51
|
Sakaria RP, Dhanireddy R. Pharmacotherapy in Bronchopulmonary Dysplasia: What Is the Evidence? Front Pediatr 2022; 10:820259. [PMID: 35356441 PMCID: PMC8959440 DOI: 10.3389/fped.2022.820259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
Bronchopulmonary Dysplasia (BPD) is a multifactorial disease affecting over 35% of extremely preterm infants born each year. Despite the advances made in understanding the pathogenesis of this disease over the last five decades, BPD remains one of the major causes of morbidity and mortality in this population, and the incidence of the disease increases with decreasing gestational age. As inflammation is one of the key drivers in the pathogenesis, it has been targeted by majority of pharmacological and non-pharmacological methods to prevent BPD. Most extremely premature infants receive a myriad of medications during their stay in the neonatal intensive care unit in an effort to prevent or manage BPD, with corticosteroids, caffeine, and diuretics being the most commonly used medications. However, there is no consensus regarding their use and benefits in this population. This review summarizes the available literature regarding these medications and aims to provide neonatologists and neonatal providers with evidence-based recommendations.
Collapse
Affiliation(s)
- Rishika P. Sakaria
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Ramasubbareddy Dhanireddy
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Obstetrics and Gynecology, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
52
|
Perinatal Hyperoxia and Developmental Consequences on the Lung-Brain Axis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5784146. [PMID: 35251477 PMCID: PMC8894035 DOI: 10.1155/2022/5784146] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022]
Abstract
Approximately 11.1% of all newborns worldwide are born preterm. Improved neonatal intensive care significantly increased survival rates over the last decades but failed to reduce the risk for the development of chronic lung disease (i.e., bronchopulmonary dysplasia (BPD)) and impaired neurodevelopment (i.e., encephalopathy of prematurity (EoP)), two major long-term sequelae of prematurity. Premature infants are exposed to relative hyperoxia, when compared to physiological in-utero conditions and, if needed to additional therapeutic oxygen supplementation. Both are associated with an increased risk for impaired organ development. Since the detrimental effects of hyperoxia on the immature retina are known for many years, lung and brain have come into focus in the last decade. Hyperoxia-induced excessive production of reactive oxygen species leading to oxidative stress and inflammation contribute to pulmonary growth restriction and abnormal neurodevelopment, including myelination deficits. Despite a large body of studies, which unraveled important pathophysiological mechanisms for both organs at risk, the majority focused exclusively either on lung or on brain injury. However, considering that preterm infants suffering from BPD are at higher risk for poor neurodevelopmental outcome, an interaction between both organs seems plausible. This review summarizes recent findings regarding mechanisms of hyperoxia-induced neonatal lung and brain injury. We will discuss common pathophysiological pathways, which potentially link both injured organ systems. Furthermore, promises and needs of currently suggested therapies, including pharmacological and regenerative cell-based treatments for BPD and EoP, will be emphasized. Limited therapeutic approaches highlight the urgent need for a better understanding of the mechanisms underlying detrimental effects of hyperoxia on the lung-brain axis in order to pave the way for the development of novel multimodal therapies, ideally targeting both severe preterm birth-associated complications.
Collapse
|
53
|
Abiramalatha T, Ramaswamy VV, Ponnala AK, Kallem VR, Murkunde YV, Punnoose AM, Vivekanandhan A, Pullattayil AK, Amboiram P. Emerging neuroprotective interventions in periventricular leukomalacia: A systematic review of preclinical studies. Expert Opin Investig Drugs 2022; 31:305-330. [PMID: 35143732 DOI: 10.1080/13543784.2022.2040479] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Periventricular leukomalacia (PVL) is a result of various antenatal, intrapartum, or postnatal insults to the developing brain and is an important harbinger of cerebral palsy in preterm neonates. There is no proven therapy for PVL. This calls for appraisal of targeted therapies that have been investigated in animal models to evaluate their relevance in clinical research context. AREAS COVERED This systematic review identifies interventions that were evaluated in preclinical studies for neuroprotective efficacy against PVL. We identified 142 studies evaluating various interventions in PVL animal models. (Search method is detailed in section 2). EXPERT OPINION Interventions that have yielded significant results in preclinical research, and that have been evaluated in a limited number of clinical trials include stem cells, erythropoietin, and melatonin. Many other therapeutic modalities evaluated in preclinical studies have been identified, but more data on their neuroprotective potential in PVL must be garnered before they can be considered for clinical trials. Because most of the tested interventions had only a partial efficacy, a combination of interventions that could be synergistic should be investigated in future preclinical studies. Furthermore, since the nature and pattern of perinatal insults to preterm brain predisposing it to PVL are substantially variable, individualised approaches for the choice of appropriate neuroprotective interventions tailored to different sub-groups of preterm neonates should be explored.
Collapse
Affiliation(s)
- Thangaraj Abiramalatha
- Consultant Neonatologist, Kovai Medical Center and Hospital (KMCH).,Department of Pediatrics and Neonatology, KMCH Institute of Health Sciences and Research, Coimbatore, India
| | | | - Andelsivj Kumar Ponnala
- Centre for Toxicology and Developmental Research (CEFTE), Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | | | - Yogeshkumar V Murkunde
- Centre for Toxicology and Developmental Research (CEFTE), Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Alan Mathew Punnoose
- Department of Stem Cell Research and Regenerative Medicine, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | | | | | - Prakash Amboiram
- Department of Neonatology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| |
Collapse
|
54
|
Chaubey S, Bhandari V. Stem cells in neonatal diseases: An overview. Semin Fetal Neonatal Med 2022; 27:101325. [PMID: 35367186 DOI: 10.1016/j.siny.2022.101325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Preterm birth and its common complications are major causes of infant mortality and long-term morbidity. Despite great advances in understanding the pathogenesis of neonatal diseases and improvements in neonatal intensive care, effective therapies for the prevention or treatment for these conditions are still lacking. Stem cell (SC) therapy is rapidly emerging as a novel therapeutic tool for several diseases of the newborn with encouraging pre-clinical results that hold promise for translation to the bedside. The utility of different types of SCs in neonatal diseases is being explored. SC therapeutic efficacy is closely associated with its secretome-conditioned media and SC-derived extracellular vesicles, and a subsequent paracrine action in response to tissue injuries. In the current review, we summarize the pre-clinical and clinical studies of SCs and its secretome in diverse preterm and term birth-related diseases, thereby providing new insights for future therapies in neonatal medicine.
Collapse
Affiliation(s)
- Sushma Chaubey
- Department of Biomedical Engineering, Widener University, Chester, PA, 19013, USA.
| | - Vineet Bhandari
- Neonatology Research Laboratory, Department of Pediatrics, The Children's Regional Hospital at Cooper, Cooper Medical School of Rowan University, Suite Dorrance 755, One Cooper Plaza, Camden, NJ, 08103, USA.
| |
Collapse
|
55
|
Hurskainen M, Cyr-Depauw C, Thébaud B. Insights into the mechanisms of alveolarization - Implications for lung regeneration and cell therapies. Semin Fetal Neonatal Med 2022; 27:101243. [PMID: 33962890 DOI: 10.1016/j.siny.2021.101243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although the lung has extensive regenerative capacity, some diseases affecting the distal lung result in irreversible loss of pulmonary alveoli. Hitherto, treatments are supportive and do not specifically target tissue repair. Regenerative medicine offers prospects to promote lung repair and regeneration. The neonatal lung may be particularly receptive, because of its growth potential, compared to the adult lung. Based on our current understanding of neonatal lung injury, the ideal therapeutic approach includes mitigation of inflammation and fibrosis, and induction of regenerative signals. Cell-based therapies have shown potential to prevent and reverse impaired lung development. Their mechanisms of action suggest effects on both, mitigating the pathophysiological processes and promoting lung growth. Here, we review our current understanding of normal and impaired alveolarization, provide some rationale for the use of cell-based therapies and summarize current evidence for the therapeutic potential of cell-based therapies for pulmonary regeneration in preterm infants.
Collapse
Affiliation(s)
- Maria Hurskainen
- Division of Pediatric Cardiology, New Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland; Pediatric Research Center, New Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.
| | - Chanèle Cyr-Depauw
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| | - Bernard Thébaud
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada; Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO) and CHEO Research Institute, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
56
|
Damianos A, Xu K, Kalin GT, Kalinichenko VV. Placental tissue stem cells and their role in neonatal diseases. Semin Fetal Neonatal Med 2022; 27:101322. [PMID: 34953760 DOI: 10.1016/j.siny.2021.101322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Neonatal diseases such as hypoxic ischemic encephalopathy, diseases of prematurity and congenital disorders carry increased morbidity and mortality. Despite technological advancements, their incidence remains largely unabated. Stem cell (SC) interventions are novel therapies in the neonatal world. In pre-clinical models of neonatal diseases, SC applications have shown encouraging results. SC sources vary, with the bone marrow being the most utilized. However, the ability to harvest bone marrow SCs from neonates is limited. Placental-tissue derived SCs (PTSCs), provide an alternative and highly attractive source. Human placentas, the cornerstone of fetal survival, are abundant with such cells. Comparing to adult pools, PTSCs exhibit increased potency, decreased immunogenicity and stronger anti-inflammatory effects. Several types of PTSCs have been identified, with mesenchymal stem cells being the most utilized population. This review will focus on PTSCs and their pre-clinical and clinical applications in neonatology.
