obtained by intersecting DECircs-1 and DECircs-2. The target miRNAs of the circRNAs were screened by CircInteractome, circbank, and circAtlas. Utilizing TargetScan, ENCORI, and miRWalk, the target mRNAs of the miRNAs were uncovered. Ultimately, 73 FerRGs were obtained, and the ceRNA regulatory network was constructed. Furthermore, MAPK3 and CD44 were significantly associated with prognosis. qRT-PCR results confirmed that has_circ_0015278 was significantly overexpressed in FLT3-ITD mutant-type AML. In summary, we constructed the hsa_circ_0015278/miRNAs/FerRGs signaling axis, which provides new insight into the pathogenesis and therapeutic targets of AML with FLT3-ITD mutation.
Collapse
|
73
|
Bai C, Yao Y, Wang Z, Huang X, Wei T, Zou L, Liu N, Zhang T, Tang M. CdTe quantum dots trigger oxidative stress and endoplasmic reticulum stress-induced apoptosis and autophagy in rat Schwann cell line RSC96. J Appl Toxicol 2022; 42:1962-1977. [PMID: 35857417 DOI: 10.1002/jat.4367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/28/2022] [Accepted: 07/14/2022] [Indexed: 11/07/2022]
Abstract
In the current study, the cytotoxicity and mechanisms of cadmium telluride quantum dots (CdTe QDs) on RSC96 cells were evaluated by exposing different doses of CdTe QDs for 24 h. Two types of cell death, including apoptosis and autophagy, as well as two important organelles, mitochondria and endoplasmic reticulum, were focused after CdTe QDs exposure. The results showed that CdTe QDs induced apoptosis in RSC96 cells in a concentration-dependent manner; promoted the accumulation of intracellular reactive oxygen species; decreased the mitochondrial membrane potential; caused the release of cytochrome c; and also increased the expression of Bcl-2 associated X protein, caspase-3, and cytochrome c proteins and decreased the expression of Bcl-2 protein. Further results also confirmed that CdTe QDs could be internalized by RSC96 cells, and the exposure and internalization of CdTe QDs could induce excessive endoplasmic reticulum stress in the cells, and the expression levels of binding immunoglobulin protein, C/EBP homologous protein, and caspase12 proteins were increased in a concentration-dependent manner. Moreover, autophagy-related proteins LC3II, Beclin1, and P62 all increased after CdTe QDs exposure, suggesting that CdTe QDs exposure both promoted autophagosome formation and inhibited autophagosome degradation, and that CdTe QDs affected the autophagic flow in RSC96 cells. In conclusion, CdTe QDs are able to cause apoptosis and autophagy in RSC96 cells through mitochondrial and endoplasmic reticulum stress pathways, and the possible neurotoxicity of CdTe QDs should be further investigated.
Collapse
Affiliation(s)
- Changcun Bai
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Yongshuai Yao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Zhihui Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Xiaoquan Huang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Tingting Wei
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Lingyue Zou
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Na Liu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
74
|
Liu C, Liu Y, Wang C, Guo Y, Cheng Y, Qian H, Zhao Y. Lycopene-Loaded Bilosomes Ameliorate High-Fat Diet-Induced Chronic Nephritis in Mice through the TLR4/MyD88 Inflammatory Pathway. Foods 2022; 11:foods11193042. [PMID: 36230117 PMCID: PMC9564075 DOI: 10.3390/foods11193042] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/06/2022] [Accepted: 09/16/2022] [Indexed: 11/27/2022] Open
Abstract
Chronic kidney disease caused by a high-fat diet (HFD)-induced metabolic syndrome has received widespread attention. Lycopene has a wide range of biological activities and can improve a variety of chronic diseases through anti-inflammatory effects. In this study, HFD-fed mice were used as a metabolic syndrome model to evaluate the protective effect of lycopene in a sustained-release vehicle (bilosomes) in the small intestine against renal injury and to determine whether the TLR4/MyD88 pathway and related metabolic pathways are involved in this process. The results showed that lycopene bilosomes alleviated HFD-induced kidney damage, as evidenced by lower serum urea nitrogen, creatinine, and uric acid levels. Histopathology studies showed that lycopene bilosomes attenuated HFD-induced tubular cell and glomerular injury. In addition, Elisa, RT-PCR, and Western blotting results showed that lycopene bilosomes also reduced the expression of inflammatory factors such as TLR4, MyD88, NF-kB, TNF-a, and IL-6 in mouse kidneys. The mechanism was to attenuate renal inflammatory response by inhibiting the TLR4/MyD88 inflammatory pathway. These findings suggested that lycopene can alleviate nephritis and metabolic disorders caused by HFD, inhibiting the TLR4/MyD88 inflammatory pathway and its downstream pro-inflammatory cytokines and further regulating the vitamin K metabolism, beta-alanine metabolism, and glutathione metabolism pathways to relieve chronic nephritis.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, China
| | - Yu Liu
- Wuxi 9th People’s Hospital Affiliated to Soochow University, Wuxi 214122, China
| | - Ciwan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, China
| | - Yong Zhao
- Thoracic and Cardiac Surgery, Affiliated Hospital of Jiangnan University, No.1000, He Feng Road, Wuxi 214122, China
- Correspondence:
| |
Collapse
|