51
|
Noviana E, Indrayanto G, Rohman A. Advances in Fingerprint Analysis for Standardization and Quality Control of Herbal Medicines. Front Pharmacol 2022; 13:853023. [PMID: 35721184 PMCID: PMC9201489 DOI: 10.3389/fphar.2022.853023] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/26/2022] [Indexed: 01/01/2023] Open
Abstract
Herbal drugs or herbal medicines (HMs) have a long-standing history as natural remedies for preventing and curing diseases. HMs have garnered greater interest during the past decades due to their broad, synergistic actions on the physiological systems and relatively lower incidence of adverse events, compared to synthetic drugs. However, assuring reproducible quality, efficacy, and safety from herbal drugs remains a challenging task. HMs typically consist of many constituents whose presence and quantity may vary among different sources of materials. Fingerprint analysis has emerged as a very useful technique to assess the quality of herbal drug materials and formulations for establishing standardized herbal products. Rather than using a single or two marker(s), fingerprinting techniques take great consideration of the complexity of herbal drugs by evaluating the whole chemical profile and extracting a common pattern to be set as a criterion for assessing the individual material or formulation. In this review, we described and assessed various fingerprinting techniques reported to date, which are applicable to the standardization and quality control of HMs. We also evaluated the application of multivariate data analysis or chemometrics in assisting the analysis of the complex datasets from the determination of HMs. To ensure that these methods yield reliable results, we reviewed the validation status of the methods and provided perspectives on those. Finally, we concluded by highlighting major accomplishments and presenting a gap analysis between the existing techniques and what is needed to continue moving forward.
Collapse
Affiliation(s)
- Eka Noviana
- Departement of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | - Abdul Rohman
- Departement of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia.,Center of Excellence, Institute for Halal Industry and Systems, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
52
|
Li F, Zhang J, Wang Y. Vibrational Spectroscopy Combined with Chemometrics in Authentication of Functional Foods. Crit Rev Anal Chem 2022; 54:333-354. [PMID: 35533108 DOI: 10.1080/10408347.2022.2073433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Many foods have both edible and medical importance and are appreciated as functional foods, preventing diseases. However, due to unscrupulous vendors and imperfect market supervision mechanisms, curative foods are prone to adulteration or some other events that harm the interests of consumers. However, traditional analytical methods are unsuitable and expensive for a broad and complex application. Therefore, people urgently need a fast, efficient, and accurate detection method to protect self-interests. Recently, the study of target samples by vibration spectrum shows strong qualitative and quantitative ability. The model established by platform technology combined with the stoichiometric analysis method can obtain better parameters, which it has good robustness and can detect functional food efficiently, quickly and nondestructive. The review compared and prospect five different vibrational spectroscopic techniques (near-infrared, Fourier transform infrared, Raman, hyperspectral imaging spectroscopy and Terahertz spectroscopy). In order to better solve some of the actual situations faced by certification, we explore and through relevant research and investigation to appropriately highlight the applicability and importance of technology combined with chemometrics in functional food authentication. There are four categories of authentication discussed: functional food authenticated in source, processing method, fraud and ingredient ratio. This paper provides an innovative process for the authentication of functional food, which has a meaningful reference value for future review or scientific research of relevant departments.
Collapse
Affiliation(s)
- Fengjiao Li
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- School of Agriculture, Yunnan University, Kunming, China
| | - Jinyu Zhang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Yuanzhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
53
|
The Potential Use of Herbal Fingerprints by Means of HPLC and TLC for Characterization and Identification of Herbal Extracts and the Distinction of Latvian Native Medicinal Plants. Molecules 2022; 27:molecules27082555. [PMID: 35458753 PMCID: PMC9026908 DOI: 10.3390/molecules27082555] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 12/10/2022] Open
Abstract
The growing market of herbal medicines, the increase in international trade in Latvia, and the lack of adequate analytical methods have raised the question of the potential use of herbal fingerprinting methods. In this study, high-performance liquid chromatography (HPLC) and thin layer chromatography (TLC) methods were developed for obtaining chromatographic fingerprints of four taxonomically and evolutionary different medicinal plants (Hibiscus sabdariffa L., Calendula officinalis L., Matricaria recutita L., Achillea millefolium L.). Retention time shifting, principal component analysis (PCA), hierarchical cluster analysis (HCA), and orthogonal projections to latent structures (OPLS) analysis were used to improve and analyze the obtained fingerprints. HPLC data detection at 270 nm was determined superior to 360 nm for the distinction of medicinal plants and used data alignment method significantly increased similarity between samples. Analyzed medicinal plant extracts formed separate, compact clusters in PCA, and the results of HCA correlated with the evolutionary relationships of the analyzed medicinal plants. Herbal fingerprinting using chromatographic analysis coupled with multivariate analysis has a great potential for the identification of medicinal plants as well as for the distinction of Latvian native medicinal plants.
Collapse
|
54
|
Cheng X, Ji H, Cheng C, Sun Y, Cheng H, Wang D, Pan Y, Liu X. Comprehensive determination of the processing level of rhizome of Polygonatum sibiricum by macroscopic, micromorphological, and microscopic characterizations. Microsc Res Tech 2022; 85:2669-2678. [PMID: 35395110 DOI: 10.1002/jemt.24121] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 11/10/2022]
Abstract
The rhizome of Polygonatum sibiricum Red. (PR, Huangjing in Chinese) has served as traditional medicine and foodstuff in China for over 2000 years. However, due to its irritating effect on the throat, Huangjing must be processed before clinical use. People have been exploring to determine the processing level of traditional Chinese medicine in an accurate tool. The evaluation of PR processing levels based on macroscopic and microscopic characteristics has not yet been performed. This study aimed to provide a convenient method to determine the level of PR processing by monitoring the changes in color and crystal inclusion. According to the Chinese Pharmacopeia (2020 edition), macroscopic, micromorphological, and microscopic observations were performed with a polarized light microscope. Color quantization based on the CIE L* a* b* color system using a CM-2300d colorimeter. Color parameters h° , L* , and ΔE* had a significant influence on the differentiation ability. The inner transverse section of PR samples gradually turned into moist black with specular luster, which was consistent with the traditional identification of "brightness like oil and color like black lacquer." The change rate of the needle crystal morphology increased with the processing level, and the change rate of the needle crystal of the fifth product was over 90%. Combined with the correlation analysis, needle-like crystals were related to color parameters and could be used as an alternative marker to discriminate PR samples from different processing levels. The results confirmed the potential applicability of macroscopic and microscopic features for the classification of PR samples with different processing levels.
Collapse
Affiliation(s)
- Xile Cheng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Hongyuan Ji
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Cheng Cheng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Yongfang Sun
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Haitao Cheng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Dongmei Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Yingni Pan
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Xiaoqiu Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| |
Collapse
|
55
|
Wu L, Gong X, Pan J, Qu H. Establishing a chromatographic fingerprint using tandem UV/charged aerosol detection and similarity analysis for Shengmai capsule: A novel method for natural product quality control. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:460-472. [PMID: 35048433 DOI: 10.1002/pca.3102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/24/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
INTRODUCTION Shengmai San, a well-known traditional Chinese medicine formula, is used to treat coronary heart diseases and myocardial infarction. The complex composition and complicated mechanism of the Shengmai preparations bring a significant challenge in the development of a suitable quality control method. OBJECTIVES This work aims to establish a chromatographic fingerprinting method and propose a weighting algorithm for application in fingerprint similarity analysis to ensure consistent quality of the Shengmai capsule. METHODOLOGY A chromatographic fingerprint method was established using tandem UV/charged aerosol detection (CAD) for Shengmai capsule quality control. After method verification, the developed method was applied to analyze 15 batches of the samples. Then a weighting algorithm of the fingerprint peak was proposed and used for the fingerprint similarity analysis. RESULTS An HPLC-UV/CAD fingerprint method was successfully developed for the Shengmai capsules. Chromatographic conditions of the HPLC-UV/CAD method were optimized with a definitive screening design, and the optimized ranges of operating parameters were obtained with a Monte Carlo simulation method. The combined use of the proposed weighting algorithm and similarity analysis on fingerprint data improves the sensitivity of distinguishing batch-to-batch quality differences. CONCLUSION The developed HPLC-UV/CAD fingerprint method is robust, reliable, and efficient. The proposed weighting algorithm combined with similarity analysis is promising and meaningful for the quality consistency assessment of HPLC-UV/CAD fingerprints.