Collapse
Affiliation(s)
- Andreas Damianos
- Division of Neonatology and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Kui Xu
- Center for Lung Regenerative Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Gregory T Kalin
- Center for Lung Regenerative Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Vladimir V Kalinichenko
- Division of Neonatology and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Center for Lung Regenerative Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
57
|
Recent research on the mechanism of mesenchymal stem cells in the treatment of bronchopulmonary dysplasia. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2022; 24:108-114. [PMID: 35177185 PMCID: PMC8802385 DOI: 10.7499/j.issn.1008-8830.2109166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease due to impaired pulmonary development and is one of the main causes of respiratory failure in preterm infants. Preterm infants with BPD have significantly higher complication and mortality rates than those without BPD. At present, comprehensive management is the main intervention method for BPD, including reasonable respiratory and circulatory support, appropriate enteral nutrition and parenteral nutrition, application of caffeine/glucocorticoids/surfactants, and out-of-hospital management after discharge. The continuous advances in stem cell medicine in recent years provide new ideas for the treatment of BPD. Various pre-clinical trials have confirmed that stem cell therapy can effectively prevent lung injury and promote lung growth and damage repair. This article performs a comprehensive analysis of the mechanism of mesenchymal stem cells in the treatment of BPD, so as to provide a basis for clinical applications.
Collapse
|
58
|
Benny M, Courchia B, Shrager S, Sharma M, Chen P, Duara J, Valasaki K, Bellio MA, Damianos A, Huang J, Zambrano R, Schmidt A, Wu S, Velazquez OC, Hare JM, Khan A, Young KC. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:189-199. [PMID: 35298658 PMCID: PMC8929420 DOI: 10.1093/stcltm/szab011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/17/2021] [Indexed: 11/13/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a life-threatening condition in preterm infants with few effective therapies. Mesenchymal stem or stromal cells (MSCs) are a promising therapeutic strategy for BPD. The ideal MSC source for BPD prevention is however unknown. The objective of this study was to compare the regenerative effects of MSC obtained from bone marrow (BM) and umbilical cord tissue (UCT) in an experimental BPD model. In vitro, UCT-MSC demonstrated greater proliferation and expression of anti-inflammatory cytokines as compared to BM-MSC. Lung epithelial cells incubated with UCT-MSC conditioned media (CM) had better-wound healing following scratch injury. UCT-MSC CM and BM-MSC CM had similar pro-angiogenic effects on hyperoxia-exposed pulmonary microvascular endothelial cells. In vivo, newborn rats exposed to normoxia or hyperoxia (85% O2) from postnatal day (P) 1 to 21 were given intra-tracheal (IT) BM or UCT-MSC (1 × 106 cells/50 μL), or placebo (PL) on P3. Hyperoxia PL-treated rats had marked alveolar simplification, reduced lung vascular density, pulmonary vascular remodeling, and lung inflammation. In contrast, administration of both BM-MSC and UCT-MSC significantly improved alveolar structure, lung angiogenesis, pulmonary vascular remodeling, and lung inflammation. UCT-MSC hyperoxia-exposed rats however had greater improvement in some morphometric measures of alveolarization and less lung macrophage infiltration as compared to the BM-MSC-treated group. Together, these findings suggest that BM-MSC and UCT-MSC have significant lung regenerative effects in experimental BPD but UCT-MSC suppresses lung macrophage infiltration and promotes lung epithelial cell healing to a greater degree.
Collapse
Affiliation(s)
- Merline Benny
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Benjamin Courchia
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sebastian Shrager
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mayank Sharma
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Pingping Chen
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joanne Duara
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Krystalenia Valasaki
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Michael A Bellio
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andreas Damianos
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jian Huang
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ronald Zambrano
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Augusto Schmidt
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shu Wu
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Omaida C Velazquez
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joshua M Hare
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Aisha Khan
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Karen C Young
- Corresponding author: Karen C. Young, MD, Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, 1580 NW 10th Avenue, RM-345, Miami, FL 33136, USA. Tel: 305-243-4531;
| |
Collapse
|
59
|
Pelizzo G, Silvestro S, Avanzini MA, Zuccotti G, Mazzon E, Calcaterra V. Mesenchymal Stromal Cells for the Treatment of Interstitial Lung Disease in Children: A Look from Pediatric and Pediatric Surgeon Viewpoints. Cells 2021; 10:3270. [PMID: 34943779 PMCID: PMC8699409 DOI: 10.3390/cells10123270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/11/2021] [Accepted: 11/21/2021] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have been proposed as a potential therapy to treat congenital and acquired lung diseases. Due to their tissue-regenerative, anti-fibrotic, and immunomodulatory properties, MSCs combined with other therapy or alone could be considered as a new approach for repair and regeneration of the lung during disease progression and/or after post- surgical injury. Children interstitial lung disease (chILD) represent highly heterogeneous rare respiratory diseases, with a wild range of age of onset and disease expression. The chILD is characterized by inflammatory and fibrotic changes of the pulmonary parenchyma, leading to gas exchange impairment and chronic respiratory failure associated with high morbidity and mortality. The therapeutic strategy is mainly based on the use of corticosteroids, hydroxychloroquine, azithromycin, and supportive care; however, the efficacy is variable, and their long-term use is associated with severe toxicity. The role of MSCs as treatment has been proposed in clinical and pre-clinical studies. In this narrative review, we report on the currently available on MSCs treatment as therapeutical strategy in chILD. The progress into the therapy of respiratory disease in children is mandatory to ameliorate the prognosis and to prevent the progression in adult age. Cell therapy may be a future therapy from both a pediatric and pediatric surgeon's point of view.
Collapse
Affiliation(s)
- Gloria Pelizzo
- Pediatric Surgery Department, Children’s Hospital “Vittore Buzzi”, 20154 Milano, Italy
- Department of Biomedical and Clinical Sciences-L. Sacco, University of Milan, 20157 Milan, Italy;
| | - Serena Silvestro
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (S.S.); (E.M.)
| | - Maria Antonietta Avanzini
- Cell Factory, Pediatric Hematology Oncology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Gianvincenzo Zuccotti
- Department of Biomedical and Clinical Sciences-L. Sacco, University of Milan, 20157 Milan, Italy;
- Department of Pediatrics, Children’s Hospital “Vittore Buzzi”, 20154 Milano, Italy;
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (S.S.); (E.M.)
| | - Valeria Calcaterra
- Department of Pediatrics, Children’s Hospital “Vittore Buzzi”, 20154 Milano, Italy;
- Pediatrics and Adolescentology Unit, Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
60
|
Thébaud B, Matthay MA. Cell Therapy with the Cell or Without the Cell for Premature Infants? Time Will Tell. Am J Respir Crit Care Med 2021; 204:1359-1361. [PMID: 34752727 PMCID: PMC8865724 DOI: 10.1164/rccm.202109-2070ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Bernard Thébaud
- Ottawa Hospital Research Institute & CHEO Research Institute, Pediatrics, Ottawa, Ontario, Canada;
| | - Michael A Matthay
- Cardiovascular Research Institute (CVRI), University of San Francisco, Medicine and Anesthesia, San Francisco, California, United States
| |
Collapse
|
61
|
Engur D, Kumral A. New perpective for an old problem: extracellular vesicle based management of respiratory distress syndrome. Drug Deliv 2021; 28:2310-2312. [PMID: 34730047 PMCID: PMC8567907 DOI: 10.1080/10717544.2021.1995079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Defne Engur
- Izmir Biomedicine and Genome Center, Izmir, 35330, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey.,Division of Neonatology, Department of Pediatrics, University of Health Sciences Training Hospital, Izmir, Turkey
| | - Abdullah Kumral
- Izmir Biomedicine and Genome Center, Izmir, 35330, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey.,Division of Neonatology, Department of Pediatrics, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
62
|
Tian Y, Wang L, Qiu Z, Xu Y, Hua R. Autophagy triggers endoplasmic reticulum stress and C/EBP homologous protein-mediated apoptosis in OGD/R-treated neurons in a caspase-12-independent manner. J Neurophysiol 2021; 126:1740-1750. [PMID: 34644182 DOI: 10.1152/jn.00649.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We reported that a high level of autophagy was initiated by oxygen-glucose deprivation (OGD) and was maintained in neurons even after oxygen-glucose deprivation followed by reoxygenation (OGD/R), accompanied by neuronal apoptosis. This study focused on autophagy-induced apoptosis and its signaling network, especially the role of endoplasmic reticulum stress (ERS). Analysis of primary cultured cortical neurons from mice showed that the autophagy-induced apoptosis depended on caspase-8 and -9 but not on caspase-12. This finding did not mean that the endoplasmic reticulum did not participate in this process. Increases in the levels of endoplasmic reticulum (ER) biomarkers and binding immunoglobulin protein (BiP) were induced by autophagy in OGD/R-treated neurons. In addition, as an apoptotic transcription factor induced by ER stress, C/EBP homologous protein (CHOP) expression was significantly increased in neurons after OGD/R. This result suggested that the autophagy-BiP-CHOP-caspase (8 and 9)-dependent apoptotic signaling pathway at least partly participated in autophagy-induced apoptosis in primary cortical neurons. It revealed that ER induced apoptosis in neurons suffering from OGD/R injury in an ER stress-CHOP-dependent manner rather than a caspase-12-dependent manner. However, more research on signaling or cross-linking networks and intermediate links is needed. The realization of caspase-12-independent BiP-CHOP neuronal apoptosis pathway has expanded our understanding of the neuronal apoptosis network, which may eventually provide endogenous interventional strategies for OGD/R injury after stroke.NEW & NOTEWORTHY ER stress induced by autophagy mediates caspase-8- and caspase-9-dependent apoptosis pathways by regulating CHOP in neurons exposed to OGD/R. We hypothesized that the autophagy-BiP-CHOP-caspase (8 and 9)-dependent apoptotic signaling pathway at least partly participated in autophagy-induced apoptosis in primary cortical neurons.
