51
|
From Ocean to Medicine: Pharmaceutical Applications of Metabolites from Marine Bacteria. Antibiotics (Basel) 2020; 9:antibiotics9080455. [PMID: 32731464 PMCID: PMC7460513 DOI: 10.3390/antibiotics9080455] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/17/2020] [Accepted: 07/25/2020] [Indexed: 12/21/2022] Open
Abstract
Oceans cover seventy percent of the planet's surface and besides being an immense reservoir of biological life, they serve as vital sources for human sustenance, tourism, transport and commerce. Yet, it is estimated by the National Oceanic and Atmospheric Administration (NOAA) that eighty percent of the oceans remain unexplored. The untapped biological resources present in oceans may be fundamental in solving several of the world's public health crises of the 21st century, which span from the rise of antibiotic resistance in bacteria, pathogenic fungi and parasites, to the rise of cancer incidence and viral infection outbreaks. In this review, health risks as well as how marine bacterial derived natural products may be tools to fight them will be discussed. Moreover, an overview will be made of the research pipeline of novel molecules, from identification of bioactive bacterial crude extracts to the isolation and chemical characterization of the molecules within the framework of the One Health approach. This review highlights information that has been published since 2014, showing the current relevance of marine bacteria for the discovery of novel natural products.
Collapse
|
52
|
Liu DK, Xu CC, Zhang L, Ma H, Chen XJ, Sui YC, Zhang HZ. Evaluation of bioactive components and antioxidant capacity of four celery (Apium graveolens L.) leaves and petioles. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1778027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- De-Kun Liu
- School of Life Science, Qufu Normal University, Qufu, Shandong Province, PR China
| | - Cong-Cong Xu
- School of Life Science, Qufu Normal University, Qufu, Shandong Province, PR China
| | - Lu Zhang
- School of Life Science, Qufu Normal University, Qufu, Shandong Province, PR China
| | - Hui Ma
- School of Life Science, Qufu Normal University, Qufu, Shandong Province, PR China
| | - Xu-Jie Chen
- School of Life Science, Qufu Normal University, Qufu, Shandong Province, PR China
| | - Yu-Cui Sui
- School of Life Science, Qufu Normal University, Qufu, Shandong Province, PR China
| | - Hong-Zhi Zhang
- School of Life Science, Qufu Normal University, Qufu, Shandong Province, PR China
| |
Collapse
|
53
|
Li J, Shao Y, Yao Y, Yu Y, Cao G, Zou H, Yan Y. A novel quality evaluation method for magnolia bark using electronic nose and colorimeter data with multiple statistical algorithms. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2020. [DOI: 10.1016/j.jtcms.2020.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
54
|
Fully automated chip-based nanoelectrospray ionization-mass spectrometry as an effective tool for rapid and high-throughput screening of 5α-reductase inhibitors. Anal Bioanal Chem 2020; 412:1685-1692. [DOI: 10.1007/s00216-020-02408-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/06/2019] [Accepted: 01/10/2020] [Indexed: 01/21/2023]
|
55
|
Zhang B, Li MY, Luo XM, Wang XB, Wu T. Analysis of the chemical components of Qixianqingming granules and their metabolites in rats by UPLC-ESI-Q-TOF-MS. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4484. [PMID: 31786817 DOI: 10.1002/jms.4484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Qixianqingming granules (QXQM) comprise a traditional Chinese medicine (TCM) formula that was developed based on the combination of TCM theory and clinical practice. This formula has been proven to effectively treat asthma. In this study, an analytical procedure using ultraperformance liquid chromatography, coupled with electrospray ionization quadrupole time-of-flight mass spectrometry, was established for the rapid separation and sensitive identification of the chemical components in QXQM and its metabolites in serum of rats. Seventy-two compounds were systematically identified in QXQM, including flavonoids, terpenoids, anthraquinones, phenylethanoid glycosides, stilbenes, alkaloids, and organic acids. Thirteen prototype compounds and 29 metabolites were detected in the serum of rats. The results provided fundamental information for further studying the mechanisms and clinical application of QXQM.
Collapse
Affiliation(s)
- Bei Zhang
- State Key Laboratory of New Drug and Pharmaceutical Process, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Mo Ying Li
- State Key Laboratory of New Drug and Pharmaceutical Process, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Xu Ming Luo
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiong Biao Wang
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tong Wu
- State Key Laboratory of New Drug and Pharmaceutical Process, China State Institute of Pharmaceutical Industry, Shanghai, China
| |
Collapse
|
56
|
Cordell GA. Cyberecoethnopharmacolomics. JOURNAL OF ETHNOPHARMACOLOGY 2019; 244:112134. [PMID: 31377262 DOI: 10.1016/j.jep.2019.112134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/24/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Development of a new term which describes the contemporary, composite, constituent sciences of ethnopharmacology. AIM OF THE STUDY To discuss the polysyllabic term cyberecoethnopharmacolomics in the context of the future of ethnopharmacology in global health care. MATERIALS AND METHODS Literature background and assessment from the prior literature, diverse databases, and personal discussions. RESULTS The profiles and literature background with contemporary and future thoughts regarding the concepts and practices of cyber-, eco-, ethno-, pharmacol-, and -omics, and their impact in ethnopharmacology for the future are presented in the context of integrated health care systems. CONCLUSIONS Ethnopharmacology has a major role to play in global health care if the relevant sciences and cutting-edge technologies can coalesce synergistically as a responsive, evidence-based health care practice.
Collapse
Affiliation(s)
- Geoffrey A Cordell
- Natural Products Inc., Evanston, IL, USA; Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
57
|
Lu S, Liu H, Jin C, Li Q, Guo L. An efficient and comprehensive plant glycerolipids analysis approach based on high-performance liquid chromatography-quadrupole time-of-flight mass spectrometer. PLANT DIRECT 2019; 3:e00183. [PMID: 31832598 PMCID: PMC6858605 DOI: 10.1002/pld3.183] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 05/14/2023]
Abstract
In past two decades, numerous lipidomics approaches based on mass spectrometry with or without liquid chromatography separation have been established for identification and quantification of lipids in plants. In this study, we developed an efficient and comprehensive lipidomics approach based on UPLC with an Acquity UPLCTM BEH C18 column coupled to TripleTOF using ESI in positive ion mode and MS/MSALL scan for data collection. Lipid extract was prepared to 2 mg/ml solution according to dry tissue weight and mixed with 13 kinds of internal standards including PA, PC, PE, and PG. Each analysis required single injection of 5-10 μl lipid solvent and completed in 32 min. A target method dataset was generated using the LipidView software for prediction of the accurate mass of target lipid species. The dataset was uploaded into the PeakView to create processing datasets to search target lipid species, which achieved batch data processing of multiple samples for lipid species-specific identification and quantification. As proof of concept, we profiled the lipids of different tissues of rapeseed. Thirteen lipid classes including 218 glycerolipids were identified including 46 TAGs, 15 DAGs, 20 PCs, 24 PEs, 13 PGs, 14 PIs, 26 PSs, 12 PAs, 16 MGDGs, 16 DGDGs, 6 LysoPCs, 5 LysoPEs, and 5 LysoPGs. Together, our approach permits the analysis of glycerolipids in plant tissues with simplicity in sample analysis and data processing using UPLC-TripleTOF.