Collapse
Affiliation(s)
- Linlin Wu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Innovation Center in Zhejiang University, State Key Laboratory of Component-Based Chinese Medicine, Zhejiang University, Hangzhou, China
| | - Xingchu Gong
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Innovation Center in Zhejiang University, State Key Laboratory of Component-Based Chinese Medicine, Zhejiang University, Hangzhou, China
| | - Jianyang Pan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Innovation Center in Zhejiang University, State Key Laboratory of Component-Based Chinese Medicine, Zhejiang University, Hangzhou, China
| | - Haibin Qu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Innovation Center in Zhejiang University, State Key Laboratory of Component-Based Chinese Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
56
|
The importance of method validation in herbal drug research. J Pharm Biomed Anal 2022; 214:114735. [PMID: 35344789 DOI: 10.1016/j.jpba.2022.114735] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/03/2022] [Accepted: 03/18/2022] [Indexed: 12/13/2022]
Abstract
There are countless scientific publications on herbal drugs, but unfortunately many of them do not correctly report their chemical, biological and pharmacological aspects, including the composition and stability of the herbal/extract preparations, therefore their safety, efficacy and consistency could not be proven. For developing a modern drug from herbal drug(s), complete chemical and pharmacological characterizations of their bioactive metabolites need to be well established. Reproducible results require the development, assessment, and standardization of the chemical, biological and pharmacological methods based on the current state of the art. Therefore, all methods used in research must be properly validated before its routine applications. This present review will describe and discuss the important aspects of method validation (chemical, biological and pharmacological) in herbal drug research according to the newest current Pharmacopeia, official Guidelines and related recent publications.
Collapse
|
57
|
Lin C, Pattraraachachai J, Pawa KK, Wongyai S. A preliminary study of the efficacy of the polyherbal preparation Sao Thong Tai for erectile dysfunction among elderly men: a double-blind, randomized controlled trial. CLINICAL PHYTOSCIENCE 2022. [DOI: 10.1186/s40816-022-00341-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The traditional Thai polyherbal formulation “Sao Thong Tai” (STT) contains four medicinal plants, namely Boesenbergia rotunda (L.) Mansf., Sida acuta Burm.f., Dactyloctenium aegyptium (L.) Willd., and Oryza sativa L. and it is considered an aphrodisiac and remedy for the effective treatment of decreased male libido in Thai traditional medicine and it may ameliorate erectile function. This pilot study was carried out to investigate the efficacy and safety of the polyherbal STT for mild to moderate erectile dysfunction in a small group of elderly men in Thailand in a double-blind, randomized controlled trial.
Methods
This research is a preliminary study. Fifty-four elderly males aged 50-69 years who had been diagnosed with mild to moderate ED were randomized into two groups of equal size: an STT group (n=27) and a placebo control group (n=27). The patients received either an 800 mg dose of STT extract or a lactose placebo twice a day for the eight-week treatment period, after which they were followed up for four weeks. Erectile function, sexual activity, self-reported attitudes toward sexual dysfunction, and partner-reported sexual dysfunction were investigated to confirm the efficacy of the polyherbal preparation. The International Index of Erectile Function (IIEF-5) and the Scale for Quality of Sexual Function (QSF) were used for primary outcome assessment.
Results
The IIEF-5 scores of the STT group were significantly increased compared with those of the placebo group (p<0.001). The severity of ED decreased from "mild" or "mild to moderate" to normal in 88.9% of the STT group vs. 0% of the placebo group, and the QSF score increased in the STT group (p<0.001). Sexual activity, self-reported views of sexual dysfunction, and partners’ views of sexual dysfunction showed significant improvement in the STT group, and there was no significant difference in psychosomatic quality of life. No adverse events were observed in either group.
Conclusion
Compared with a placebo, an oral aqueous extract of STT taken daily at a dose of 1,600 mg for eight weeks can effectively treat mild to moderate ED in elderly men. The preparation was also shown to be safe with respect to all parameters assessed. This finding demonstrates that STT can be used for the effective treatment of decreased male libido in Thai traditional medicine and may ameliorate ED.
Trial registration
TCTR/20180126001 033/2560. Registered 16 January 2018, Thai Clinical Trials Registry http://www.thaiclinicaltrials.org/
Collapse
|
58
|
Riswanto FDO, Windarsih A, Lukitaningsih E, Rafi M, Fadzilah NA, Rohman A. Metabolite Fingerprinting Based on 1H-NMR Spectroscopy and Liquid Chromatography for the Authentication of Herbal Products. Molecules 2022; 27:1198. [PMID: 35208988 PMCID: PMC8874729 DOI: 10.3390/molecules27041198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 11/17/2022] Open
Abstract
Herbal medicines (HMs) are regarded as one of the traditional medicines in health care to prevent and treat some diseases. Some herbal components such as turmeric and ginger are used as HMs, therefore the identification and confirmation of herbal use are very necessary. In addition, the adulteration practice, mainly motivated to gain economical profits, may occur by substituting the high price of HMs with lower-priced ones or by addition of certain chemical constituents known as Bahan Kimia Obat (chemical drug ingredients) in Indonesia. Some analytical methods based on spectroscopic and chromatographic methods are developed for the authenticity and confirmation of the HMs used. Some approaches are explored during HMs authentication including single-component analysis, fingerprinting profiles, and metabolomics studies. The absence of reference standards for certain chemical markers has led to exploring the fingerprinting approach as a tool for the authentication of HMs. During fingerprinting-based spectroscopic and chromatographic methods, the data obtained were big, therefore the use of chemometrics is a must. This review highlights the application of fingerprinting profiles using variables of spectral and chromatogram data for authentication in HMs. Indeed, some chemometrics techniques, mainly pattern recognition either unsupervised or supervised, were applied for this purpose.
Collapse
Affiliation(s)
- Florentinus Dika Octa Riswanto
- Center of Excellence, Institute for Halal Industry and Systems, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (F.D.O.R.); (A.W.)
- Division of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Campus III Paingan, Universitas Sanata Dharma, Maguwoharjo, Sleman, Yogyakarta 55282, Indonesia
| | - Anjar Windarsih
- Center of Excellence, Institute for Halal Industry and Systems, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (F.D.O.R.); (A.W.)