Collapse
Affiliation(s)
- Ying Tian
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Liang Wang
- State Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, People's Republic of China
| | - Zhiqiang Qiu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yulun Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Rongrong Hua
- Department of Radiology, the Third Medical Centre, Chinese People's Liberation Army General Hospital, Beijing, People's Republic of China
| |
Collapse
|
63
|
Loi B, Vigo G, Baraldi E, Raimondi F, Carnielli VP, Mosca F, De Luca D. Lung Ultrasound to Monitor Extremely Preterm Infants and Predict Bronchopulmonary Dysplasia. A Multicenter Longitudinal Cohort Study. Am J Respir Crit Care Med 2021; 203:1398-1409. [PMID: 33352083 DOI: 10.1164/rccm.202008-3131oc] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Rationale: Lung ultrasound is useful in critically ill patients with acute respiratory failure. Given its characteristics, it could also be useful in extremely preterm infants with evolving chronic respiratory failure, as we lack accurate imaging tools to monitor them. Objectives: To verify if lung ultrasound can monitor lung aeration and function and has good reliability to predict bronchopulmonary dysplasia in extremely preterm neonates. Methods: A multicenter, international, prospective, longitudinal, cohort, diagnostic accuracy study consecutively enrolling inborn neonates with gestational age 30+6 weeks or younger. Lung ultrasound was performed on the 1, 7, 14, and 28 days of life, and lung ultrasound scores were calculated and correlated with simultaneous blood gases and work of breathing score. Gestational age-adjusted lung ultrasound scores were created, verified in multivariate models, and subjected to receiver operator characteristics (ROC) analyses to predict bronchopulmonary dysplasia at 36 weeks postmenstrual age. Measurements and Main Results: Mean lung ultrasound scores are different between infants developing (n = 72) or not developing (n = 75) bronchopulmonary dysplasia (P < 0.001 at any time point). Lung ultrasound scores significantly correlate with oxygenation metrics and work of breathing at any time point (P always < 0.0001). Gestational age-adjusted lung ultrasound scores significantly predict bronchopulmonary dysplasia at 7 (area under ROC curve, 0.826-0.833; P < 0.0001) and 14 (area under ROC curve, 0.834-0.858; P < 0.0001) days of life. Bronchopulmonary dysplasia severity and gestational age-adjusted lung ultrasound scores are significantly correlated at 7 and 14 days (P always < 0.0001). Conclusions: Lung ultrasound scores allow monitoring of lung aeration and function in extremely preterm infants. Gestational age-adjusted scores significantly predict the occurrence of bronchopulmonary dysplasia, starting from the seventh day of life.
Collapse
Affiliation(s)
- Barbara Loi
- Division of Pediatrics and Neonatal Critical Care, A.Béclère Medical Center, Paris Saclay University Hospitals, APHP, Paris, France
| | - Giulia Vigo
- Division of Pediatrics and Neonatal Critical Care, A.Béclère Medical Center, Paris Saclay University Hospitals, APHP, Paris, France
| | - Eugenio Baraldi
- Department of Women's and Children's Health, Neonatal ICU, Padova University Hospital, Padova, Italy
| | - Francesco Raimondi
- Department of Translational Medical Science, Neonatal ICU, Federico II University, Naples, Italy
| | - Virgilio P Carnielli
- Division of Neonatology, G. Salesi Women and Children Hospital, Polytechnical University of Marche, Ancona, Italy
| | - Fabio Mosca
- Neonatal ICU, "Ca' Granda Ospedale Maggiore Policlinico," IRCCS Foundation, University of Milan, Milan, Italy; and
| | - Daniele De Luca
- Division of Pediatrics and Neonatal Critical Care, A.Béclère Medical Center, Paris Saclay University Hospitals, APHP, Paris, France.,Physiopathology and Therapeutic Innovation Unit-INSERM U999, Paris Saclay University, Paris, France
| |
Collapse
|
64
|
Forno E, Abman SH, Singh J, Robbins ME, Selvadurai H, Schumacker PT, Robinson PD. Update in Pediatrics 2020. Am J Respir Crit Care Med 2021; 204:274-284. [PMID: 34126039 DOI: 10.1164/rccm.202103-0605up] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Erick Forno
- Division of Pediatric Pulmonary Medicine, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania.,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Steven H Abman
- Department of Pediatrics, Children's Hospital Colorado, Denver, Colorado.,University of Colorado Anschutz School of Medicine, Denver, Colorado
| | - Jagdev Singh
- Department of Respiratory Medicine, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Pediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| | - Mary E Robbins
- Division of Neonatology, Ann and Robert H. Lurie Children's Hospital, Chicago, Illinois; and.,Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Hiran Selvadurai
- Department of Respiratory Medicine, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Pediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| | - Paul T Schumacker
- Division of Neonatology, Ann and Robert H. Lurie Children's Hospital, Chicago, Illinois; and.,Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Paul D Robinson
- Department of Respiratory Medicine, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Pediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
65
|
Xie Y, Chen F, Jia L, Chen R, Zhang VW, Zhong X, Wang D. Mesenchymal stem cells from different sources show distinct therapeutic effects in hyperoxia-induced bronchopulmonary dysplasia in rats. J Cell Mol Med 2021; 25:8558-8566. [PMID: 34322990 PMCID: PMC8419191 DOI: 10.1111/jcmm.16817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/28/2021] [Accepted: 07/13/2021] [Indexed: 12/23/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been shown as an effective medicinal means to treat bronchopulmonary dysplasia (BPD). The widely used MSCs were from Wharton's jelly of umbilical cord (UC-MSCs) and bone marrow (BM-MSCs). Amniotic fluid MSCs (AF-MSCs) may be produced before an individual is born to treat foetal diseases by autoplastic transplantation. We evaluated intratracheal (IT) MSCs as an approach to treat an hyperoxia-induced BPD animal model and compared the therapeutic effects between AF-, UC- and BM-MSCs. A BPD animal model was generated by exposing newborn rats to 95% O2 . The continued stress lasted 21 days, and the treatment of IT MSCs was conducted for 4 days. The therapeutic effects were analysed, including lung histology, level of inflammatory cytokines, cell death ratio and state of angiogenesis, by sacrificing the experimental animal at day 21. The lasting hyperoxia stress induced BPD similar to the biological phenotype. The treatment of IT MSCs was safe without deaths and normal organ histopathology. Specifically, the treatment was effective by inhibiting the alveolar dilatation, reducing inflammatory cytokines, inducing angiogenesis and lowering the cell death ratio. AF-MSCs had better therapeutic effects compared with UC-MSCs in relieving the pulmonary alveoli histological changes and promoting neovascularization, and UC-MSCs had the best immunosuppressive effect in plasma and lung lysis compared with AF-MSCs and BM-MSCs. This study demonstrated the therapeutic effects of AF-, UC- and BM-MSCs in BPD model. Superior treatment effect was provided by antenatal MSCs compared to BM-MSC in a statistical comparison.
Collapse
Affiliation(s)
- Yingjun Xie
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fei Chen
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lei Jia
- Reproductive Medicine Research Center, Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Rui Chen
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | | | - Xinqi Zhong
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ding Wang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
66
|
Thébaud B, Lalu M, Renesme L, van Katwyk S, Presseau J, Thavorn K, Cobey KD, Hutton B, Moher D, Soll RF, Fergusson D. Benefits and obstacles to cell therapy in neonates: The INCuBAToR (Innovative Neonatal Cellular Therapy for Bronchopulmonary Dysplasia: Accelerating Translation of Research). Stem Cells Transl Med 2021; 10:968-975. [PMID: 33570257 PMCID: PMC8235145 DOI: 10.1002/sctm.20-0508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 12/13/2022] Open
Abstract
Cell-based therapies hold promise to substantially curb complications from extreme preterm birth, the main cause of death in children below the age of 5 years. Exciting preclinical studies in experimental neonatal lung injury have provided the impetus for the initiation of early phase clinical trials in extreme preterm infants at risk of developing bronchopulmonary dysplasia. Clinical translation of promising therapies, however, is slow and often fails. In the adult population, results of clinical trials so far have not matched the enticing preclinical data. The neonatal field has experienced many hard-earned lessons with the implementation of oxygen therapy or postnatal steroids. Here we briefly summarize the preclinical data that have permitted the initiation of early phase clinical trials of cell-based therapies in extreme preterm infants and describe the INCuBAToR concept (Innovative Neonatal Cellular Therapy for Bronchopulmonary Dysplasia: Accelerating Translation of Research), an evidence-based approach to mitigate the risk of translating advanced therapies into this vulnerable patient population. The INCuBAToR addresses several of the shortcomings at the preclinical and the clinical stage that usually contribute to the failure of clinical translation through (a) systematic reviews of preclinical and clinical studies, (b) integrated knowledge transfer through engaging important stakeholders early on, (c) early economic evaluation to determine if a novel therapy is viable, and (d) retrospective and prospective studies to define and test ideal eligibility criteria to optimize clinical trial design. The INCuBAToR concept can be applied to any novel therapy in order to enhance the likelihood of success of clinical translation in a timely, transparent, rigorous, and evidence-based fashion.