Collapse
Affiliation(s)
- Shaoping Lu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Hongbo Liu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Cheng Jin
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Qing Li
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Liang Guo
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
58
|
Kalogiouri N, Samanidou V. Advances in the Optimization of Chromatographic Conditions for the Separation of Antioxidants in Functional Foods. ACTA ACUST UNITED AC 2019. [DOI: 10.17145/rss.19.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
59
|
Xia JX, Zhao BB, Zan JF, Wang P, Chen LL. Simultaneous determination of phenolic acids and flavonoids in Artemisiae Argyi Folium by HPLC-MS/MS and discovery of antioxidant ingredients based on relevance analysis. J Pharm Biomed Anal 2019; 175:112734. [DOI: 10.1016/j.jpba.2019.06.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 06/18/2019] [Accepted: 06/22/2019] [Indexed: 01/08/2023]
|
60
|
Data-Dependent Acquisition and Database-Driven Efficient Peak Annotation for the Comprehensive Profiling and Characterization of the Multicomponents from Compound Xueshuantong Capsule by UHPLC/IM-QTOF-MS. Molecules 2019; 24:molecules24193431. [PMID: 31546621 PMCID: PMC6804152 DOI: 10.3390/molecules24193431] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 12/11/2022] Open
Abstract
The state of the art ion mobility quadrupole time of flight (IM-QTOF) mass spectrometer coupled with ultra-high performance liquid chromatography (UHPLC) can offer four-dimensional information supporting the comprehensive multicomponent characterization of traditional Chinese medicine (TCM). Compound Xueshuantong Capsule (CXC) is a four-component Chinese patent medicine prescribed to treat ophthalmic disease and angina. However, research systematically elucidating its chemical composition is not available. An approach was established by integrating reversed-phase UHPLC separation, IM-QTOF-MS operating in both the negative and positive electrospray ionization modes, and a “Component Knockout” strategy. An in-house ginsenoside library and the incorporated TCM library of UNIFITM drove automated peak annotation. With the aid of 85 reference compounds, we could separate and characterize 230 components from CXC, including 155 ginsenosides, six astragalosides, 16 phenolic acids, 16 tanshinones, 13 flavonoids, six iridoids, ten phenylpropanoid, and eight others. Major components of CXC were from the monarch drug, Notoginseng Radix et Rhizoma. This study first clarifies the chemical complexity of CXC and the results obtained can assist to unveil the bioactive components and improve its quality control.
Collapse
|
61
|
Wang J, Chen L, Qu L, Li K, Zhao Y, Wang Z, Li Y, Zhang X, Jin Y, Liang X. Isolation and bioactive evaluation of flavonoid glycosides from Lobelia chinensis Lour using two-dimensional liquid chromatography combined with label-free cell phenotypic assays. J Chromatogr A 2019; 1601:224-231. [DOI: 10.1016/j.chroma.2019.04.073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/26/2022]
|
62
|
A classification of liquid chromatography mass spectrometry techniques for evaluation of chemical composition and quality control of traditional medicines. J Chromatogr A 2019; 1609:460501. [PMID: 31515074 DOI: 10.1016/j.chroma.2019.460501] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/06/2019] [Accepted: 08/29/2019] [Indexed: 12/25/2022]
Abstract
Natural products (NPs) and traditional medicines (TMs) are used for treatment of various diseases and also to develop new drugs. However, identification of drug leads within the immense biodiversity of living organisms is a challenging task that requires considerable time, labor, and computational resources as well as the application of modern analytical instruments. LC-MS platforms are widely used for both drug discovery and quality control of TMs and food supplements. Moreover, a large dataset generated during LC-MS analysis contains valuable information that could be extracted and handled by means of various data mining and statistical tools. Novel sophisticated LC-MS based approaches are being introduced every year. Therefore, this review is prepared for the scientists specialized in pharmacognosy and analytical chemistry of NPs as well as working in related areas, in order to navigate them in the world of diverse LC-MS based techniques and strategies currently employed for NP discovery and dereplication, quality control, pattern recognition and sample comparison, and also in targeted and untargeted metabolomic studies. The suggested classification system includes the following LC-MS based procedures: elemental composition determination, isotopic fine structure analysis, mass defect filtering, de novo identification, clustering of the compounds in Molecular Networking (MN), diagnostic fragment ion (or neutral loss) filtering, manual dereplication using MS/MS data, database-assisted peak annotation, annotation of spectral trees, MS fingerprinting, feature extraction, bucketing of LC-MS data, peak profiling, predicted metabolite screening, targeted quantification of biomarkers, quantitative analysis of multi-component system, construction of chemical fingerprints, multi-targeted and untargeted metabolite profiling.