- Research Division for Natural Product Technology, National Research and Innovation Agency (BRIN), Yogyakarta 55861, Indonesia
| | - Endang Lukitaningsih
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia;
| | - Mohamad Rafi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Kampus IPB Dramaga, IPB University, Bogor 16680, Indonesia;
| | - Nurrulhidayah A. Fadzilah
- International Institute for Halal Research and Training (INHART), International Islamic University of Malaysia (IIUM), Gombak 53100, Malaysia;
| | - Abdul Rohman
- Center of Excellence, Institute for Halal Industry and Systems, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (F.D.O.R.); (A.W.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia;
| |
Collapse
|
59
|
Andrade MKDS, Santana MAD, Assunção Ferreira MR, dos Santos WP, Lira Soares LA. Determination of Libidibia ferrea Markers Using Spectrophotometry and Chemometric Tools with Comparison to a Standard High-Performance Liquid Chromatography (HPLC) Protocol. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2032123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Maria Karoline da Silva Andrade
- Pharmacognosy Laboratory, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Brazil
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Pernambuco, Brazil
| | - Maíra Araújo de Santana
- Polytechnic School of Pernambuco, Program on Computing Engineering, University of Pernambuco, Brazil
| | | | | | - Luiz Alberto Lira Soares
- Pharmacognosy Laboratory, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Brazil
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Pernambuco, Brazil
| |
Collapse
|
60
|
Ming-Liang G, Yi Z, Fang-Fang C, Hang-Hang W, Ling-Run L, Xin J, Ya-Nan Z, Tian-Shu W, Pei-Dong C, Wei-Feng Y, Bei-Hua B, Li Z. A gradient-based discriminant analysis method for process quality control of carbonized TCM via Fourier transform near infrared spectroscopy: A case study on carbonized Typhae Pollen. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120363. [PMID: 34562862 DOI: 10.1016/j.saa.2021.120363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Carbonized traditional Chinese medicine (TCM) is a kind of distinctive traditional drug which has been widely used in various bleeding syndromes for over two thousand years, and most of them are still in clinical use. Although they share similar processing method: stir-frying, there are no specific quality standards and few quality control researches carried out on carbonized TCM up until now. Carbonized Typhae Pollen (CTP) is a typical carbonized TCM with efficacy of eliminating blood stasis and stanching bleeding. In this study, a novel process quality control model coupled with near infrared spectroscopy was established, called Gradient-based Discriminant Analysis method (GDA). Compared with conventional modeling methods (Convolutional Neural Network, Linear Discriminant Analysis, Standard Normal Variate-LDA), GDA model applied in fiber optic probe acquisition mode exhibited highest test accuracy (0.961), satisfactory correct identification (internal validation, 100%; external validation, 97.1%) and excellent model stability. This method provided a perfect guideline for process quality control of Carbonized TCM as well as ensured their clinical efficacy.
Collapse
Affiliation(s)
- Gao Ming-Liang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Zhang Yi
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Cheng Fang-Fang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Wang Hang-Hang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Liu Ling-Run
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Jin Xin
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Zhou Ya-Nan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Wang Tian-Shu
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Chen Pei-Dong
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yao Wei-Feng
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Bao Bei-Hua
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Zhang Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| |
Collapse
|
61
|
Discrimination of Adulterated Ginkgo Biloba Products Based on 2T2D Correlation Spectroscopy in UV-Vis Range. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020433. [PMID: 35056747 PMCID: PMC8777600 DOI: 10.3390/molecules27020433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/19/2021] [Accepted: 01/07/2022] [Indexed: 11/23/2022]
Abstract
Ginkgo biloba is a popular medicinal plant widely used in numerous herbal products, including food supplements. Due to its popularity and growing economic value, G. biloba leaf extract has become the target of economically motivated adulterations. There are many reports about the poor quality of ginkgo products and their adulteration, mainly by adding flavonols, flavonol glycosides, or extracts from other plants. In this work, we developed an approach using two-trace two-dimensional correlation spectroscopy (2T2D COS) in UV-Vis range combined with multilinear principal component analysis (MPCA) to detect potential adulteration of twenty G. biloba food supplements. UV-Vis spectral data are obtained for 80% methanol and aqueous extracts in the range of 245–410 nm. Three series of two-dimensional correlation spectra were interpreted by visual inspection and using MPCA. The proposed relatively quick and straightforward approach successfully differentiated supplements adulterated with rutin or those lacking ginkgo leaf extract. Supporting information about adulteration was obtained from the difference between the DPPH radical scavenging capacity of both extracts and from chromatographic (HPLC-DAD) fingerprints of methanolic samples.
Collapse
|
62
|
Liu C, Zuo Z, Xu F, Wang Y. Authentication of Herbal Medicines Based on Modern Analytical Technology Combined with Chemometrics Approach: A Review. Crit Rev Anal Chem 2022; 53:1393-1418. [PMID: 34991387 DOI: 10.1080/10408347.2021.2023460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Since ancient times, herbal medicines (HMs) have been widely popular with consumers as a "natural" drug for health care and disease treatment. With the emergence of problems, such as increasing demand for HMs and shortage of resources, it often occurs the phenomenon of shoddy exceed and mixing the false with the genuine in the market. There is an urgent need to evaluate the quality of HMs to ensure their important role in health care and disease treatment, and to reduce the possibility of threat to human health. Modern analytical technology is can be analyzed for analyzing chemical components of HMs or their preparations. Reflecting complex chemical components' characteristic curves in the analysis sample, and the comprehensive effect of active ingredients of HMs. In this review, modern analytical technology (chromatography, spectroscopy, mass spectrometry), chemometrics methods (unsupervised, supervised) and their advantages, disadvantages, and applicability were introduced and summarized. In addition, the authentication application of modern analytical technology combined with chemometrics methods in four aspects, including origin, processing methods, cultivation methods, and adulteration of HMs have also been discussed and illustrated by a few typical studies. This article offers a general workflow of analytical methods that have been applied for HMs authentication and explains that the accuracy of authentication in favor of the quality assurance of HMs. It was provided reference value for the development and application of modern HMs.
Collapse
Affiliation(s)
- Chunlu Liu
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhitian Zuo
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Furong Xu
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuanzhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
63
|
Zhao J, Wang M, Saroja SG, Khan IA. NMR technique and methodology in botanical health product analysis and quality control. J Pharm Biomed Anal 2022; 207:114376. [PMID: 34656935 DOI: 10.1016/j.jpba.2021.114376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022]
Abstract
Botanicals have played an important role in maintaining human health and well-being throughout history. During the past few decades in particular, the use of botanical health products has gained more popularity. Whereas, quality, safety and efficacy concerns have continuously been critical issues due to the intrinsic chemical complexity of botanicals. Chemical analytical technologies play an imperative role in addressing these issues. Nuclear magnetic resonance (NMR) spectroscopy has proven to be a powerful and useful tool for the investigation of botanical health products. In this review, NMR techniques and methodologies that have been successfully applied to the research and development of botanical health products in all stages, from plants to products, are discussed and summarized. Furthermore, applications of NMR together with other analytical techniques in a variety of domains of botanical health products investigation, such as plant species differentiation, adulteration detection, and bio-activity evaluation, are discussed and illustrated with typical examples. This article provides an overview of the potential uses of NMR techniques and methodologies in an attempt to further promote their recognition and utilization in the field of botanical health products analysis and quality control.