Collapse
Affiliation(s)
- Bernard Thébaud
- Regenerative Medicine ProgramThe Ottawa Hospital Research Institute (OHRI)OttawaOntarioCanada
- Neonatology, Department of PediatricsChildren's Hospital of Eastern Ontario (CHEO) and CHEO Research InstituteOttawaOntarioCanada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaOntarioCanada
| | - Manoj Lalu
- Regenerative Medicine ProgramThe Ottawa Hospital Research Institute (OHRI)OttawaOntarioCanada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaOntarioCanada
- Department of Anesthesiology and Pain MedicineUniversity of OttawaOttawaOntarioCanada
- Clinical Epidemiology ProgramThe Ottawa Hospital Research Institute (OHRI)OttawaOntarioCanada
| | - Laurent Renesme
- Neonatology, Department of PediatricsChildren's Hospital of Eastern Ontario (CHEO) and CHEO Research InstituteOttawaOntarioCanada
| | - Sasha van Katwyk
- Clinical Epidemiology ProgramThe Ottawa Hospital Research Institute (OHRI)OttawaOntarioCanada
| | - Justin Presseau
- Clinical Epidemiology ProgramThe Ottawa Hospital Research Institute (OHRI)OttawaOntarioCanada
- School of Public Health and Preventive MedicineUniversity of OttawaOttawaOntarioCanada
| | - Kednapa Thavorn
- Clinical Epidemiology ProgramThe Ottawa Hospital Research Institute (OHRI)OttawaOntarioCanada
- School of Public Health and Preventive MedicineUniversity of OttawaOttawaOntarioCanada
| | - Kelly D. Cobey
- Clinical Epidemiology ProgramThe Ottawa Hospital Research Institute (OHRI)OttawaOntarioCanada
- Centre for JournalologyThe Ottawa Hospital Research Institute (OHRI)OttawaOntarioCanada
| | - Brian Hutton
- Clinical Epidemiology ProgramThe Ottawa Hospital Research Institute (OHRI)OttawaOntarioCanada
| | - David Moher
- Clinical Epidemiology ProgramThe Ottawa Hospital Research Institute (OHRI)OttawaOntarioCanada
| | - Roger F. Soll
- Department of Pediatrics, Larner College of MedicineUniversity of VermontBurlingtonVermontUSA
| | - Dean Fergusson
- Clinical Epidemiology ProgramThe Ottawa Hospital Research Institute (OHRI)OttawaOntarioCanada
| |
Collapse
|
67
|
Chen X, Wang F, Huang Z, Wu Y, Geng J, Wang Y. Clinical applications of mesenchymal stromal cell-based therapies for pulmonary diseases: An Update and Concise Review. Int J Med Sci 2021; 18:2849-2870. [PMID: 34220313 PMCID: PMC8241779 DOI: 10.7150/ijms.59218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/09/2021] [Indexed: 12/15/2022] Open
Abstract
Lung disorders are a leading cause of morbidity and death worldwide. For many disease conditions, no effective and curative treatment options are available. Mesenchymal stromal cell (MSC)-based therapy is one of the cutting-edge topics in medical research today. It offers a novel and promising therapeutic option for various acute and chronic lung diseases due to its potent and broad-ranging immunomodulatory activities, bacterial clearance, tissue regeneration, and proangiogenic and antifibrotic properties, which rely on both cell-to-cell contact and paracrine mechanisms. This review covers the sources and therapeutic potential of MSCs. In particular, a total of 110 MSC-based clinical applications, either completed clinical trials with safety and early efficacy results reported or ongoing worldwide clinical trials of pulmonary diseases, are systematically summarized following preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines, including acute/viral pulmonary disease, community-acquired pneumonia (CAP), chronic obstructive pulmonary disease (COPD), bronchopulmonary dysplasia (BPD), interstitial lung diseases (ILD), chronic pulmonary fibrosis, bronchiolitis obliterans syndrome (BOS) and lung cancer. The results of recent clinical studies suggest that MSCs are a promising therapeutic approach for the treatment of lung diseases. Nevertheless, large-scale clinical trials and evaluation of long-term effects are necessary in further studies.
Collapse
Affiliation(s)
- Xiaobo Chen
- Unicell Life Science Development Co., Ltd, Tianjin, China
| | - Feng Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhiwei Huang
- Department of Clinical Laboratory Medicine, the Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China
| | - Yan Wu
- Department of Clinical Laboratory Medicine, Tianjin TEDA Hospital, Tianjin, China
| | - Jie Geng
- Department of Clinical Laboratory Medicine, the Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China
| | - Yuliang Wang
- Department of Clinical Laboratory Medicine, the Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China
| |
Collapse
|
68
|
Tong Y, Zuo J, Yue D. Application Prospects of Mesenchymal Stem Cell Therapy for Bronchopulmonary Dysplasia and the Challenges Encountered. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9983664. [PMID: 33997051 PMCID: PMC8110410 DOI: 10.1155/2021/9983664] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 01/01/2023]
Abstract
Bronchopulmonary dysplasia (BPD) is a common chronic lung disease in premature babies, especially affecting those with very low or extremely low birth weights. Survivors experience adverse lung and neurological defects including cognitive dysfunction. This impacts the prognosis of children with BPD and may result in developmental delays. The currently available options for the treatment of BPD are limited owing to low efficacy or several side effects; therefore, there is a lack of effective treatments for BPD. The treatment for BPD must help in the repair of damaged lung tissue and promote further growth of the lung tissue. In recent years, the emergence of stem cell therapy, especially mesenchymal stem cell (MSC) therapy, has improved the treatment of BPD to a great extent. This article briefly reviews the advantages, research progress, and challenges faced with the use of MSCs in the treatment of BPD. Stem cell therapy is beneficial as it repairs damaged tissues by reducing inflammation, fibrosis, and by acting against oxidative stress damage. Experimental trials have also proven that MSCs provide a promising avenue for BPD treatment. However, there are challenges such as the possibility of MSCs contributing to tumorous growths, the presence of heterogeneous cell populations resulting in variable efficacy, and the ethical considerations regarding the use of this treatment in humans. Therefore, more research must be conducted to determine whether MSC therapy can be approved as a treatment option for BPD.
Collapse
Affiliation(s)
- Yajie Tong
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004 Liaoning, China
| | - Jingye Zuo
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004 Liaoning, China
| | - Dongmei Yue
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004 Liaoning, China
| |
Collapse
|
69
|
Ahn SY, Chang YS, Lee MH, Sung SI, Lee BS, Kim KS, Kim AR, Park WS. Stem cells for bronchopulmonary dysplasia in preterm infants: A randomized controlled phase II trial. Stem Cells Transl Med 2021; 10:1129-1137. [PMID: 33876883 PMCID: PMC8284779 DOI: 10.1002/sctm.20-0330] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/05/2021] [Accepted: 02/23/2021] [Indexed: 12/23/2022] Open
Abstract
We previously demonstrated the safety and feasibility of mesenchymal stem cell (MSC) transplantation for bronchopulmonary dysplasia (BPD) in preterm infants in a phase I clinical trial. We thus investigated the therapeutic efficacy of MSCs for BPD in premature infants. A phase II double-blind, randomized, placebo-controlled clinical trial was conducted on preterm infants at 23 to 28 gestational weeks (GW) receiving mechanical ventilator support with respiratory deterioration between postnatal days 5 and 14. Infants were stratified by 23 to 24 GW and 25 to 28 GW and randomly allocated (1:1) to receive stem cells (1 × 107 cells/kg, n = 33) or placebo (n = 33). Although the inflammatory cytokines in the tracheal aspirate fluid were significantly reduced with MSCs, the primary outcome of death or severe/moderate BPD in the control group (18/33, 55%) was not significantly improved with MSC transplantation (17/33, 52%). In the subgroup analysis, the secondary outcome of severe BPD was significantly improved from 53% (8/15) to 19% (3/16) with MSC transplantation in the 23 to 24 GW group but not in the 25 to 28 GW subgroup. In summary, although MSC transplantation might be safe and feasible, this small study was underpowered to detect its therapeutic efficacy in preterm infants at 23 to 28 GW. Accordingly, we are now conducting an additional larger and controlled phase II clinical trial focusing on infants at 23 to 24 GW (NCT03392467). ClinicalTrials.gov identifier: NCT01828957.
Collapse
Affiliation(s)
- So Yoon Ahn
- Department of Pediatrics, Samsung Medical Center and Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Yun Sil Chang
- Department of Pediatrics, Samsung Medical Center and Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Myung Hee Lee
- Statistics and Data Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea
| | - Se In Sung
- Department of Pediatrics, Samsung Medical Center and Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Byong Sop Lee
- Department of Pediatrics, Asan Medical Center, University of Ulsan, Seoul, South Korea
| | - Ki Soo Kim
- Department of Pediatrics, Asan Medical Center, University of Ulsan, Seoul, South Korea
| | - Ai-Rhan Kim
- Department of Pediatrics, Asan Medical Center, University of Ulsan, Seoul, South Korea
| | - Won Soon Park
- Department of Pediatrics, Samsung Medical Center and Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
70
|
Chalphin AV, Lazow SP, Labuz DF, Tracy SA, Kycia I, Zurakowski D, Fauza DO. Transamniotic Stem Cell Therapy for Experimental Congenital Diaphragmatic Hernia: Structural, Transcriptional, and Cell Kinetics Analyses in the Nitrofen Model. Fetal Diagn Ther 2021; 48:381-391. [PMID: 33853064 DOI: 10.1159/000515277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/15/2021] [Indexed: 11/19/2022]
Abstract
PURPOSE We examined select pulmonary effects and donor cell kinetics after transamniotic stem cell therapy (TRASCET) in a model of congenital diaphragmatic hernia (CDH). METHODS Pregnant dams (n = 58) received nitrofen on gestational day 9.5 (E9) to induce fetal CDH. Fetuses (n = 681) were divided into 4 groups: untreated (n = 99) and 3 groups receiving volume-matched intra-amniotic injections on E17 of either saline (n = 142), luciferase-labeled amniotic fluid-derived mesenchymal stem cells (afMSCs; n = 299), or acellular recombinant luciferase (n = 141). Pulmonary morphometry, quantitative gene expression of pulmonary vascular tone mediators, or screening for labeled afMSCs were performed at term (E22). Statistical comparisons were by Mann-Whitney U-test, nested ANOVA, and Wald test. RESULTS TRASCET led to significant downregulation of endothelial nitric oxide synthase and endothelin receptor-A expressions compared to both untreated and saline groups (both p < 0.001). TRASCET also led to a significant decrease in arteriole wall thickness compared to the untreated group (p < 0.001) but not the saline group (p = 0.180). Donor afMSCs were identified in the bone marrow and umbilical cord (p = 0.035 and 0.015, respectively, vs. plain luciferase controls). CONCLUSIONS The effects of TRASCET in experimental CDH appear to be centered on the pulmonary vasculature and to derive from circulating donor cells.