Collapse
|
63
|
Yang WZ, Shi XJ, Yao CL, Huang Y, Hou JJ, Han SM, Feng ZJ, Wei WL, Wu WY, Guo DA. A novel neutral loss/product ion scan-incorporated integral approach for the untargeted characterization and comparison of the carboxyl-free ginsenosides from Panax ginseng, Panax quinquefolius, and Panax notoginseng. J Pharm Biomed Anal 2019; 177:112813. [PMID: 31472326 DOI: 10.1016/j.jpba.2019.112813] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 11/29/2022]
Abstract
Differentiated composition in precursor ions for different subclasses of ginsenosides in the negative electrospray-ionization mode has been reported, which lays a foundation for the sorted and untargeted identification of ginsenosides. Carboxyl-free ginsenosides simultaneously from Panax ginseng, P. quinquefolius, and P. notoginseng, were comprehensively characterized and statistically compared. A neutral loss/product ion scan (NL-PIS) incorporated untargeted profiling approach, coupled to ultra-high performance liquid chromatography, was developed on a linear ion-trap/Orbitrap mass spectrometer for characterizing carboxyl-free ginsenosides. It incorporated in-source fragmentation (ISF) full scan-MS1, mass tag-MS2, and product ion scan-MS3. Sixty batches of ginseng samples were analyzed by metabolomics workflows for the discovery of ginsenoside markers. Using formic acid (FA) as the additive, carboxyl-free ginsenosides (protopanaxadiol-type, protopanaxatriol-type, and octillol-type) gave predominant FA-adducts, while rich deprotonated molecules were observed for carboxyl-containing ginsenosides (oleanolic acid-type and malonylated) when source-induced dissociation (SID) was set at 0 V. Based on the NL transition [M+FA‒H]- > [M-H]- and the characteristic sapogenin product ions, a NL-PIS approach was established. It took advantage of the efficient full-information acquisition of ISF-MS1 (SID: 50 V), the high specificity of mass tag (NL: 46.0055 Da)-induced MS2 fragmentation, and the substructure fragmentation of product ion scan-MS3. We could characterize 216 carboxyl-free ginsenosides, and 21 thereof were potentially diagnostic for the species differentiation. Conclusively, sorted and untargeted characterization of the carboxyl-free ginsenosides was achieved by the established NL-PIS approach. In contrast to the conventional NL or PIS-based survey scan strategies, the high-accuracy MSn data obtained can enable more reliable identification of ginsenosides.
Collapse
Affiliation(s)
- Wen-Zhi Yang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China
| | - Xiao-Jian Shi
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China
| | - Chang-Liang Yao
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China
| | - Yong Huang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China
| | - Jin-Jun Hou
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China
| | - Su-Mei Han
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China
| | - Zi-Jin Feng
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China
| | - Wen-Long Wei
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China
| | - Wan-Ying Wu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China.
| | - De-An Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China.
| |
Collapse
|
64
|
He PX, Zhang Y, Zhou Y, Li GH, Zhang JW, Feng XS. Supercritical fluid chromatography-a technical overview and its applications in medicinal plant analysis: an update covering 2012-2018. Analyst 2019; 144:5324-5352. [PMID: 31348475 DOI: 10.1039/c9an00826h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Medicinal plants with complex matrices are endowed with a wide scope of biological activities. The separation, quantification, characterization and purification of bioactive components from herbal medicine extracts have always challenged analysts. Fortunately, the advancement of various emerging techniques has provided potent support for improving the method selectivity, sensitivity and run speeds in medicinal plant analyses. In recent years, the advent of new-generation supercritical fluid chromatography (SFC) instruments and a wide diversity of column chemistries, coupled with the intrinsic technical features of SFC, have made it an alternative and prominent analytical platform in the medicinal plant research area. This work aims to give a comprehensive overview of the fundamentals, technical advancement and investigating parameters of SFC in combination with three prevalent detectors. Moreover, the latest research progress of SFC applications in medicinal plant analyses is illuminated, with focus on herbal medicine-related SFC papers on the analytical and preparative scale that were published during the period of 2012 to December 2018. The most relevant applications were classified based on the constituents to be analysed. As for the respective research cases, analytical protocols and data processing strategies were provided, along with the indicated restrictions or superiority of the method; thus, the current status of SFC in medicinal plant analysis was presented.
Collapse
Affiliation(s)
- Pei-Xia He
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Yuan Zhang
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Guo-Hui Li
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jian-Wei Zhang
- Department of Abdominal Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
65
|
Jiang CK, Ma JQ, Apostolides Z, Chen L. Metabolomics for a Millenniums-Old Crop: Tea Plant ( Camellia sinensis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6445-6457. [PMID: 31117495 DOI: 10.1021/acs.jafc.9b01356] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Tea cultivation and utilization dates back to antiquity. Today it is the most widely consumed beverage on earth due to its pleasant taste and several beneficial health properties attributed to specific metabolites. Metabolomics has a tremendous potential to correlate tea metabolites with taste and health properties in humans. Our review on the current application of metabolomics in the science of tea suggests that metabolomics is a promising frontier in the evaluation of tea quality, identification of functional genes responsible for key metabolites, investigation of their metabolic regulation, and pathway analysis in the tea plant. Furthermore, the challenges, possible solutions, and the prospects of metabolomics in tea science are reviewed.
Collapse
Affiliation(s)
- Chen-Kai Jiang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs , Tea Research Institute of the Chinese Academy of Agricultural Sciences , Hangzhou 310008 , China
| | - Jian-Qiang Ma
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs , Tea Research Institute of the Chinese Academy of Agricultural Sciences , Hangzhou 310008 , China
| | - Zeno Apostolides
- Department of Biochemistry, Genetics and Microbiology , University of Pretoria , Pretoria 0002 , South Africa
| | - Liang Chen
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs , Tea Research Institute of the Chinese Academy of Agricultural Sciences , Hangzhou 310008 , China
| |
Collapse
|
66
|
Jia-Xi L, Chun-Xia Z, Ying H, Meng-Han Z, Ya-Nan W, Yue-Xin Q, Jing Y, Wen-Zhi Y, Miao-Miao J, De-An G. Application of multiple chemical and biological approaches for quality assessment of Carthamus tinctorius L. (safflower) by determining both the primary and secondary metabolites. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 58:152826. [PMID: 30836217 DOI: 10.1016/j.phymed.2019.152826] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/23/2018] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The florets of Carthamus tinctorius L. (safflower) serve as the source of a reputable herbal medicine targeting gynecological diseases. Conventional investigations regarding the quality control of safflower, however, mainly focused on the secondary metabolites with primary metabolites ignored. PURPOSE To holistically evaluate the quality difference of safflower samples collected from five different producing regions by multiple chemical and biological approaches with both the primary and secondary metabolites considered. METHODS A precursor ions list-triggered data-dependent MS2 approach was established by ultra-high performance liquid chromatography/Q-Orbitrap mass spectrometry (UHPLC/Q-Orbitrap MS) to comprehensively identify the secondary metabolites from safflower. Primary metabolites were identified by various 1D and 2D nuclear magnetic resonance (NMR) experiments. Similarity evaluation and quantitative assays of all the characterized primary metabolites and a quinochalcone C-glycoside (QCG) marker, hydroxysafflor yellow A (HSYA), were performed by quantitative 1H NMR (qNMR) using an external standard method. Multiple in vitro models with respect to the antioxidant, anti-platelet aggregation, and antioxidant stress injury effects, were assayed to determine the efficacy differences. RESULTS Totally thirteen primary metabolites (including one nucleoside, two sugars, five organic alkali/acids, and five amino acids) and 135 secondary metabolites (97 QCGs and 38 flavonoids) could be identified or tentatively characterized from safflower. Good chemical consistency was observed between the commercial safflower samples and a standard safflower sample, with similarity varying in the range of 0.95‒0.99. The results from qNMR-oriented quantitative experiments (thirteen primary metabolites and HSYA) and biological assays indicated the quality of safflower samples from Xinjiang (XJ-2 and XJ-4), Hunan (HuN-1 and HuN-2), and Sichuan (SC), was comparable to the standard safflower sample. CONCLUSION The integration of multiple chemical (using two analytical platforms, UHPLC/Q-Orbitrap MS and NMR) and biological (four in vitro models) approaches by determining both the primary and secondary metabolites demonstrated a powerful strategy that could facilitate the holistic quality evaluation of traditional Chinese medicine.