Collapse
Affiliation(s)
- Jianping Zhao
- National Center for Natural Products Research (NCNPR), School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| | - Mei Wang
- Natural Products Utilization Research Unit, Agricultural Research Service, US Department of Agriculture, University, MS 38677, USA
| | - Seethapathy G Saroja
- National Center for Natural Products Research (NCNPR), School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Ikhlas A Khan
- National Center for Natural Products Research (NCNPR), School of Pharmacy, University of Mississippi, University, MS 38677, USA; Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
64
|
Syafri S, Jaswir I, Yusof F, Rohman A, Ahda M, Hamidi D. The use of instrumental technique and chemometrics for essential oil authentication: A review. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
65
|
Comprehensive quality evaluation of Compound Bismuth Aluminate Tablets by multiple fingerprint profiles combined with quantitative analysis and antioxidant activity. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
66
|
Gao FY, Chen HY, Luo YS, Chen JK, Yan L, Zhu JB, Fan GR, Zhou TT. "Q-markers targeted screening" strategy for comprehensive qualitative and quantitative analysis in fingerprints of Angelica dahurica with chemometric methods. Food Chem X 2021; 12:100162. [PMID: 34825171 PMCID: PMC8604777 DOI: 10.1016/j.fochx.2021.100162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/29/2021] [Accepted: 11/12/2021] [Indexed: 11/30/2022] Open
Abstract
Angelica dahurica is a famous functional food and herb. To guarantee quality of A. dahurica, a strategy “Q-markers targeted screening” was successfully developed by sufficient extraction of compounds and the targeted screening of qualitative and quantitative markers calculated through chemometric methods based fingerprints. Accelerated solvent extraction was selected due to its prominent advantages exhibiting the maximum extraction yields and varieties of compounds and especially excellent reproducibility (RSD < 1). After extraction, the fingerprints of A. dahuricae samples were established. For the preliminary herb authenticity, the targeted screening of 23 quantitative markers were performed by similarity analysis and hierarchical cluster analysis based on the fingerprints, which were identified by liquid chromatography tandem mass spectrometry (LC-MS). Subsequently, for further quality control, the targeted screening of nine quantitative markers were done by similarity analysis & linear discriminant analysis, which were determined by LC. Lastly, the strategy was successfully applied to quality assessment of A. dahurica samples.
Collapse
Key Words
- ANOVA, analysis of variance
- ASE, accelerated solvent extraction
- Accelerated solvent extraction
- Angelica dahurica
- BBD, Box-Bohnken Design
- CID, collision-induced-dissociation
- Chemometric analysis
- HCA, hierarchical cluster analysis
- HPLC-PDA-ESI-ITMSn, high performance liquid chromatography-photo diode array-electrospray ionization ion trap mass spectrometry
- HRE, heated reflux extraction
- IS, internal standard
- LDA, linear discriminant analysis
- LOD, limits of detection
- LOQ, limits of quantification
- Liquid chromatography tandem mass spectrometry
- MAE, microwave-assisted extraction
- Q-markers targeted screening
- Qualitative markers
- Quantitative markers
- RSD, relative standard deviation
- RSM, response surface methodology
- S/N, signal-to-noise ratios
- SA, similarity analysis
- TOF, time of fight
- UAME, ultrasonic-assisted microwave extraction
- UE, ultrasonic extraction
- UV, ultra violet
- bergapten (PubChem CID: 2355)
- estazolam (PubChem CID: 3261)
- hydrate oxypeucedanin (PubChem CID: 17536)
- imperatorin (PubChem CID: 10212)
- isoimperatorin (PubChem CID: 68081)
- oxypeucedanin (PubChem CID: 160544)
- phellopterin (PubChem CID: 98608)
- prangenin hydrate (PubChem CID: 129710912)
- xanthotoxin (PubChem CID: 4114)
- xanthotoxol (PubChem CID: 65090)
Collapse
Affiliation(s)
- Fang-Yuan Gao
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, No. 800 Xiangyin Road, Shanghai 200433, China
| | - Hai-Yan Chen
- Department of Endocrinology, Changzheng Hospital, Second Military Medical University, No. 415 Fengyang Road, Shanghai 200003, China
| | - Yu-Sha Luo
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, China.,Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Ji-Kuai Chen
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, No. 800 Xiangyin Road, Shanghai 200433, China
| | - Lang Yan
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, No. 800 Xiangyin Road, Shanghai 200433, China
| | - Jiang-Bo Zhu
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, No. 800 Xiangyin Road, Shanghai 200433, China
| | - Guo-Rong Fan
- Department of Clinical Pharmacy, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, No. 100 Haining Road, Shanghai 200025, China.,School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China
| | - Ting-Ting Zhou
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, China.,Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, China
| |
Collapse
|
67
|
Feng H, Li S, Hu Y, Zeng X, Qiu P, Li Y, Li W, Li Z. Quality assessment of Succus Bambusae oral liquids based on gas chromatography/mass spectrometry fingerprints and chemometrics. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9200. [PMID: 34532912 DOI: 10.1002/rcm.9200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
RATIONALE Succus Bambusae is consumed as a kind of herbal medicine and natural beverage in China. However, the current quality standards for Succus Bambusae are low and lack safety indicators, which makes it difficult to effectively guarantee its quality. Therefore, it is of great significance to study the identification and quality control technology for the product. METHODS We have developed a set of qualitative and quantitative methods based on gas chromatography/mass spectrometry (GC/MS) for the analysis of volatile components in Succus Bambusae oral liquid (SBOL). Combining GC/MS fingerprint analysis and related chemometrics algorithms, with similarity evaluation, Hotelling T2 and distance to Model X (DModX) as criteria, the quality consistency of different batches was evaluated, and SBOL samples from different manufacturers were differentiated. RESULTS Twenty-nine volatile components were preliminarily identified from 40 batches of SBOL samples from six manufacturers, and six Q-markers (Quality Markers) for the SBOLs were discussed and determined using GC/MS. The products from different manufacturers were distinguished using chemometrics. CONCLUSIONS The results showed that the quality of the SBOL samples from different batches and different manufacturers fluctuated greatly, which suggested that research into the raw materials and manufacturing techniques should be strengthened to improve the quality of SBOL and ensure its quality consistency.
Collapse
Affiliation(s)
- Huimin Feng
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shunan Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yunfei Hu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiyao Zeng
- Hunan Zhengqing Pharmaceutical Group Co., Ltd, Huaihua, Hunan, China
| | - Ping Qiu
- Hunan Zhengqing Pharmaceutical Group Co., Ltd, Huaihua, Hunan, China
| | - Yuanxiang Li
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua, Hunan, China
| | - Wenlong Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
68
|
Effect of Crocus sativus (Saffron) Intake on Top of Standard Treatment, on Disease Outcomes and Comorbidities in Patients with Rheumatic Diseases: Synthesis without Meta-Analysis (SWiM) and Level of Adherence to the CONSORT Statement for Randomized Controlled Trials Delivering Herbal Medicine Interventions. Nutrients 2021; 13:nu13124274. [PMID: 34959826 PMCID: PMC8706139 DOI: 10.3390/nu13124274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/18/2022] Open
Abstract
Rheumatic diseases (RDs) are often complicated by chronic symptoms and frequent side-effects associated with their treatment. Saffron, a spice derived from the Crocus sativus L. flower, is a popular complementary and alternative medicine among patients with RDs. The present systematic review aimed to summarize the available evidence regarding the efficacy of supplementation with saffron on disease outcomes and comorbidities in patients with RD diagnoses. PubMed, CENTRAL, clinicaltrials.gov and the grey literature were searched until October 2021, and relevant randomized controlled trials (RCTs) were screened for eligibility using Rayyan. Risk of bias was assessed using the Cochrane’s Risk of Bias-2.0 (RoB) tool. A synthesis without meta-analysis (SWiM) was performed by vote counting and an effect direction plot was created. Out of 125 reports, seven fulfilled the eligibility criteria belonging to five RCTs and were included in the SWiM. The RCTs involved patients with rheumatoid arthritis, osteoarthritis and fibromyalgia, and evaluated outcomes related to pain, disease activity, depression, immune response, inflammation, oxidative stress, health, fatigue and functional ability. The majority of trials demonstrated some concerns regarding overall bias. Moreover, the majority of trialists failed to adhere to the formula elaborations suggested by the CONSORT statement for RCTs incorporating herbal medicine interventions. Standardization of herbal medicine confirms its identity, purity and quality; however, the majority of trials failed to adhere to these guidelines. Due to the great heterogeneity and the lack of important information regarding the standardization and content of herbal interventions, it appears that the evidence is not enough to secure a direction of effect for any of the examined outcomes.