Collapse
Affiliation(s)
- Alexander V Chalphin
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Stefanie P Lazow
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel F Labuz
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah A Tracy
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ina Kycia
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - David Zurakowski
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Dario O Fauza
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
71
|
Muehlbacher T, Bassler D, Bryant MB. Evidence for the Management of Bronchopulmonary Dysplasia in Very Preterm Infants. CHILDREN (BASEL, SWITZERLAND) 2021; 8:298. [PMID: 33924638 PMCID: PMC8069828 DOI: 10.3390/children8040298] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Very preterm birth often results in the development of bronchopulmonary dysplasia (BPD) with an inverse correlation of gestational age and birthweight. This very preterm population is especially exposed to interventions, which affect the development of BPD. OBJECTIVE The goal of our review is to summarize the evidence on these daily procedures and provide evidence-based recommendations for the management of BPD. METHODS We conducted a systematic literature research using MEDLINE/PubMed on antenatal corticosteroids, surfactant-replacement therapy, caffeine, ventilation strategies, postnatal corticosteroids, inhaled nitric oxide, inhaled bronchodilators, macrolides, patent ductus arteriosus, fluid management, vitamin A, treatment of pulmonary hypertension and stem cell therapy. RESULTS Evidence provided by meta-analyses, systematic reviews, randomized controlled trials (RCTs) and large observational studies are summarized as a narrative review. DISCUSSION There is strong evidence for the use of antenatal corticosteroids, surfactant-replacement therapy, especially in combination with noninvasive ventilation strategies, caffeine and lung-protective ventilation strategies. A more differentiated approach has to be applied to corticosteroid treatment, the management of patent ductus arteriosus (PDA), fluid-intake and vitamin A supplementation, as well as the treatment of BPD-associated pulmonary hypertension. There is no evidence for the routine use of inhaled bronchodilators and prophylactic inhaled nitric oxide. Stem cell therapy is promising, but should be used in RCTs only.
Collapse
Affiliation(s)
- Tobias Muehlbacher
- Department of Neonatology, University Hospital Zurich, 8091 Zurich, Switzerland; (D.B.); (M.B.B.)
| | | | | |
Collapse
|
72
|
Abstract
Despite important advances in neonatal care, rates of bronchopulmonary dysplasia (BPD) have remained persistently high. Numerous drugs and ventilator strategies are used for the prevention and treatment of BPD. Some, such as exogenous surfactant, volume targeted ventilation, caffeine, and non-invasive respiratory support, are associated with modest but important reductions in rates of BPD and long-term respiratory morbidities. Many other therapies, such as corticosteroids, diuretics, nitric oxide, bronchodilators and anti-reflux medications, are widely used despite conflicting, limited or no evidence of efficacy and safety. This paper examines the range of therapies used for the prevention or treatment of BPD. They are classified into those supported by evidence of effectiveness, and those which are widely used despite limited evidence or unclear risk to benefit ratios. Finally, the paper explores emerging therapies and approaches which aim to prevent or reduce BPD and long-term respiratory morbidity.
Collapse
|
73
|
Weis VG, Deal AC, Mekkey G, Clouse C, Gaffley M, Whitaker E, Peeler CB, Weis JA, Schwartz MZ, Atala A. Human placental-derived stem cell therapy ameliorates experimental necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol 2021; 320:G658-G674. [PMID: 33566727 PMCID: PMC8238163 DOI: 10.1152/ajpgi.00369.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023]
Abstract
Necrotizing enterocolitis (NEC), a life-threatening intestinal disease, is becoming a larger proportionate cause of morbidity and mortality in premature infants. To date, therapeutic options remain elusive. Based on recent cell therapy studies, we investigated the effect of a human placental-derived stem cell (hPSC) therapy on intestinal damage in an experimental NEC rat pup model. NEC was induced in newborn Sprague-Dawley rat pups for 4 days via formula feeding, hypoxia, and LPS. NEC pups received intraperitoneal (ip) injections of either saline or hPSC (NEC-hPSC) at 32 and 56 h into NEC induction. At 4 days, intestinal macroscopic and histological damage, epithelial cell composition, and inflammatory marker expression of the ileum were assessed. Breastfed (BF) littermates were used as controls. NEC pups developed significant bowel dilation and fragility in the ileum. Further, NEC induced loss of normal villi-crypt morphology, disruption of epithelial proliferation and apoptosis, and loss of critical progenitor/stem cell and Paneth cell populations in the crypt. hPSC treatment improved macroscopic intestinal health with reduced ileal dilation and fragility. Histologically, hPSC administration had a significant reparative effect on the villi-crypt morphology and epithelium. In addition to a trend of decreased inflammatory marker expression, hPSC-NEC pups had increased epithelial proliferation and decreased apoptosis when compared with NEC littermates. Further, the intestinal stem cell and crypt niche that include Paneth cells, SOX9+ cells, and LGR5+ stem cells were restored with hPSC therapy. Together, these data demonstrate hPSC can promote epithelial healing of NEC intestinal damage.NEW & NOTEWORTHY These studies demonstrate a human placental-derived stem cell (hPSC) therapeutic strategy for necrotizing enterocolitis (NEC). In an experimental model of NEC, hPSC administration improved macroscopic intestinal health, ameliorated epithelial morphology, and supported the intestinal stem cell niche. Our data suggest that hPSC are a potential therapeutic approach to attenuate established intestinal NEC damage. Further, we show hPSC are a novel research tool that can be utilized to elucidate critical neonatal repair mechanisms to overcome NEC.
Collapse
Affiliation(s)
- Victoria G Weis
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina
| | - Anna C Deal
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina
| | - Gehad Mekkey
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina
- Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Cara Clouse
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina
| | - Michaela Gaffley
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina
- General Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Emily Whitaker
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina
| | - Cole B Peeler
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, Virginia
| | - Jared A Weis
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, Virginia
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina
| | - Marshall Z Schwartz
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina
| |
Collapse
|
74
|
Mesenchymal stem cell-derived secretomes for therapeutic potential of premature infant diseases. Biosci Rep 2021; 40:222738. [PMID: 32320046 PMCID: PMC7953482 DOI: 10.1042/bsr20200241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
Preterm birth is a complex syndrome and remains a substantial public health problem globally. Its common complications include periventricular leukomalacia (PVL), bronchopulmonary dysplasia (BPD), necrotizing enterocolitis (NEC) and retinopathy of prematurity (ROP). Despite great advances in the comprehension of the pathogenesis and improvements in neonatal intensive care and associated medicine, preterm birth-related diseases remain essentially without adequate treatment and can lead to high morbidity and mortality. The therapeutic potential of mesenchymal stem/stromal cells (MSCs) appears promising as evidenced by their efficacy in preclinical models of pathologies relevant to premature infant complications. MSC-based therapeutic efficacy is closely associated with MSC secretomes and a subsequent paracrine action response to tissue injuries, which are complex and abundant in response to the local microenvironment. In the current review, we summarize the paracrine mechanisms of MSC secretomes underlying diverse preterm birth-related diseases, including PVL, BPD, NEC and ROP, are summarized, and focus is placed on MSC-conditioned media (CM) and MSC-derived extracellular vesicles (EVs) as key mediators of modulatory action, thereby providing new insights for future therapies in newborn medicine.
Collapse
|
75
|
Segler A, Braun T, Fischer HS, Dukatz R, Weiss CR, Schwickert A, Jäger C, Bührer C, Henrich W. Feasibility of Umbilical Cord Blood Collection in Neonates at Risk of Brain Damage-A Step Toward Autologous Cell Therapy for a High-risk Population. Cell Transplant 2021; 30:963689721992065. [PMID: 33631961 PMCID: PMC7917411 DOI: 10.1177/0963689721992065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Evidence for umbilical cord blood (UCB) cell therapies as a potential intervention for neurological diseases is emerging. To date, most existing trials worked with allogenic cells, as the collection of autologous UCB from high-risk patients is challenging. In obstetric emergencies the collection cannot be planned. In preterm infants, late cord clamping and anatomic conditions may reduce the availability. The aim of the present study was to assess the feasibility of UCB collection in neonates at increased risk of brain damage. Infants from four high-risk groups were included: newborns with perinatal hypoxemia, gestational age (GA) ≤30 + 0 weeks and/or birthweight <1,500 g, intrauterine growth restriction (IUGR), or monochorionic twins with twin-to-twin transfusion syndrome (TTTS). Feasibility of collection, quantity and quality of obtained UCB [total nucleated cell count (TNC), volume, sterility, and cell viability], and neonatal outcome were assessed. UCB collection was successful in 141 of 177 enrolled patients (hypoxemia n = 10; GA ≤30 + 0 weeks n = 54; IUGR n = 71; TTTS n = 6). Twenty-six cases were missed. The amount of missed cases per month declined over the time. Volume of collected UCB ranged widely (median: 24.5 ml, range: 5.0–102 ml) and contained a median of 0.77 × 108 TNC (range: 0.01–13.0 × 108). TNC and UCB volume correlated significantly with GA. A total of 10.7% (19/177) of included neonates developed brain lesions. To conclude, collection of UCB in neonates at high risk of brain damage is feasible with a multidisciplinary approach and intensive training. High prevalence of brain damage makes UCB collection worthwhile. Collected autologous UCB from mature neonates harbors a sufficient cell count for potential therapy. However, quality and quantity of obtained UCB are critical for potential therapy in preterm infants. Therefore, for extremely preterm infants alternative cell sources such as UCB tissue should be investigated for autologous treatment options because of the low yield of UCB.