Collapse
Affiliation(s)
- Lu Jia-Xi
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Tianjin 300193, China
| | - Zhang Chun-Xia
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Tianjin 300193, China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Tianjin 300193, China
| | - Hu Ying
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Tianjin 300193, China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Tianjin 300193, China
| | - Zhang Meng-Han
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Tianjin 300193, China
| | - Wang Ya-Nan
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qian Yue-Xin
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Tianjin 300193, China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Tianjin 300193, China
| | - Yang Jing
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Tianjin 300193, China
| | - Yang Wen-Zhi
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Tianjin 300193, China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Tianjin 300193, China.
| | - Jiang Miao-Miao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Tianjin 300193, China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Tianjin 300193, China.
| | - Guo De-An
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Tianjin 300193, China; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.
| |
Collapse
|
67
|
Stander MA, Joubert E, De Beer D. Revisiting the caffeine-free status of rooibos and honeybush herbal teas using specific MRM and high resolution LC-MS methods. J Food Compost Anal 2019. [DOI: 10.1016/j.jfca.2018.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
68
|
A novel strategy for rapid screening of the complex triterpene saponin mixture present in the methanolic extract of blackberry leaves (Rubus cv. Loch Ness) by UHPLC/QTOF-MS. J Pharm Biomed Anal 2019; 164:47-56. [DOI: 10.1016/j.jpba.2018.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 11/21/2022]
|
69
|
Oyenihi AB, Smith C. Are polyphenol antioxidants at the root of medicinal plant anti-cancer success? JOURNAL OF ETHNOPHARMACOLOGY 2019; 229:54-72. [PMID: 30287197 DOI: 10.1016/j.jep.2018.09.037] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/31/2018] [Accepted: 09/28/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Given the severe side effects associated with most of the conventional cancer medications, as well as the expanding body of evidence indicating secondary toxicity of these drugs, individuals with cancer are increasingly turning to natural alternatives. Similarly, the pharmaceutical industry is in search of natural products to treat cancer. An understanding of the specific active components in plant products with which anti-cancer efficacy is achieved is required for this research to move forward. AIM OF THE STUDY To integrate data from cancer-relatestudies on plant-derived products or extracts, to elucidate whether these products may have similar active ingredients and/or mechanisms of action, that can explain their efficacy. This review also includes a discussion of the methodological complexities and important considerations involved in accurate isolation and characterisation of active substances from plant material. CONCLUSIONS From the literature reviewed, most plant products with consistently reported anti-cancer efficacy contains high levels of polyphenols or other potent antioxidants and their mechanisms of action correlate to that reported for isolated antioxidants in the context of cancer. This suggests that natural products may indeed become the panacea against this chronic disease - either as therapeutic medicine strategy or to serve as templates for the design of novel synthetic drugs. The recommendation is made that antioxidant activity of plant actives and especially polyphenols, should be the focus of anti-cancer drug discovery initiatives. Lastly, researchers are advised to exploit current techniques of chemical compound characterisation when investigating polyphenol-rich plants to enable the easy consolidation of research findings from different laboratories.
Collapse
Affiliation(s)
- A B Oyenihi
- Dept Physiological Sciences, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa
| | - C Smith
- Dept Physiological Sciences, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa.
| |
Collapse
|
70
|
Miao WJ, Hu Y, Jia L, Zhang CX, Yang WZ, Zhang P, Guo DA. Profiling and identification of chemical components of Shenshao Tablet and its absorbed components in rats by comprehensive HPLC/DAD/ESI-MS n analysis. Chin J Nat Med 2018; 16:791-800. [PMID: 30322613 DOI: 10.1016/s1875-5364(18)30119-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Indexed: 01/12/2023]
Abstract
Shenshao Tablet (SST), prepared from Paeoniae Radix Alba (PRA) and total ginsenoside of Ginseng Stems and Leaves (GSL), is a traditional Chinese medicine (TCM) preparation prescribed to treat coronary heart disease. However, its chemical composition and the components that can migrate into blood potentially exerting the therapeutic effects have rarely been elucidated. We developed an HPLC/DAD/ESI-MSn approach aiming to comprehensively profile and identify both the chemical components of SST and its absorbed ingredients (and metabolites) in rat plasma and urine. Chromatographic separation was performed on an Agilent Eclipse XDB C18 column using acetonitrile/0.1% formic acid as the mobile phase. MS detection was conducted in both negative and positive ESI modes to yield more structure information. Comparison with reference compounds (tR, MSn), interpretation of the fragmentation pathways, and searching of in-house database, were utilized for more reliable structure elucidation. A total of 82 components, including 21 monoterpene glycosides, four galloyl glucoses, two phenols from PRA, and 55 ginsenosides from GSL, were identified or tentatively characterized from the 70% ethanolic extract of SST. Amongst them, seven and 24 prototype compounds could be detectable in the plasma and urine samples, respectively, after oral administration of an SST extract (4 g·kg-1) in rats. No metabolites were observed in the rat samples. The findings of this work first unveiled the chemical complexity of SST and its absorbed components, which would be beneficial to understanding the therapeutic basis and quality control of SST.