Collapse
|
69
|
Liu Z, Shen T, Zhang J, Li Z, Zhao Y, Zuo Z, Zhang J, Wang Y. A Novel Multi-Preprocessing Integration Method for the Qualitative and Quantitative Assessment of Wild Medicinal Plants: Gentiana rigescens as an Example. FRONTIERS IN PLANT SCIENCE 2021; 12:759248. [PMID: 34691133 PMCID: PMC8531481 DOI: 10.3389/fpls.2021.759248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Until now, the over-exploitation of wild resources has increased growing concern over the quality of wild medicinal plants. This led to the necessity of developing a rapid method for the evaluation of wild medicinal plants. In this study, the content of total secoiridoids (gentiopicroside, swertiamarin, and sweroside) of Gentiana rigescens from 37 different regions in southwest China were analyzed by high performance liquid chromatography (HPLC). Furthermore, Fourier transform infrared (FT-IR) was adopted to trace the geographical origin (331 individuals) and predict the content of total secoiridoids (273 individuals). In the traditional FT-IR analysis, only one scatter correction technique could be selected from a series of preprocessing candidates to decrease the impact of the light correcting effect. Nevertheless, different scatter correction techniques may carry complementary information so that using the single scatter correction technique is sub-optimal. Hence, the emerging ensemble approach to preprocessing fusion, sequential preprocessing through orthogonalization (SPORT), was carried out to fuse the complementary information linked to different preprocessing methods. The results suggested that, compared with the best results obtained on the scatter correction modeling, SPORT increased the accuracy of the test set by 12.8% in qualitative analysis and decreased the RMSEP by 66.7% in quantitative analysis.
Collapse
Affiliation(s)
- Zhimin Liu
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- School of Agriculture, Yunnan University, Kunming, China
| | - Tao Shen
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- College of Chemistry, Biological and Environment, Yuxi Normal University, Yuxi, China
| | - Ji Zhang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Zhimin Li
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Yanli Zhao
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Zhitian Zuo
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Jinyu Zhang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- School of Agriculture, Yunnan University, Kunming, China
| | - Yuanzhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
70
|
Klein-Junior LC, de Souza MR, Viaene J, Bresolin TMB, de Gasper AL, Henriques AT, Heyden YV. Quality Control of Herbal Medicines: From Traditional Techniques to State-of-the-art Approaches. PLANTA MEDICA 2021; 87:964-988. [PMID: 34412146 DOI: 10.1055/a-1529-8339] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Herbal medicines are important options for the treatment of several illnesses. Although their therapeutic applicability has been demonstrated throughout history, several concerns about their safety and efficacy are raised regularly. Quality control of articles of botanical origin, including plant materials, plant extracts, and herbal medicines, remains a challenge. Traditionally, qualitative (e.g., identification and chromatographic profile) and quantitative (e.g., content analyses) markers are applied for this purpose. The compound-oriented approach may stand alone in some cases (e.g., atropine in Atropa belladonna). However, for most plant materials, plant extracts, and herbal medicines, it is not possible to assure quality based only on the content or presence/absence of one (sometimes randomly selected) compound. In this sense, pattern-oriented approaches have been extensively studied, introducing the use of multivariate data analysis on chromatographic/spectroscopic fingerprints. The use of genetic methods for plant material/plant extract authentication has also been proposed. In this study, traditional approaches are reviewed, although the focus is on the applicability of fingerprints for quality control, highlighting the most used approaches, as well as demonstrating their usefulness. The literature review shows that a pattern-oriented approach may be successfully applied to the quality assessment of articles of botanical origin, while also providing directions for a compound-oriented approach and a rational marker selection. These observations indicate that it may be worth considering to include fingerprints and their data analysis in the regulatory framework for herbal medicines concerning quality control since this is the foundation of the holistic view that these complex products demand.
Collapse
Affiliation(s)
- Luiz C Klein-Junior
- School of Health Sciences, Universidade do Vale do Itajaí - UNIVALI, Itajaí/SC, Brazil
| | - Maira R de Souza
- Laboratory of Pharmacognosy and Quality Control of Phytomedicines, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre/RS, Brazil
| | - Johan Viaene
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Center for Pharmaceutical Research (CePhaR), Vrije Universiteit Brussel - VUB, Brussels, Belgium
| | - Tania M B Bresolin
- School of Health Sciences, Universidade do Vale do Itajaí - UNIVALI, Itajaí/SC, Brazil
| | - André L de Gasper
- Herbarium Dr. Roberto Miguel Klein, Department of Natural Sciences, Universidade Regional de Blumenau - FURB, Blumenau/SC, Brazil
| | - Amélia T Henriques
- Laboratory of Pharmacognosy and Quality Control of Phytomedicines, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre/RS, Brazil
| | - Yvan Vander Heyden
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Center for Pharmaceutical Research (CePhaR), Vrije Universiteit Brussel - VUB, Brussels, Belgium
| |
Collapse
|
71
|
Rapid Profiling of Chemical Constituents in Qingfei Paidu Granules Using High Performance Liquid Chromatography Coupled with Q Exactive Mass Spectrometry. Chromatographia 2021; 84:1035-1048. [PMID: 34538876 PMCID: PMC8435196 DOI: 10.1007/s10337-021-04085-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/05/2021] [Accepted: 08/23/2021] [Indexed: 01/13/2023]
Abstract
Qingfei Paidu (QFPD) granules have played a critical role during the Coronavirus Disease 2019 (COVID-19) in China. However, worldwide acceptance has been a problem because of the complex ingredients and unique theory of treatment. In this study, high-performance liquid chromatography (HPLC)-Q Exactive Orbitrap-mass spectrometry (MS) and the Orbitrap traditional Chinese medicine library (OTCML) were used to investigate the chemical constituents of QFPD granules. By comparing retention times, masses, isotope ion patterns, and MS2 profiles, 108 compounds were putatively identified using the OTCML combined with manual verification, including 12 alkaloids, 49 flavonoids, 13 terpenoids, 14 phenylpropanoids, 4 phenolic acids, 5 phenols, and 11 other phytochemicals. Of these compounds, 17 were confirmed using reference standards. In addition, representative compounds of these different chemical types were used as examples to analyze the fragmentation pathways and characteristic product ions. Moreover, 20 herbs within the QFPD granules were also identified to establish the sources of these chemical components. This is the first rapid profiling of the chemical constituents of QFPD granules using HPLC-Q Exactive Orbitrap-MS and yields valuable information for further quality control and mechanistic studies of QFPD granules.
Collapse
|
72
|
Liu Z, Yang S, Wang Y, Zhang J. Multi-platform integration based on NIR and UV-Vis spectroscopies for the geographical traceability of the fruits of Amomum tsao-ko. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 258:119872. [PMID: 33957443 DOI: 10.1016/j.saa.2021.119872] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/01/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Due to the world-wide concern relating to herb quality and safety, there is a momentum to authenticate the geographical origin of herb with multi-platform techniques. This study attempted to assess multi-platform information as a practical strategy for the geographical traceability of the fruits of Amomum tsao-ko. To this aim, one hundred and eighty dried fruits of A. tsao-ko from five geographical regions were analyzed by near infrared (NIR) and ultraviolet visible (UV-Vis) spectroscopy. On this basis, two variable dimension reduction strategies, including principal component analysis (PCA) and sequential and orthogonalized partial-least squares (SO-PLS), and two variables selection strategies, including variable importance in projection (VIP) and sequential and orthogonalized covariance selection (SO-CovSel), were performed to extract the feature information in the two blocks. Partial least squares discriminant analysis (PLS-DA) classification algorithm combined with fused matrices was used to identify the geographical origins. The results of PLS-DA models indicated that SO-PLS and SO-CovSel, taking advantage of the sequential modeling coupled to orthogonalization, could not only identify the common information presented in the two blocks but also provide more concise methods without any loss of classification ability, which could be employed in authenticating the geographical regions of the fruits of A. tsao-ko, effectively.