Collapse
Affiliation(s)
- Angela Segler
- Department of Obstetrics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Thorsten Braun
- Department of Obstetrics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of "Experimental Obstetrics" and Study group "Perinatal Programming", Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Hendrik Stefan Fischer
- Department of Neonatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ricarda Dukatz
- Department of Obstetrics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Claire-Rachel Weiss
- Department of Obstetrics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Alexander Schwickert
- Department of Obstetrics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Carsten Jäger
- Department of Surgery, Klinikum rechts der Isar, Technische Universitaüt Muünchen, Munich, Germany
| | - Christoph Bührer
- Department of Neonatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Wolfgang Henrich
- Department of Obstetrics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
76
|
Giusto K, Wanczyk H, Jensen T, Finck C. Hyperoxia-induced bronchopulmonary dysplasia: better models for better therapies. Dis Model Mech 2021; 14:dmm047753. [PMID: 33729989 PMCID: PMC7927658 DOI: 10.1242/dmm.047753] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease caused by exposure to high levels of oxygen (hyperoxia) and is the most common complication that affects preterm newborns. At present, there is no cure for BPD. Infants can recover from BPD; however, they will suffer from significant morbidity into adulthood in the form of neurodevelopmental impairment, asthma and emphysematous changes of the lung. The development of hyperoxia-induced lung injury models in small and large animals to test potential treatments for BPD has shown some success, yet a lack of standardization in approaches and methods makes clinical translation difficult. In vitro models have also been developed to investigate the molecular pathways altered during BPD and to address the pitfalls associated with animal models. Preclinical studies have investigated the efficacy of stem cell-based therapies to improve lung morphology after damage. However, variability regarding the type of animal model and duration of hyperoxia to elicit damage exists in the literature. These models should be further developed and standardized, to cover the degree and duration of hyperoxia, type of animal model, and lung injury endpoint, to improve their translational relevance. The purpose of this Review is to highlight concerns associated with current animal models of hyperoxia-induced BPD and to show the potential of in vitro models to complement in vivo studies in the significant improvement to our understanding of BPD pathogenesis and treatment. The status of current stem cell therapies for treatment of BPD is also discussed. We offer suggestions to optimize models and therapeutic modalities for treatment of hyperoxia-induced lung damage in order to advance the standardization of procedures for clinical translation.
Collapse
Affiliation(s)
- Kiersten Giusto
- Department of Pediatrics, University of Connecticut Health Center, Farmington, 06106 CT, USA
| | - Heather Wanczyk
- Department of Pediatrics, University of Connecticut Health Center, Farmington, 06106 CT, USA
| | - Todd Jensen
- Department of Pediatrics, University of Connecticut Health Center, Farmington, 06106 CT, USA
| | - Christine Finck
- Department of Pediatrics, University of Connecticut Health Center, Farmington, 06106 CT, USA
- Department of Surgery, Connecticut Children's Medical Center, Hartford, CT, USA
| |
Collapse
|
77
|
Ahn SY, Park WS, Sung SI, Chang YS. Mesenchymal stem cell therapy for intractable neonatal disorders. Pediatr Neonatol 2021; 62 Suppl 1:S16-S21. [PMID: 33485822 DOI: 10.1016/j.pedneo.2020.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 10/30/2020] [Indexed: 12/25/2022] Open
Abstract
Mesenchymal stem cell (MSC) transplantation has emerged as a new promising therapeutic strategy for the treatment of intractable and devastating neonatal disorders with complex multifactorial etiologies, including bronchopulmonary dysplasia (BPD), intraventricular hemorrhage (IVH), and hypoxic-ischemic encephalopathy (HIE). In response to inflammatory and noxious environments, MSCs secrete various paracrine factors that perform several reparative functions, including exerting anti-inflammatory, anti-oxidative, anti-apoptotic, and anti-fibrotic effects, to enhance the regeneration of damaged cells and tissues. In this review, we summarize recent advances in stem cell research focusing on the use of MSCs in the prevention and treatment of newborn BPD, IVH and HIE, with particular emphasis on preclinical and clinical data.
Collapse
Affiliation(s)
- So Yoon Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea
| | - Won Soon Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea
| | - Se In Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Yun Sil Chang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea.
| |
Collapse
|
78
|
Porzionato A, Zaramella P, Dedja A, Guidolin D, Bonadies L, Macchi V, Pozzobon M, Jurga M, Perilongo G, De Caro R, Baraldi E, Muraca M. Intratracheal administration of mesenchymal stem cell-derived extracellular vesicles reduces lung injuries in a chronic rat model of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2021; 320:L688-L704. [PMID: 33502939 DOI: 10.1152/ajplung.00148.2020] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Early therapeutic effect of intratracheally (IT)-administered extracellular vesicles secreted by mesenchymal stem cells (MSC-EVs) has been demonstrated in a rat model of bronchopulmonary dysplasia (BPD) involving hyperoxia exposure in the first 2 postnatal weeks. The aim of this study was to evaluate the protective effects of IT-administered MSC-EVs in the long term. EVs were produced from MSCs following GMP standards. At birth, rats were distributed in three groups: (a) animals raised in ambient air for 6 weeks (n = 10); and animals exposed to 60% hyperoxia for 2 weeks and to room air for additional 4 weeks and treated with (b) IT-administered saline solution (n = 10), or (c) MSC-EVs (n = 10) on postnatal days 3, 7, 10, and 21. Hyperoxia exposure produced significant decreases in total number of alveoli, total surface area of alveolar air spaces, and proliferation index, together with increases in mean alveolar volume, mean linear intercept and fibrosis percentage; all these morphometric changes were prevented by MSC-EVs treatment. The medial thickness index for <100 µm vessels was higher for hyperoxia-exposed/sham-treated than for normoxia-exposed rats; MSC-EV treatment significantly reduced this index. There were no significant differences in interstitial/alveolar and perivascular F4/8-positive and CD86-positive macrophages. Conversely, hyperoxia exposure reduced CD163-positive macrophages both in interstitial/alveolar and perivascular populations and MSC-EV prevented these hyperoxia-induced reductions. These findings further support that IT-administered EVs could be an effective approach to prevent/treat BPD, ameliorating the impaired alveolarization and pulmonary artery remodeling also in a long-term model. M2 macrophage polarization could play a role through anti-inflammatory and proliferative mechanisms.
Collapse
Affiliation(s)
- Andrea Porzionato
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
| | - Patrizia Zaramella
- Neonatal Intensive Care Unit, Department of Women's and Children's Health, University of Padova, Padua, Italy
| | - Arben Dedja
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padova, Padua, Italy
| | - Diego Guidolin
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
| | - Luca Bonadies
- Neonatal Intensive Care Unit, Department of Women's and Children's Health, University of Padova, Padua, Italy
| | - Veronica Macchi
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
| | - Michela Pozzobon
- Institute of Pediatric Research, Padua, Italy.,Stem Cell and Regenerative Medicine Laboratory, Department of Women's and Children's Health, University of Padova, Padua, Italy
| | - Marcin Jurga
- The Cell Factory BVBA (Esperite NV), Niel, Belgium
| | - Giorgio Perilongo
- Institute of Pediatric Research, Padua, Italy.,Pediatric Clinic, Department of Women's and Children's Health, University of Padova, Padua, Italy
| | - Raffaele De Caro
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
| | - Eugenio Baraldi
- Neonatal Intensive Care Unit, Department of Women's and Children's Health, University of Padova, Padua, Italy.,Institute of Pediatric Research, Padua, Italy
| | - Maurizio Muraca
- Institute of Pediatric Research, Padua, Italy.,Stem Cell and Regenerative Medicine Laboratory, Department of Women's and Children's Health, University of Padova, Padua, Italy
| |
Collapse
|
79
|
MSC Based Therapies to Prevent or Treat BPD-A Narrative Review on Advances and Ongoing Challenges. Int J Mol Sci 2021; 22:ijms22031138. [PMID: 33498887 PMCID: PMC7865378 DOI: 10.3390/ijms22031138] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/15/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) remains one of the most devastating consequences of preterm birth resulting in life-long restrictions in lung function. Distorted lung development is caused by its inflammatory response which is mainly provoked by mechanical ventilation, oxygen toxicity and bacterial infections. Dysfunction of resident lung mesenchymal stem cells (MSC) represents one key hallmark that drives BPD pathology. Despite all progress in the understanding of pathomechanisms, therapeutics to prevent or treat BPD are to date restricted to a few drugs. The limited therapeutic efficacy of established drugs can be explained by the fact that they fail to concurrently tackle the broad spectrum of disease driving mechanisms and by the huge overlap between distorted signal pathways of lung development and inflammation. The great enthusiasm about MSC based therapies as novel therapeutic for BPD arises from the capacity to inhibit inflammation while simultaneously promoting lung development and repair. Preclinical studies, mainly performed in rodents, raise hopes that there will be finally a broadly acting, efficient therapy at hand to prevent or treat BPD. Our narrative review gives a comprehensive overview on preclinical achievements, results from first early phase clinical studies and challenges to a successful translation into the clinical setting.