Collapse
Affiliation(s)
- Wen-Juan Miao
- Department of Pharmacy, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ying Hu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Li Jia
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Chun-Xia Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Wen-Zhi Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Ping Zhang
- Department of Pharmacy, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - De-An Guo
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
71
|
Comparison of phenolic compounds profile and antioxidant properties of different sweet cherry (Prunus avium L.) varieties. Food Chem 2018; 279:260-271. [PMID: 30611489 DOI: 10.1016/j.foodchem.2018.12.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 01/04/2023]
Abstract
In the present work, three Spanish local varieties of Prunus avium (L.), as well as two foreign varieties were studied. The content of total phenols, flavonoids, anthocyanins, glucose and fructose of methanolic extracts from ripe fruits of each variety were analysed. A phytochemical profile of these cultivars was performed by UHPLC-qTOF-MS. The employed chromatographic method allowed a clear and rapid separation of the three main phenolic compound groups present in the extracts: hydroxycinnamic acids, anthocyanins and flavonoids. In addition, the extracts DPPH radical scavenging ability, as well as their capacity to affect xanthine/xanthine oxidase system, were determined. Finally, variations in ROS intracellular concentrations in HepG2 cell line cultures treated with cherry extracts were measured through DCFH-DA assay. All extracts showed a significant inhibitory effect on the xanthine/xanthine oxidase system. Differences between in vitro and in cell culture results evidence the interaction among the phenolic compounds of the extract.
Collapse
|
72
|
Systematic Profiling of the Multicomponents and Authentication of Erzhi Pill by UHPLC/Q-Orbitrap-MS Oriented Rapid Polarity-Switching Data-Dependent Acquisition and Selective Monitoring of the Chemical Markers Deduced from Fingerprint Analysis. Molecules 2018; 23:molecules23123143. [PMID: 30513579 PMCID: PMC6320785 DOI: 10.3390/molecules23123143] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/28/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022] Open
Abstract
The analytical platform UHPLC/Q-Orbitrap-MS offers a solution to quality investigation of TCM with high definiteness. Using Erzhi Pill (EZP) as a case, we developed UHPLC/Q-Orbitrap-MS based approaches to achieve systematic multicomponent identification and rapid authentication. Comprehensive multicomponent characterization of EZP was performed by negative/positive switching data-dependent high-energy collision-induced dissociation-MS2 (HCD-MS2) after 25 min chromatographic separation. By reference compounds comparison, elemental composition analysis, fragmentation pathways interpretation, and retrieval of an in-house library, 366 compounds were separated and detected from EZP, and 96 thereof were structurally characterized. The fingerprints of two component drugs (Ligustri Lucidi Fructus, LLF; Ecliptae Herba, EH) for EZP were analyzed under the same LC-MS condition by full scan in negative mode. In combination with currently available pharmacological reports, eight compounds were deduced as the ‘identity markers’ of EZP. Selective ion monitoring (SIM) of eight marker compounds was conducted to authenticate six batches of EZP samples. Both LLF and EH could be detected from all EZP samples by analyzing the SIM spectra, which could indicate their authenticity. Conclusively, UHPLC/Q-Orbitrap-MS by rapid polarity switching could greatly expand the potency of untargeted profiling with high efficiency, and SIM of multiple chemical markers rendered a practical approach enabling the authentication of TCM formulae.
Collapse
|
73
|
Wolfender JL, Nuzillard JM, van der Hooft JJJ, Renault JH, Bertrand S. Accelerating Metabolite Identification in Natural Product Research: Toward an Ideal Combination of Liquid Chromatography–High-Resolution Tandem Mass Spectrometry and NMR Profiling, in Silico Databases, and Chemometrics. Anal Chem 2018; 91:704-742. [DOI: 10.1021/acs.analchem.8b05112] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jean-Luc Wolfender
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, CMU, 1 Rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Jean-Marc Nuzillard
- Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, Université de Reims Champagne Ardenne, 51687 Reims Cedex 2, France
| | | | - Jean-Hugues Renault
- Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, Université de Reims Champagne Ardenne, 51687 Reims Cedex 2, France
| | - Samuel Bertrand
- Groupe Mer, Molécules, Santé-EA 2160, UFR des Sciences Pharmaceutiques et Biologiques, Université de Nantes, 44035 Nantes, France
- ThalassOMICS Metabolomics Facility, Plateforme Corsaire, Biogenouest, 44035 Nantes, France
| |
Collapse
|
74
|
Simultaneously targeted and untargeted multicomponent characterization of Erzhi Pill by offline two-dimensional liquid chromatography/quadrupole-Orbitrap mass spectrometry. J Chromatogr A 2018; 1584:87-96. [PMID: 30473109 DOI: 10.1016/j.chroma.2018.11.024] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/19/2018] [Accepted: 11/15/2018] [Indexed: 11/24/2022]
Abstract
Large-scale targeted and untargeted metabolites characterization can be achieved by feat of different liquid chromatography/mass spectrometry (LC-MS) platforms by multiple MS experiments or using data-independent acquisition followed by precursor-product ions matching based on certain algorithms. The resulting insufficiency in efficiency and availability greatly restricts the applicability of these strategies in large-scale profiling and identification of various metabolites. A strategy simultaneously enabling both the targeted and untargeted metabolites characterization is established on a Q Exactive hybrid quadrupole-Orbitrap mass spectrometer, by integrating precursor ions list-triggered data-dependent MS2 acquisition (PIL/dd-MS2) of the targeted components and using the "If idle-pick others" (IIPO) function to induce untargeted metabolites fragmentation. A compounds-specific mass defect filter (MDF) algorithm is proposed as a method to generate the PIL. As a proof of concept, this strategy coupled with offline two-dimensional liquid chromatography (2D-LC) was applied to identify the multicomponents of a traditional Chinese medicine formula Erzhi Pill (EZP). A rigid MDF vehicle was elaborated by orthogonal screening of the integer mass and integer mass-dependent dynamic mass defects considering a variation of 20 ppm. The Full MS/dd-MS2 method enabling PIL and IIPO exhibited better performance than Full MS/dd-MS2 and Targeted SIM/dd-MS2 (selected ion monitoring) in respect of the sensitivity in identifying the targeted components and the ability to characterize more untargeted ones. As a consequence, 270 components were separated from EZP, and 146 thereof were selectively characterized. In conclusion, it is a practical, multifaced strategy facilitating the in-depth metabolites profiling and characterization of complex herbal and biological samples.