Collapse
Affiliation(s)
- Zhimin Liu
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China; School of Agriculture, Yunnan University, Kunming 650500, China
| | - Shaobing Yang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
| | - Yuanzhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China.
| | - Jinyu Zhang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China; School of Agriculture, Yunnan University, Kunming 650500, China.
| |
Collapse
|
73
|
Huang J, Ding L, Tian W, Zhi H, Chen J, Wu L, Wang L, Xie J, Bai J, Fan H, Zhao S, Zhang K, Zheng J. Polyphaenolic profiling, antioxidant properties, and inhibition of α-glucosidase of Mesona chinensis benth from Southern China. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
74
|
Zhang Q, Xu K, Zhang Y, Han J, Sui W, Zhang H, Yu M, Tong Y, Wang S, Han F. Quality control of Semen Hoveniae by high-performance liquid chromatography coupled to Fourier transform-ion cyclotron resonance mass spectrometry. J Sep Sci 2021; 44:3366-3375. [PMID: 34288432 DOI: 10.1002/jssc.202100240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 07/09/2021] [Accepted: 07/16/2021] [Indexed: 01/28/2023]
Abstract
A method based on high-performance liquid chromatography and Fourier transform-ion cyclotron resonance mass spectrometry was developed to control the quality of Semen Hoveniae. First, the chromatographic fingerprint was established in combination with the chemometrics methods such as similarity analysis, cluster analysis, principal component analysis, and orthogonal partial least squares discriminant analysis to discover the qualitative markers. Then, an high-performance liquid chromatography mass spectrometry method was developed to identify the chemical constituents in Semen Hoveniae. Moreover, the content of dihydromyricetin and dihydroquercetin in Semen Hoveniae were determined by high-performance liquid chromatography. As a result, nine common peaks were assigned in the fingerprints and the similarity of the 13 batch samples varied from 0.425 to 0.993, indicating an obviously different quality. Dihydromyricetin and dihydroquercetin were the main qualitative markers to differ the quality of Semen Hoveniae. Meanwhile, a total of 21 chemical compounds were characterized by high-performance liquid chromatography mass spectrometry and six of them were identified by comparing with information of reference standards. Finally, the content of dihydromyricetin and dihydroquercetin in 13 batch samples varied from 0.824 to 7.499 mg/g and from 0.05941 to 4.258 mg/g , respectively. In conclusion, the methods developed here will provide sufficient qualitative and quantitative information for the quality control of Semen Hoveniae.
Collapse
Affiliation(s)
- Qingyu Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, P. R. China
| | - Ke Xu
- Department of Ophthalmology, The Fourth People's Hospital of Shenyang, No.20 Huang He South Street, Huang Gu District, Shenyang, 110031, P. R. China
| | - Yu Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, P. R. China
| | - Jing Han
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, P. R. China
| | - Wenwen Sui
- Shenyang Harmony Health Medical Laboratory, 15 Buildings, 19 Wenhui Street, JinPenglong Hightech Industry Park, Shenyang, 110016, P. R. China
| | - Haotian Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, P. R. China
| | - Maomao Yu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, P. R. China
| | - Yichen Tong
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, P. R. China
| | - Sijie Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, P. R. China
| | - Fei Han
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, P. R. China
| |
Collapse
|
75
|
UV spectroscopy and HPLC combined with chemometrics for rapid discrimination and quantification of Curcumae Rhizoma from three botanical origins. J Pharm Biomed Anal 2021; 202:114145. [PMID: 34051484 DOI: 10.1016/j.jpba.2021.114145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/05/2021] [Accepted: 05/16/2021] [Indexed: 01/13/2023]
Abstract
Curcumae Rhizoma (Ezhu in Chinese) is a multi-origin herbal medicine with excellent clinical efficacy. For fast discrimination and quantification analysis of Ezhu from three botanical origins (Curcuma kwangsiensis, Curcuma phaeocaulis, and Curcuma wenyujin), ultra-violet (UV) spectroscopy and high performance liquid chromatography (HPLC) combined with chemometric tools were employed in this study. Firstly, the analysis method for the simultaneous determination of eleven compounds in Ezhu was developed by HPLC, and the UV spectra of thirty-eight batches of Ezhu were acquired. Then, principal component analysis (PCA), an unsupervised pattern recognition method, was applied on the HPLC and UV spectral data. PCA did not show a clear separation between C. phaeocaulis and C. wenyujin samples with HPLC data. By contrast, the supervised techniques, decision tree (DT) and linear discriminant analysis (LDA), achieved the complete discrimination for the three species of Ezhu with 100 % correct classification rate (CCR), showing excellent performance. Based on UV spectral data, PCA presented good performance for discriminating the three species of Ezhu. LDA, support vector machine (SVM) and k-nearest neighbors (KNN) models provided 96.3 % CCR for the calibration set and 100 % CCR for the validation set. Moreover, the partial least squares (PLS) and back propagation-artificial neural network (BP-ANN) quantitative models established on UV spectral data were satisfactory in predicting the contents of zederone, curdione and 3,5-dihydroxy-1-(3,4-dihydroxyphenyl)-7-(4-hydroxyphenyl)-heptane. The residual predictive deviation (RPD) for zederone, curdione and 3,5-dihydroxy-1-(3,4-dihydroxyphenyl)-7-(4-hydroxyphenyl)-heptane of PLS models were 3.169, 1.502 and 1.735, and that of BP-ANN models were 3.467, 2.481 and 2.370, respectively. The present work proposed a rapid and reliable method for the discrimination of Ezhu from three botanical origins and the prediction of zederone, curdione and 3,5-dihydroxy-1-(3,4-dihydroxyphenyl)-7-(4-hydroxyphenyl)-heptane contents in Ezhu, which will help a lot in the quality control of Ezhu and other multi-origin herbal medicines.
Collapse
|
76
|
Selcuk O, Demir Y, Erkmen C, Yıldırım S, Uslu B. Analytical Methods for Determination of Antiviral Drugs in Different Matrices: Recent Advances and Trends. Crit Rev Anal Chem 2021; 52:1662-1693. [PMID: 33983841 DOI: 10.1080/10408347.2021.1908111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Viruses are the main pathogenic substances that cause severe diseases in humans and other living things. They are among the most common microorganisms, and consequently, antiviral drugs have emerged to prevent and treat viral infections. Antiviral drugs are an essential drug group considering their prescription and consumption rates for different diseases and indications. Therefore, it is crucial to develop accurate and precise analytical methods to detect antiviral drugs in various matrices. Chromatographic techniques are used frequently for the quantification purpose since they allow simultaneous determination of antivirals. Electrochemical methods have also gained importance since the analysis can be performed quickly without the need for pretreatment. Spectrophotometric and spectrofluorimetric methods are used because they are simple, inexpensive, and less time-consuming methods. The purpose of this review is to present an overview of the analysis of currently used antiviral drugs from 2010 to 2021. Since studies on antiviral drugs are numerous, selected publications were reviewed in this article. The analysis of antiviral drugs was divided into three main groups: chromatographic, spectrometric, and electrochemical methods which were applied to different matrices, including pharmaceutical, biological, and environmental samples.