Collapse
|
80
|
You J, Zhou O, Liu J, Zou W, Zhang L, Tian D, Dai J, Luo Z, Liu E, Fu Z, Zou L. Human Umbilical Cord Mesenchymal Stem Cell-Derived Small Extracellular Vesicles Alleviate Lung Injury in Rat Model of Bronchopulmonary Dysplasia by Affecting Cell Survival and Angiogenesis. Stem Cells Dev 2020; 29:1520-1532. [PMID: 33040709 DOI: 10.1089/scd.2020.0156] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a serious chronic lung disease in premature newborns, with high morbidity and mortality rates. Mesenchymal stem cell (MSC) transplantation has developed into a promising approach to alleviate BPD. Small extracellular vesicles, which are an important therapeutic component of MSCs, have been reported to be effective in a mouse model of BPD. However, the affected cell types and detailed underlying mechanisms are unclear. In this study, we found that human umbilical cord mesenchymal stem cell-derived small extracellular vesicles (hucMSC-sEVs) were successfully absorbed by lung tissue after intratracheal administration, and remained in the lungs for at least 72 h. The results showed that hucMSC-sEVs restored alveolar structure and lung function, and ameliorated pulmonary hypertension in a rat model of BPD. The number of Ki-67-positive lung cells were improved, while the number of TUNEL-positive lung cells were reduced in our hucMSC-sEV-treated BPD model. Additionally, SP-C staining (a marker of type II alveolar epithelial cells, TIIAECs) and CD31 staining (a marker of pulmonary vascular endothelial cells, PVECs) were both increased in a hyperoxia-induced BPD model treated with hucMSC-sEVs. In vitro, under hyperoxic conditions, the tube-like structure formation was improved in human umbilical vein endothelial cells, and the proliferation was increased and the apoptosis was attenuated in MLE-12 cells treated with hucMSC-sEVs. Furthermore, we observed downregulated expression of PTEN and cleaved-caspase3, and upregulated expression of p-Akt and vascular endothelial growth factor-A in our hucMSC-sEV-treated BPD model. In conclusion, hucMSC-sEVs improved alveolarization and angiogenesis in a rat BPD model by protecting TIIAECs and PVECs, which were associated with the PTEN/Akt signaling pathway.
Collapse
Affiliation(s)
- Jingyi You
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China
| | - Ou Zhou
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China
| | - Jiang Liu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China
| | - Wenjing Zou
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China
| | - Linghuan Zhang
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China
| | - Daiyin Tian
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China
| | - Jihong Dai
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China
| | - Zhengxiu Luo
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China
| | - Enmei Liu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China
| | - Zhou Fu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China
| | - Lin Zou
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China.,Department of Clinical Molecular Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
81
|
Allogeneic administration of human umbilical cord-derived mesenchymal stem/stromal cells for bronchopulmonary dysplasia: preliminary outcomes in four Vietnamese infants. J Transl Med 2020; 18:398. [PMID: 33081796 PMCID: PMC7576694 DOI: 10.1186/s12967-020-02568-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022] Open
Abstract
Background Bronchopulmonary dysplasia (BPD) is a severe condition in premature infants that compromises lung function and necessitates oxygen support. Despite major improvements in perinatal care minimizing the devastating effects, BPD remains the most frequent complication of extreme preterm birth. Our study reports the safety of the allogeneic administration of umbilical cord-derived mesenchymal stem/stromal cells (allo-UC-MSCs) and the progression of lung development in four infants with established BPD. Methods UC tissue was collected from a healthy donor, followed by propagation at the Stem Cell Core Facility at Vinmec Research Institute of Stem Cell and Gene Technology. UC-MSC culture was conducted under xeno- and serum-free conditions. Four patients with established BPD were enrolled in this study between May 25, 2018, and December 31, 2018. All four patients received two intravenous doses of allo-UC-MSCs (1 million cells/kg patient body weight (PBW) per dose) with an intervening interval of 7 days. Safety and patient conditions were evaluated during hospitalization and at 7 days and 1, 6 and 12 months postdischarge. Results No intervention-associated severe adverse events or prespecified adverse events were observed in the four patients throughout the study period. At the time of this report, all patients had recovered from BPD and were weaned off of oxygen support. Chest X-rays and CT scans confirmed the progressive reductions in fibrosis. Conclusions Allo-UC-MSC administration is safe in preterm infants with established BPD. Trial registration This preliminary study was approved by the Vinmec International Hospital Ethics Board (approval number: 88/2019/QĐ-VMEC; retrospectively registered March 12, 2019).
Collapse
|
82
|
Wang Y, Zhang L, Wu Y, Zhu R, Wang Y, Cao Y, Long W, Ji C, Wang H, You L. Peptidome analysis of umbilical cord mesenchymal stem cell (hUC-MSC) conditioned medium from preterm and term infants. Stem Cell Res Ther 2020; 11:414. [PMID: 32967723 PMCID: PMC7510303 DOI: 10.1186/s13287-020-01931-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/29/2020] [Accepted: 09/09/2020] [Indexed: 12/18/2022] Open
Abstract
Background The therapeutic role of mesenchymal stem cells (MSCs) has been widely confirmed in several animal models of premature infant diseases. Micromolecule peptides have shown promise for the treatment of premature infant diseases. However, the potential role of peptides secreted from MSCs has not been studied. The purpose of this study is to help to broaden the knowledge of the hUC-MSC secretome at the peptide level through peptidomic profile analysis. Methods We used tandem mass tag (TMT) labeling technology followed by tandem mass spectrometry to compare the peptidomic profile of preterm and term umbilical cord MSC (hUC-MSC) conditioned medium (CM). Gene Ontology (GO) enrichment analysis and ingenuity pathway analysis (IPA) were conducted to explore the differentially expressed peptides by predicting the functions of their precursor proteins. To evaluate the effect of candidate peptides on human lung epithelial cells stimulated by hydrogen peroxide (H2O2), quantitative real-time PCR (qRT-PCR), western blot analysis, and enzyme-linked immunosorbent assay (ELISA) were, respectively, adopted to detect inflammatory cytokines (TNF-α, IL-1β, and IL-6) expression levels at the mRNA and protein levels. Results A total of 131 peptides derived from 106 precursor proteins were differentially expressed in the preterm hUC-MSC CM compared with the term group, comprising 37 upregulated peptides and 94 downregulated peptides. Bioinformatics analysis showed that these differentially expressed peptides may be associated with developmental disorders, inflammatory response, and organismal injury. We also found that peptides 7118TGAKIKLVGT7127 derived from MUC19 and 508AAAAGPANVH517 derived from SIX5 reduced the expression levels of TNF-α, IL-1β, and IL-6 in H2O2-treated human lung epithelial cells. Conclusions In summary, this study provides further secretomics information on hUC-MSCs and provides a series of peptides that might have antiinflammatory effects on pulmonary epithelial cells and contribute to the prevention and treatment of respiratory diseases in premature infants.
Collapse
Affiliation(s)
- Yu Wang
- Department of Neonatology, Changzhou Maternity and Child Health Care Hospital of Nanjing Medical University, Changzhou, 213000, China.,Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Lin Zhang
- Department of Neonatology, Changzhou Maternity and Child Health Care Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Yun Wu
- Department of Ultrasound, Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Rongping Zhu
- Department of Neonatology, Changzhou Maternity and Child Health Care Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Yan Wang
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Yan Cao
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Wei Long
- Department of Obstetrics, Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Chenbo Ji
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Huaiyan Wang
- Department of Neonatology, Changzhou Maternity and Child Health Care Hospital of Nanjing Medical University, Changzhou, 213000, China.
| | - Lianghui You
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China.
| |
Collapse
|
83
|
How to introduce MSC-based therapy for the developing lung safely into clinical care? Pediatr Res 2020; 88:365-368. [PMID: 31931507 DOI: 10.1038/s41390-020-0758-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 12/20/2019] [Indexed: 12/15/2022]
Abstract
Extreme prematurity is associated with an increased risk to develop bronchopulmonary dysplasia (BPD). Severe BPD is associated with a significant long-term burden for the affected infant, families and society. Currently there are limited prevention and treatment options. Regenerative approaches using mesenchymal stromal cells (MSC) are associated with promising benefits in animal experiments. First clinical studies, using MSC in humans, suggest safety. To accelerate the process of bench to bed-side development of MSC-based therapies, a global and collaborative approach is needed that includes all key stakeholders. Results of a workshop that was held during the Pediatric Academic Societies meeting in 2019 are summarized. A roadmap is provided discussing next steps of bringing MSC-based interventions into clinical practice.
Collapse
|
84
|
Baker EK, Jacobs SE, Lim R, Wallace EM, Davis PG. Cell therapy for the preterm infant: promise and practicalities. Arch Dis Child Fetal Neonatal Ed 2020; 105:563-568. [PMID: 32253200 DOI: 10.1136/archdischild-2019-317896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023]
Abstract
Recent decades have seen the rapid progress of neonatal intensive care, and the survival rates of the most preterm infants are improving. This improvement is associated with changing patterns of morbidity and new phenotypes of bronchopulmonary dysplasia and preterm brain injury are recognised. Inflammation and immaturity are known contributors to their pathogenesis. However, a new phenomenon, the exhaustion of progenitor cells is emerging as an important factor. Current therapeutic approaches do not adequately address these new mechanisms of injury. Cell therapy, that is the use of stem and stem-like cells, with its potential to both repair and prevent injury, offers a new approach to these challenging conditions. This review will examine the rationale for cell therapy in the extremely preterm infant, the preclinical and early clinical evidence to support its use in bronchopulmonary dysplasia and preterm brain injury. Finally, it will address the challenges in translating cell therapy from the laboratory to early clinical trials.
Collapse
Affiliation(s)
- Elizabeth K Baker
- Newborn Research Centre, Royal Women's Hospital, Parkville, Victoria, Australia .,Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Susan E Jacobs
- Newborn Research Centre, Royal Women's Hospital, Parkville, Victoria, Australia.,Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Rebecca Lim
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia.,The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Euan M Wallace
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia.,The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Peter G Davis
- Newborn Research Centre, Royal Women's Hospital, Parkville, Victoria, Australia.,Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
85
|
Yao D, Ye H, Huo Z, Wu L, Wei S. Mesenchymal stem cell research progress for the treatment of COVID-19. J Int Med Res 2020; 48:300060520955063. [PMID: 32972277 PMCID: PMC7522503 DOI: 10.1177/0300060520955063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022] Open
Abstract
At the end of 2019, novel coronavirus (COVID-19) infection was detected in Wuhan City, Hubei Province, China. The COVID-19 infection characteristics include a long incubation period, strong infectivity, and high fatality rate, and it negatively affects human health and social development. COVID-19 has become a common problem in the global medical and health system. It is essentially an acute self-limiting disease. Patients with severe COVID-19 infection usually progress to acute respiratory distress syndrome, sepsis, metabolic acidosis that is difficult to correct, coagulation dysfunction, multiple organ failure, and even death within a short period after onset. There remains a lack of effective drugs for such patients clinically. Mesenchymal stem cells (MSCs) are expected to reduce the risk of complications and death in patients because they have strong anti-inflammatory and immunomodulatory capabilities, which can improve the microenvironment, promote neovascularization, and enhance tissue repair capabilities. China is currently conducting several clinical trials on MSCs for the treatment of COVID-19. Here, we review the research progress related to using stem cells to treat patients with COVID-19.