Collapse
|
75
|
Abstract
This review is mainly centered on beverages obtained from tropical crops, including tea, nut milk, coffee, cocoa, and those prepared from fruits. After considering the epidemiological data found on the matrices above, the focus was given to recent methodological approaches to assess the most relevant mycotoxins. Aspects such as singularities among the mycotoxin and the beverage in which their were found, and the economic effects and repercussions that the mycotoxin-tainted ingredients have on the beverage industry were pointed out. Finally, the burden of their consumption through beverages, including risk and health effects on humans, was addressed as well.
Collapse
|
76
|
Wang X, Peng H, Peng J, Gong C, He Y, Chen F, Chen Y, Li S. Preparation and evaluation of a polar embedded diphenylethene bonded stationary phase for High Performance Liquid Chromatography. Microchem J 2018. [DOI: 10.1016/j.microc.2018.06.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
77
|
Shen Y, Zhang Q, Wu YB, He YQ, Han T, Zhang JH, Zhao L, Hsu HY, Song HT, Lin B, Xin HL, Qi YP, Zhang QY. Pharmacokinetics and tissue distribution of monotropein and deacetyl asperulosidic acid after oral administration of extracts from Morinda officinalis root in rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:288. [PMID: 30355303 PMCID: PMC6201592 DOI: 10.1186/s12906-018-2351-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/12/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Iridoid glycosides (IGs), including monotropein (MON) and deacetyl asperulosidic acid (DA) as the main ingredients, are the major chemical components in Morinda officinalis How. (MO) root, possessing various pharmacological properties including anti-osteoporosis, anti-inflammation and anti-rheumatism activities.The aim of the present study was to further elucidate the pharmacological actions of MO by investigating the pharmacokinetics and tissue distribution of IGs in MO. METHODS An ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS) method was developed and validated for simultaneous determination of MON and DA levels in plasma and various tissues of Wistar rats. MON, DA and acetaminophen (ACE) as the internal standard (IS) were extracted from rat plasma and tissue samples by direct deproteinization with methanol. The rats were administered orally at 1650 mg/kg MO and 25, 50 and 100 mg/kg MO iridoid glycosides (MOIGs) or intravenously at MOIG 25 mg/kg for pharmacokinetic study of MON and DA. In addition, 100 mg/kg MOIG was administered orally for tissue distribution study of MON and DA. Non-compartmental pharmacokinetic profiles were constructed. Tissue distributions were calculated according to the validated methods. RESULTS Significant differences in the pharmacokinetic parameters were observed in male and female rats. The AUC0-t, Cmax and bioavailability of MON and DA in female rats were higher than those in male rats. MON and DA mainly distributed in the intestine and stomach after oral administration, and noteworthily high concentrations of MON and DA were detected in the rat hypothalamus. CONCLUSION The results of the present study may shed new lights on the biological behavior of MOIGs in vivo, help explain their pharmacological actions, and provide experimental clues for rational clinical use of these IGs extracted from the MO root.
Collapse
Affiliation(s)
- Yi Shen
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, No. 1 Qiuyang Road, Shangjie Town, Minhou County, Fuzhou, 350122 People’s Republic of China
- School of Pharmacy, Zhejiang University of Traditional Chinese Medicine, Gaoke Road, Fuyang District, Hangzhou, 310053 People’s Republic of China
| | - Qi Zhang
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, No. 1 Qiuyang Road, Shangjie Town, Minhou County, Fuzhou, 350122 People’s Republic of China
- School of Pharmacy, Zhejiang University of Traditional Chinese Medicine, Gaoke Road, Fuyang District, Hangzhou, 310053 People’s Republic of China
| | - Yan-bin Wu
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, No. 1 Qiuyang Road, Shangjie Town, Minhou County, Fuzhou, 350122 People’s Republic of China
| | - Yu-qiong He
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200433 People’s Republic of China
| | - Ting Han
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200433 People’s Republic of China
| | - Jian-hua Zhang
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200433 People’s Republic of China
| | - Liang Zhao
- Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, No. 225 Changhai Road, Yangpu District, Shanghai, 200438 People’s Republic of China
| | - Hsien-yeh Hsu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, No. 155, Section 2, Li Nong Street, Beitou District, Taipei, 112-21 People’s Republic of China
| | - Hong-tao Song
- Fuzhou General Hospital of Nanjing Military Region, No. 156, West Second Ring North Road, Gulou District, Fuzhou, 350025 People’s Republic of China
| | - Bing Lin
- Fuzhou General Hospital of Nanjing Military Region, No. 156, West Second Ring North Road, Gulou District, Fuzhou, 350025 People’s Republic of China
| | - Hai-liang Xin
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200433 People’s Republic of China
| | - Yun-peng Qi
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200433 People’s Republic of China
| | - Qiao-yan Zhang
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, No. 1 Qiuyang Road, Shangjie Town, Minhou County, Fuzhou, 350122 People’s Republic of China
- School of Pharmacy, Zhejiang University of Traditional Chinese Medicine, Gaoke Road, Fuyang District, Hangzhou, 310053 People’s Republic of China
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200433 People’s Republic of China
| |
Collapse
|
78
|
Guler GO, Zengin G, Karadag F, Mollica A, Picot CMN, Mahomoodally MF. HPLC-DAD profiles and pharmacological insights of Onobrychis argyrea subsp isaurica extracts. Comput Biol Chem 2018; 76:256-263. [DOI: 10.1016/j.compbiolchem.2018.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 12/29/2022]
|
79
|
Shahrokhian S, Hafezi-Kahnamouei M. Glassy carbon electrode modified with a nanocomposite of multi-walled carbon nanotube decorated with Ag nanoparticles for electrochemical investigation of Isoxsuprine. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
80
|
Durazzo A, D'Addezio L, Camilli E, Piccinelli R, Turrini A, Marletta L, Marconi S, Lucarini M, Lisciani S, Gabrielli P, Gambelli L, Aguzzi A, Sette S. From Plant Compounds to Botanicals and Back: A Current Snapshot. Molecules 2018; 23:E1844. [PMID: 30042375 PMCID: PMC6222869 DOI: 10.3390/molecules23081844] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/20/2018] [Accepted: 07/21/2018] [Indexed: 02/07/2023] Open
Abstract
This work aims at giving an updated picture of the strict interaction between main plant biologically active compounds and botanicals. The main features of the emerging class of dietary supplements, the botanicals, are highlighted. Focus is also on the definition of actual possibilities of study approach and research strategies. Examples of innovative directions are given: assessment of interaction of bioactive compounds, chemometrics and the new goal of biorefineries. Current models of existing databases, such as plant metabolic pathways, food composition, bioactive compounds, dietary supplements, and dietary markers, are described as usable tools for health research. The need for categorization of botanicals as well as for the implementation of specific and dedicated databases emerged, based on both analytical data and collected data taken from literature throughout a harmonized and standardized approach for the evaluation of an adequate dietary intake.