Collapse
Affiliation(s)
- Ozge Selcuk
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Yeliz Demir
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Cem Erkmen
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Sercan Yıldırım
- Department of Analytical Chemistry, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkey
| | - Bengi Uslu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
77
|
Liu Z, Yang MQ, Zuo Y, Wang Y, Zhang J. Fraud Detection of Herbal Medicines Based on Modern Analytical Technologies Combine with Chemometrics Approach: A Review. Crit Rev Anal Chem 2021; 52:1606-1623. [PMID: 33840329 DOI: 10.1080/10408347.2021.1905503] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Fraud in herbal medicines (HMs), commonplace throughout human history, is significantly related to medicinal effects with sometimes lethal consequences. Major HMs fraud events seem to occur with a certain regularity, such as substitution by counterfeits, adulteration by addition of inferior production-own materials, adulteration by chemical compounds, and adulteration by addition of foreign matter. The assessment of HMs fraud is in urgent demand to guarantee consumer protection against the four fraudulent activities. In this review, three analysis platforms (targeted, non-targeted, and the combination of non-targeted and targeted analysis) were introduced and summarized. Furthermore, the integration of analysis technology and chemometrics method (e.g., class-modeling, discrimination, and regression method) have also been discussed. Each integration shows different applicability depending on their advantages, drawbacks, and some factors, such as the explicit objective analysis or the nature of four types of HMs fraud. In an attempt to better solve four typical HMs fraud, appropriate analytical strategies are advised and illustrated with several typical studies. The article provides a general workflow of analysis methods that have been used for detection of HMs fraud. All analysis technologies and chemometrics methods applied can conduce to excellent reference value for further exploration of analysis methods in HMs fraud.
Collapse
Affiliation(s)
- Zhimin Liu
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China.,School of Agriculture, Yunnan University, Kunming, China
| | - Mei Quan Yang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Yingmei Zuo
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Yuanzhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Jinyu Zhang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
78
|
Zhao F, Li W, Pan J, Qu H. Process characterization for ethanol precipitation of Salviae miltiorrhizae Radix et Rhizoma (Danshen) using 1H NMR spectroscopy and chemometrics. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.11.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
79
|
Toulabi T, Delfan B, Rashidipour M, Yarahmadi S, Ravanshad F, Javanbakht A, Almasian M. The efficacy of olive leaf extract on healing herpes simplex virus labialis: A randomized double-blind study. Explore (NY) 2021; 18:287-292. [PMID: 33541815 DOI: 10.1016/j.explore.2021.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Herpes simplex virus (HSV), as a common infection in healthy individuals, is treated symptomatically, but drug resistance and the side effects of drugs have drawn the attention of researchers to complementary medicine. Olive Leaf Extract (OLE) has antiviral effects that may treat HSV. The current study aimed to compare the clinical effects of OLE and Acyclovir on HSV-1. METHODS This randomized double-blind clinical trial was conducted on 66 patients who had already been diagnosed with HSV-1. The participants were randomized into two groups, receiving 2% OLE cream or 5% acyclovir cream five times a day for six days. The symptoms were evaluated before, and three and six days after the interventions. Data were analyzed using the SPSS software through the Kolmogorov-Smirnov test, chi-squared, t-test, and repeated measures ANOVA. RESULTS The results showed clinical symptoms decreased in both groups during the study and both medications were effective in the treatment of HSV-1. However, the OLE group experienced less bleeding (P = 0.038), itching (P = 0.002), and pain (P = 0.001) on the third day as well as less irritation (P = 0.012), itching (P = 0.003) and color change (P = 0.001) on the sixth day compared to the acyclovir group. The treatment course for participants in the OLE group was shorter than in the acyclovir group (P = 0.001). CONCLUSION The evidence from these trials suggests the OLE cream is superior in the healing of episodes of HSV-1 over the acyclovir cream. Future studies are recommended to investigate if OLE could be an adjunct to acyclovir treatment.
Collapse
Affiliation(s)
- Tahereh Toulabi
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran; School of Nursing & Midwifery, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Bahram Delfan
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran; School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Marzieh Rashidipour
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Sajad Yarahmadi
- School of Nursing & Midwifery, Lorestan University of Medical Sciences, Khorramabad, Iran; Nursing Care Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| | - Farzaneh Ravanshad
- School of Nursing & Midwifery, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | | | - Mohammad Almasian
- School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
80
|
Development of the first universal mixture for use in system suitability tests for High-Performance Thin Layer Chromatography. J Chromatogr A 2021; 1638:461830. [PMID: 33453655 DOI: 10.1016/j.chroma.2020.461830] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 11/20/2022]
Abstract
The use of chromatographic methods in routine analysis includes System Suitability Tests (SST). This paper presents a novel approach to SST in HPTLC, which allows qualification of the entire RF range of an HPTLC plate independently of the samples. It is based on the Universal HPTLC mix (UHM), a pre-defined mixture of eight reference substances: guanosine, sulisobenzone, thymidine, paracetamol, phthalimide, 9-hydroxyfluorene, thioxanthen-9-one, and 2-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)phenol, selected to cover a broad range of polarities and functional groups. The chromatographic behavior of the UHM was evaluated for 20 different mobile phases on Silica gel 60 F254. At least three constituents were baseline separated. In a collaborative trial with four laboratories the reproducibility of RF values for three representative mobile phases, was found to be within a confidence interval of 0.040 RF units. The response characteristics of the UHM were assessed with respect to changes in chromatographic conditions, such as variation of the relative humidity, improperly employed saturation, or mistakes in the preparation of the mobile phase. Based on the RF values of the individual constituents significant responses were found for most changes. This qualifies the UHM for use in SST.
Collapse
|
81
|
Gong D, Zheng Z, Chen J, Pang Y, Sun G. Holistic quality evaluation of compound liquorice tablets using capillary electrophoresis fingerprinting combined with chemometric methods. NEW J CHEM 2021. [DOI: 10.1039/d0nj05461e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Integrated quality control of herbal medicine using eco-friendly capillary zone electrophoresis and equal weight ratio quantitative fingerprint method.
Collapse
Affiliation(s)
- Dandan Gong
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Zijia Zheng
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Jinyu Chen
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Ying Pang
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Guoxiang Sun
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- China
| |
Collapse
|
82
|
Multiple wavelengths maximization fusion fingerprint profiling for quality evaluation of compound liquorice tablets and related antioxidant activity analysis. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105671] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
83
|
Simultaneous Qualitative and Quantitative Evaluation of the Coptidis Rhizoma and Euodiae Fructus Herbal Pair by Using UHPLC-ESI-QTOF-MS and UHPLC-DAD. Molecules 2020; 25:molecules25204782. [PMID: 33081031 PMCID: PMC7587604 DOI: 10.3390/molecules25204782] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 11/25/2022] Open
Abstract
The herbal pair of Coptidis Rhizoma (CR) and Euodiae Fructus (EF) is a classical traditional Chinese medicine formula used for treating gastro-intestinal disorders. In this study, we established a systematic method for chemical profiling and quantification analysis of the major constituents in the CR-EF herbal pair. A method of ultra high performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) for qualitative analysis was developed. Sixty-five compounds, including alkaloids, phenolics, and limonoids, were identified or tentatively assigned by comparison with reference standards or literature data. The UHPLC fingerprints of 19 batches of the CR-EF herbal pair samples were obtained and the reference fingerprint chromatograms were established. Furthermore, nine compounds among 24 common peaks of fingerprints were considered as marker components, which either had high contents or significant bioactivities, were applied to quality control of the CR-EF herbal pair by quantitative analysis. This UHPLC-DAD analysis method was validated by precision, linearity, repeatability, stability, recovery, and so on. The method was simple and sensitive, and thus reliable for quantitative and chemical fingerprint analysis for the quality evaluation and control of the CR-EF herbal pair and related traditional Chinese medicines.
Collapse
|
84
|
Yan S, Yue Y, Su L, Hao M, Wang X, Zuo T. Development of Electrochemical Oscillation Method for Identification of Prunus persica, Prunus davidiana, and Prunus armeniaca Nuts. Front Chem 2020; 8:748. [PMID: 33024743 PMCID: PMC7516034 DOI: 10.3389/fchem.2020.00748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/20/2020] [Indexed: 01/07/2023] Open
Abstract
In this work, an electrochemical oscillation system has been developed using the Belousov-Zhabotinsky reaction. The effect of the combination of each reagent, reaction temperature, and stirring speed on the induction period, oscillating period, and oscillating life were optimized. The nuts of Prunus persica, Prunus davidiana, and Prunus armeniaca have been widely used for medical purposes. The proposed electrochemical oscillation system was then used for the identification of P. persica, P. davidiana, and P. armeniaca. Three nuts exhibited very different electrochemical oscillation profiles. The dendrogram was divided into three main principal infrageneric clades. Each cluster only contains one species, suggesting that no outlier was observed in this study. Based on the discussed results, we proposed a simple method for herbal medicine identification.
Collapse
Affiliation(s)
- Shuai Yan
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Yinzi Yue
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Lianlin Su
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Min Hao
- School of Pharmacy, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Xiaopeng Wang
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Ting Zuo
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
85
|
Qian Z, Yiyang C, Lixia M, Yue J, Jun C, Jie D, Yifan M, Jingjing Z, Guojun Y. Study on the Fingerprints and Quality Evaluation of Angelica Sinensis Radix by HPLC Coupled With Chemometrics Based on Traditional Decoction Process of ACPTCM. Dose Response 2020; 18:1559325820951730. [PMID: 33013250 PMCID: PMC7513407 DOI: 10.1177/1559325820951730] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 11/17/2022] Open
Abstract
Objective To establish a HPLC fingerprints evaluation method for Angelica Sinensis Radix (ASR) based on traditional decoction process of Ancient Classical Prescriptions of Traditional Chinese Medicine (ACPTCM). Methods The fingerprints of 10 batches of ASR were further evaluated by chemometrics methods. The similarity analyzed with "Similarity Evaluation System for Chromatographic Fingerprint of Traditional Chinese Medicine 2004A," and hierarchical clustering analysis (HCA) and principal component analysis (PCA) were performed by SPSS (version 22.0, SPSS Inc., Chicago, IL, USA). Results There were 12 common peaks, and the similarity degrees of 10 batches of samples were more than 0.923 and showed that all the samples from different origins were of good consistency. The samples were divided into 4 clusters by HCA. The results of PCA showed that the 3 factors were chosen, the quality of samples could be evaluated basically. The comprehensive score results show that the ASR with Lot.Nos.DG-18007, DG-18008 in Weiyuan County, Gansu and DG-18009 produced in Minle County, Gansu Province rank among the top 3 in all samples. Conclusions These results demonstrated that the combination of HPLC chromatographic fingerprint and chemometrics offers an efficient and reliable approach for quality evaluation of ASR from different sources as Ancient Classical Prescriptions ingredients.
Collapse
Affiliation(s)
- Zhang Qian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chen Yiyang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ma Lixia
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jiang Yue
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chen Jun
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Dong Jie
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ma Yifan
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Zhang Jingjing
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Yan Guojun
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
86
|
Wu JH, Cao YT, Pan HY, Wang LH. Identification of Antitumor Constituents in Toad Venom by Spectrum-Effect Relationship Analysis and Investigation on Its Pharmacologic Mechanism. Molecules 2020; 25:molecules25184269. [PMID: 32961837 PMCID: PMC7571126 DOI: 10.3390/molecules25184269] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 01/02/2023] Open
Abstract
(1) Background: Toad venom (Bufonis Venenum, known as ‘Chansu’ in Chinese), the secretion of the ear-side gland and skin gland of Bufo gargarizans cantor or Duttaphrynus melanostictus Schneider, has been utilized to treat several diseases in China for thousands of years. However, due to the chemical variability of the components, systematic chemical composition and the key pharmacophores in toad venom have not yet fully understood. Besides, it contains a variety of effective compounds with different physiological activity and chemotypes, mainly including alkaloids, bufogenins, bufotoxins, and so on. The recent pharmacological researches have demonstrated that several bufogenins have remarkable pharmacological effects, such as anti-inflammatory, analgesic effects, and anti-tumor effects. Aim of the study: To identify the bioactive compounds and pharmacophores originating from toad venom based on analyzing spectrum-effect relationship by chemometrics and to explore the anti-cancer mechanism primarily. (2) Materials and methods: Fingerprint of the 21 batches of samples was established using HPLC (High Performance Liquid Chromatography). The anti-tumor activity of extracts were determined by in-vitro assays. Chemometric analysis was used to establish the spectrum-effect model and screen for active ingredients. Pharmacodynamic tests for the screened active compound monomers were conducted with in-vitro assays. Further anti-tumor mechanisms were investigated using western blot and flow cytometry. (3) Results: The established spectrum-effect model has satisfactory fitting effect and predicting accuracy. The inhibitory effect of major screened compounds on lung carcinoma cells A549 were validated in vitro, demonstrating that arenobufagin, telocinobufogenin, and cinobufotalin had significant anti-tumor effects. Through further investigation of the mechanism by western blotting and flow cytometry, we elucidated that arenobufagin induces apoptosis in A549 cells with the enhanced expression of cleaved PARP (poly (ADP-ribose) polymerase). These results may provide valuable information for further structural modification of bufadienolides to treat lung cancer and a method for discovery of anti-tumor active compounds. Conclusions: Our research offers a more scientific method for screening the principal ingredients dominating the pharmacodynamic function. These screened compounds (arenobufagin, etc.) were proven to induce apoptosis by overactivation of the PARP-pathway, which may be utilized to make BRCA (breast cancer susceptibility gene) mutant cancer cells more vulnerable to DNA damaging agents and kill them.
Collapse
|
87
|
Verification of Chromatographic Profile of Primary Essential Oil of Pinus sylvestris L. Combined with Chemometric Analysis. Molecules 2020; 25:molecules25132973. [PMID: 32605289 PMCID: PMC7411901 DOI: 10.3390/molecules25132973] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 01/31/2023] Open
Abstract
Chromatographic profiles of primary essential oils (EO) deliver valuable authentic information about composition and compound pattern. Primary EOs obtained from Pinus sylvestris L. (PS) from different global origins were analyzed using gas chromatography coupled to a flame ionization detector (GC-FID) and identified by GC hyphenated to mass spectrometer (GC-MS). A primary EO of PS was characterized by a distinct sesquiterpene pattern followed by a diterpene profile containing diterpenoids of the labdane, pimarane or abietane type. Based on their sesquiterpene compound patterns, primary EOs of PS were separated into their geographical origin using component analysis. Furthermore, differentiation of closely related pine EOs by partial least square discriminant analysis proved the existence of a primary EO of PS. The developed and validated PLS-DA model is suitable as a screening tool to assess the correct chemotaxonomic identification of a primary pine EOs as it classified all pine EOs correctly.
Collapse
|