Collapse
Affiliation(s)
| | - Laura D'Addezio
- CREA-Research Centre for Food and Nutrition, 00178 Rome, Italy.
| | | | | | - Aida Turrini
- CREA-Research Centre for Food and Nutrition, 00178 Rome, Italy.
| | - Luisa Marletta
- CREA-Research Centre for Food and Nutrition, 00178 Rome, Italy.
| | | | | | - Silvia Lisciani
- CREA-Research Centre for Food and Nutrition, 00178 Rome, Italy.
| | - Paolo Gabrielli
- CREA-Research Centre for Food and Nutrition, 00178 Rome, Italy.
| | | | - Altero Aguzzi
- CREA-Research Centre for Food and Nutrition, 00178 Rome, Italy.
| | - Stefania Sette
- CREA-Research Centre for Food and Nutrition, 00178 Rome, Italy.
| |
Collapse
|
81
|
Gontijo DC, Diaz MAN, Brandão GC, Gontijo PC, Oliveira ABD, Fietto LG, Leite JPV. Phytochemical characterization and antioxidant, antibacterial and antimutagenic activities of aqueous extract from leaves of Alchornea glandulosa. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:805-818. [PMID: 29999476 DOI: 10.1080/15287394.2018.1492479] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
Plant extracts exist as a complex matrix which serves as a source of numerous bioactive metabolites. The ultra performance liquid chromatography with diode-array detection-coupled electrospray ionization-mass spectrometry/mass spectrometry technique was used to characterize the aqueous extract from leaves of Alchornea glandulosa (EAG), a species popularly used to treat gastrointestinal problems as an antiulcer agent. Quantification of phenolic derivatives was determined using Folin-Ciocalteu and aluminum trichloride (AlCl3) methods. In addition, antioxidant (2,2-diphenyl-1-picrylhydrazyl [DPPH•] radical scavenging, β-carotene-linoleic acid, and lipid peroxidation), antibacterial (agar well diffusion method and minimum inhibitory concentration), antimutagenic (Ames test), and antigenotoxic (plasmid cleavage) assays were also performed on this plant extract. The ellagitannin tris-galloyl-hexahydroxydiphenic acid-glucose was identified as the predominant compound along with tannins as majority metabolites. EAG showed high antioxidant activity accompanied by moderate antibacterial activity against Staphylococcus aureus. The highest antimutagenic activity was observed for TA97 strain without metabolic activation (S9) and with metabolic activation, TA100 and TA102 were completely inhibited. In addition, EAG exhibited potential signs of antigenotoxic action. The high antioxidant and antimutagenic activity observed for EAG suggests important therapeutic uses that still need to be verified in future studies.
Collapse
Affiliation(s)
- Douglas Costa Gontijo
- a Departamento de Produtos Farmacêuticos , Universidade Federal de Minas Gerais , Belo Horizonte , MG , Brazil
- b Departamento de Bioquímica e Biologia Molecular , Universidade Federal de Viçosa , Viçosa , MG , Brazil
| | - Marisa Alves Nogueira Diaz
- b Departamento de Bioquímica e Biologia Molecular , Universidade Federal de Viçosa , Viçosa , MG , Brazil
| | - Geraldo Célio Brandão
- c Escola de Farmácia , Universidade Federal de Ouro Preto , Ouro Preto , MG , Brazil
| | - Pablo Costa Gontijo
- d Departamento de Entomologia , Universidade Federal de Lavras , Lavras , MG , Brazil
| | - Alaíde Braga de Oliveira
- a Departamento de Produtos Farmacêuticos , Universidade Federal de Minas Gerais , Belo Horizonte , MG , Brazil
| | - Luciano Gomes Fietto
- b Departamento de Bioquímica e Biologia Molecular , Universidade Federal de Viçosa , Viçosa , MG , Brazil
| | - João Paulo Viana Leite
- b Departamento de Bioquímica e Biologia Molecular , Universidade Federal de Viçosa , Viçosa , MG , Brazil
| |
Collapse
|
82
|
Liquid Chromatography Coupled with Linear Ion Trap Hybrid OrbitrapMass Spectrometry for Determination of Alkaloids in Sinomeniumacutum. Molecules 2018; 23:molecules23071634. [PMID: 29973556 PMCID: PMC6099952 DOI: 10.3390/molecules23071634] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 01/15/2023] Open
Abstract
The characterization of alkaloids is challenging because of the diversity of structures and the complicated fragmentation of collision induced structural dissociation in mass spectrometry. In this study, we analyzed the alkaloids in Sinomenium acutum (Thunb.) Rehderet Wil by high resolution mass spectrometry. Chromatographic separation was achieved on a Phenomenex Kinetex C18 (2.1 mm × 100 mm, 2.6 μm) column with a mobile phase consisting of acetonitrile and water (0.1% formic acid) under gradient elution. A total of 52 alkaloids were well separated and 45 of them were structurally characterized, including morphinans, aporphines, benzylisoquinolines, and protoberberines. Specially, mass spectrometric study of the morphinan alkaloids were explicitly investigated. Electrostatic potential plot from simulation was calculated for determination of protonation sites. Further fragmentation analysis suggested that the C₃H₇N, CH₄O, and H₂O elimination was displayed in MS² spectrum. These fragmentation pathways are universal for morphinan alkaloids having methoxy substituted cyclohexenone or cyclohexadienone moieties. Additionally, for nitrogen oxides, an ion-neutral complex intermediate is involved in the fragmentation process, generating additional oxygenated ions. All these results provided the universal rules of fragmentation used for detection of alkaloids, and will be expected to be highly useful for comprehensive study of multi-components in the herbal medicine analysis.
Collapse
|
83
|
Medical Plants and Immunological Regulation. J Immunol Res 2018; 2018:9172096. [PMID: 30009189 PMCID: PMC6020459 DOI: 10.1155/2018/9172096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 04/10/2018] [Indexed: 11/17/2022] Open
|
84
|
V. Soares Maciel E, de Toffoli AL, Lanças FM. Recent trends in sorption-based sample preparation and liquid chromatography techniques for food analysis. Electrophoresis 2018; 39:1582-1596. [DOI: 10.1002/elps.201800009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 01/08/2023]
Affiliation(s)
| | - Ana Lúcia de Toffoli
- Institute of Chemistry of São Carlos; University of São Paulo; São Carlos SP Brazil
| | | |
Collapse
|
85
|
Ligor M, Ratiu IA, Kiełbasa A, Al-Suod H, Buszewski B. Extraction approaches used for the determination of biologically active compounds (cyclitols, polyphenols and saponins) isolated from plant material. Electrophoresis 2018; 39:1860-1874. [PMID: 29603754 DOI: 10.1002/elps.201700431] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/22/2018] [Accepted: 03/22/2018] [Indexed: 12/20/2022]
Abstract
Based on the bioactive properties of certain compounds, such as antioxidant and anti-inflammatory activities, an interesting subject of research are natural substances present in various parts of plants. The choice of the most appropriate method for separation and quantification of biologically active compounds from plants and natural products is a crucial step of any analytical procedure. The aim of this review article is to present an overview of a comprehensive literature study from the last 10 years (2007-2017), where relevant articles exposed the latest trends and the most appropriate methods applicable for separation and quantification of biologically active compounds from plant material and natural products. Consequently, various extraction methods have been discussed, together with the available procedures for purification and pre-concentration and dedicated methods used for analysis.
Collapse
Affiliation(s)
- Magdalena Ligor
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Torun, Poland
| | - Ileana-Andreea Ratiu
- Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, Cluj-Napoca, Romania
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Torun, Poland
| | - Anna Kiełbasa
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Torun, Poland
| | - Hossam Al-Suod
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Torun, Poland
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Torun, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Torun, Poland
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Torun, Poland
| |
Collapse
|
86
|
Tzima K, Brunton NP, Rai DK. Qualitative and Quantitative Analysis of Polyphenols in Lamiaceae Plants-A Review. PLANTS (BASEL, SWITZERLAND) 2018; 7:E25. [PMID: 29587434 PMCID: PMC6027318 DOI: 10.3390/plants7020025] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/19/2018] [Accepted: 03/22/2018] [Indexed: 12/23/2022]
Abstract
Lamiaceae species are promising potential sources of natural antioxidants, owing to their high polyphenol content. In addition, increasing scientific and epidemiological evidence have associated consumption of foods rich in polyphenols with health benefits such as decreased risk of cardiovascular diseases mediated through anti-inflammatory effects. The complex and diverse nature of polyphenols and the huge variation in their levels in commonly consumed herbs make their analysis challenging. Innovative robust analytical tools are constantly developing to meet these challenges. In this review, we present advances in the state of the art for the identification and quantification of polyphenols in Lamiaceae species. Novel chromatographic techniques that have been employed in the past decades are discussed, ranging from ultra-high-pressure liquid chromatography to hyphenated spectroscopic methods, whereas performance characteristics such as selectivity and specificity are also summarized.
Collapse
Affiliation(s)
- Katerina Tzima
- Department of Food BioSciences, Teagasc Food Research Centre Ashtown, D15 KN3K Dublin, Ireland.
- UCD Institute of Food and Health, University College Dublin, Belfield, Dublin D04V1W8, Ireland.
| | - Nigel P Brunton
- UCD Institute of Food and Health, University College Dublin, Belfield, Dublin D04V1W8, Ireland.
| | - Dilip K Rai
- Department of Food BioSciences, Teagasc Food Research Centre Ashtown, D15 KN3K Dublin, Ireland.
| |
Collapse
|
87
|
Knezevic P, Aleksic Sabo V, Simin N, Lesjak M, Mimica-Dukic N. A colorimetric broth microdilution method for assessment of Helicobacter pylori sensitivity to antimicrobial agents. J Pharm Biomed Anal 2018; 152:271-278. [PMID: 29448222 DOI: 10.1016/j.jpba.2018.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 02/02/2018] [Accepted: 02/03/2018] [Indexed: 12/11/2022]
Abstract
Helicobacter pylori is a major infective etiological agent of the upper gastrointestinal tract diseases. The bacterium exhibits resistance to various conventional antibiotics, being usually challenging for eradication. Since there is an urge to consider alternative therapeutic strategies, the aim of the study was to examine selected essential oils of plants belonging to families Cupressaceae (Juniperus communis) and Lamiaceae (Hyssopus officinalis, Salvia officinalis, Melissa officinalis, Lavandula angustifolia, Ocimum basilicum and Thymus serpyllum) against H. pylori, using an improved microdilution broth method. The oils were examined in concentration range from 0.03 to 4 μL/mL. The method comprises Brain-heart infusion broth supplemented with yeast extract, horse serum and IsoVitaleX. After 3 day incubation, an equal volume of double strengthen Christensen's urea was added into each well and incubated for additional 4 h. In wells with present H. pylori, the medium changed color from yellow to purple, allowing MIC determination even without a microtitre plate reader. The microtitre format method is convenient as it is less expensive, easier to perform and requires less amount of an anti-H. pylori agent. The improved method enhances specificity to H. pylori, as fast urease activity is almost an exclusive property of this bacterium. The application of the second step incubation with Christensen's urea decreases the possibility of false positive/negative results due to contaminant growth or commonly poor H. pylori growth. Among the examined oils, J. communis, H. officinalis and O. basilicum were not active with the highest applied concentrations, while the most active was T. serpyllum, with MIC 2.0-4.0 μL/mL. This is the first report on essential oils activity of T. serpyllum and H. officinalis against H. pylori.
Collapse
Affiliation(s)
- Petar Knezevic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 3, 21 000 Novi Sad, Vojvodina, Serbia.
| | - Verica Aleksic Sabo
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 3, 21 000 Novi Sad, Vojvodina, Serbia
| | - Natasa Simin
- Department of Chemistry, Biochemistry and Environmental protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 3, 21 000 Novi Sad, Vojvodina, Serbia
| | - Marija Lesjak
- Department of Chemistry, Biochemistry and Environmental protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 3, 21 000 Novi Sad, Vojvodina, Serbia
| | - Neda Mimica-Dukic
- Department of Chemistry, Biochemistry and Environmental protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 3, 21 000 Novi Sad, Vojvodina, Serbia
| |
Collapse
|