Collapse
Affiliation(s)
- Dezhi Yao
- Department of Respiratory, Songshan Lake Central Hospital, Dongguan, Guangdong Province, China
| | - Huanrong Ye
- Department of Respiratory, Songshan Lake Central Hospital, Dongguan, Guangdong Province, China
| | - Zhirong Huo
- Department of Respiratory, Songshan Lake Central Hospital, Dongguan, Guangdong Province, China
| | - Lei Wu
- Department of Respiratory, Songshan Lake Central Hospital, Dongguan, Guangdong Province, China
| | - Shixiong Wei
- Department of Cardiovascular Surgery, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
86
|
O'Reilly D, Dorodnykh D, Avdeenko NV, Nekliudov NA, Garssen J, Elolimy AA, Petrou L, Simpson MR, Yeruva L, Munblit D. Perspective: The Role of Human Breast-Milk Extracellular Vesicles in Child Health and Disease. Adv Nutr 2020; 12:59-70. [PMID: 32838428 PMCID: PMC7849950 DOI: 10.1093/advances/nmaa094] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/06/2020] [Accepted: 07/15/2020] [Indexed: 12/19/2022] Open
Abstract
Human breast milk (HM) contains multiple bioactive substances determining its impact on children's health. Extracellular vesicles (EVs) are a heterogeneous group of secreted nanoparticles that are present in HM and may be partially responsible for its beneficial effects. The precise roles and content of EVs in HM remain largely unknown. To examine this, we performed a short narrative review on the literature focusing on HM EVs to contextualize the available data, followed by a scoping review of MEDLINE and Embase databases. We identified 424 nonduplicate citations with 19 original studies included. In this perspective, we summarize the evidence around HM EVs, highlight some theoretical considerations based on existing evidence, and provide an overview of some challenges associated with the complexity and heterogeneity of EV research. We consider how the existing data from HM studies conform to the minimal information for studies of EVs (MISEV) guidelines. Across the studies a variety of research methods were utilized involving both bench-based and translational methods, and a range of different EV contents were examined including RNA, proteins, and glycopeptides. We observed a variety of health outcomes in these studies, including allergy and atopy, necrotizing enterocolitis, and HIV. While some promising results have been demonstrated, the heterogeneity in outcomes of interest, methodological limitations, and relatively small number of studies in the field make comparison between studies or further translational work problematic. To date, no studies have examined normative values of HM EVs in a large, diverse population or with respect to potentially important influencing factors such as timing (hind- vs. foremilk), stage (colostrum vs. mature milk), and infant age (preterm vs. term), which makes extrapolation from bench or "basic" research impossible. Future research should focus on addressing the current inadequacies in the literature and utilize MISEV guidelines to inform study design.
Collapse
Affiliation(s)
| | - Denis Dorodnykh
- Department of Pediatrics and Pediatric Infectious Diseases, Institute of Child's Health, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Nina V Avdeenko
- Department of Pediatrics and Pediatric Infectious Diseases, Institute of Child's Health, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Nikita A Nekliudov
- Department of Pediatrics and Pediatric Infectious Diseases, Institute of Child's Health, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Ahmed A Elolimy
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA,Arkansas Children's Nutrition Center, Little Rock, AR, USA
| | - Loukia Petrou
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Melanie Rae Simpson
- Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim, Norway
| | - Laxmi Yeruva
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA,Arkansas Children's Nutrition Center, Little Rock, AR, USA,Arkansas Children's Research Institute, Little Rock, AR, USA
| | | |
Collapse
|
87
|
Immunomodulatory and Therapeutic Effects of Mesenchymal Stem Cells on Organ Dysfunction in Sepsis. Shock 2020; 55:423-440. [PMID: 32826813 DOI: 10.1097/shk.0000000000001644] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
ABSTRACT Sepsis is a life-threatening disorder that is caused by a dysregulated inflammatory response during an infection. The disease mostly affects pregnant women, newborns, and patients in intensive care units. Sepsis treatment is a significant part of a country's health budgets. Delay in the therapy causes irreversible failure of various organs due to the lack of blood supply and reduction of oxygen in the tissues and eventually increased mortality. The involvement of four or five organs by sepsis has been attributed to an increased risk of death to over 90%. Although antibiotics are at the first line of sepsis treatment, they do not possess enough potency to control the disease and prevent subsequent organ failure. The immunomodulatory, anti-inflammatory, anti-apoptotic, and anti-microbial properties of mesenchymal stem cells (MSCs) have been reported in various studies. Therefore, the application of MSCs has been considered a potentially promising therapeutic strategy. In preclinical studies, the administration of MSCs has been associated with reduced bacterial load and decreased levels of pro-inflammatory factors as well as the improved function of the different vital organs, including heart, kidney, liver, and lungs. The current study provides a brief review of sepsis and its pathophysiology, and then highlights recent findings in the therapeutic effects of MSCs and MSC-derived secretome in improving sepsis-induced organ dysfunction. Besides, eligible sepsis candidates for MSC-therapy and the latest clinical findings in these areas have been reviewed.
Collapse
|
88
|
Ophelders DR, Gussenhoven R, Klein L, Jellema RK, Westerlaken RJ, Hütten MC, Vermeulen J, Wassink G, Gunn AJ, Wolfs TG. Preterm Brain Injury, Antenatal Triggers, and Therapeutics: Timing Is Key. Cells 2020; 9:E1871. [PMID: 32785181 PMCID: PMC7464163 DOI: 10.3390/cells9081871] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 02/08/2023] Open
Abstract
With a worldwide incidence of 15 million cases, preterm birth is a major contributor to neonatal mortality and morbidity, and concomitant social and economic burden Preterm infants are predisposed to life-long neurological disorders due to the immaturity of the brain. The risks are inversely proportional to maturity at birth. In the majority of extremely preterm infants (<28 weeks' gestation), perinatal brain injury is associated with exposure to multiple inflammatory perinatal triggers that include antenatal infection (i.e., chorioamnionitis), hypoxia-ischemia, and various postnatal injurious triggers (i.e., oxidative stress, sepsis, mechanical ventilation, hemodynamic instability). These perinatal insults cause a self-perpetuating cascade of peripheral and cerebral inflammation that plays a critical role in the etiology of diffuse white and grey matter injuries that underlies a spectrum of connectivity deficits in survivors from extremely preterm birth. This review focuses on chorioamnionitis and hypoxia-ischemia, which are two important antenatal risk factors for preterm brain injury, and highlights the latest insights on its pathophysiology, potential treatment, and future perspectives to narrow the translational gap between preclinical research and clinical applications.
Collapse
Affiliation(s)
- Daan R.M.G. Ophelders
- Department of Pediatrics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands; (D.R.M.G.O.); (R.G.); (L.K.); (R.K.J.); (R.J.J.W.); (M.C.H.)
- School for Oncology and Developmental Biology (GROW), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Ruth Gussenhoven
- Department of Pediatrics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands; (D.R.M.G.O.); (R.G.); (L.K.); (R.K.J.); (R.J.J.W.); (M.C.H.)
| | - Luise Klein
- Department of Pediatrics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands; (D.R.M.G.O.); (R.G.); (L.K.); (R.K.J.); (R.J.J.W.); (M.C.H.)
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Reint K. Jellema
- Department of Pediatrics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands; (D.R.M.G.O.); (R.G.); (L.K.); (R.K.J.); (R.J.J.W.); (M.C.H.)
| | - Rob J.J. Westerlaken
- Department of Pediatrics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands; (D.R.M.G.O.); (R.G.); (L.K.); (R.K.J.); (R.J.J.W.); (M.C.H.)
- School for Oncology and Developmental Biology (GROW), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Matthias C. Hütten
- Department of Pediatrics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands; (D.R.M.G.O.); (R.G.); (L.K.); (R.K.J.); (R.J.J.W.); (M.C.H.)
- School for Oncology and Developmental Biology (GROW), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Jeroen Vermeulen
- Department of Pediatric Neurology, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands;
| | - Guido Wassink
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Private bag 92019, Auckland 1023, New Zealand; (G.W.); (A.J.G.)
| | - Alistair J. Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Private bag 92019, Auckland 1023, New Zealand; (G.W.); (A.J.G.)
| | - Tim G.A.M. Wolfs
- Department of Pediatrics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands; (D.R.M.G.O.); (R.G.); (L.K.); (R.K.J.); (R.J.J.W.); (M.C.H.)
- School for Oncology and Developmental Biology (GROW), Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
89
|
Li Z, Gong X, Li D, Yang X, Shi Q, Ju X. Intratracheal Transplantation of Amnion-Derived Mesenchymal Stem Cells Ameliorates Hyperoxia-Induced Neonatal Hyperoxic Lung Injury via Aminoacyl-Peptide Hydrolase. Int J Stem Cells 2020; 13:221-236. [PMID: 32323511 PMCID: PMC7378897 DOI: 10.15283/ijsc19110] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/02/2020] [Accepted: 03/30/2020] [Indexed: 12/20/2022] Open
Abstract
Background and Objectives Bronchopulmonary dysplasia (BPD) has major effects in premature infants. Although previous literature has indicated that mesenchymal stem cells (MSCs) can alleviate lung pathology in BPD newborns and improve the survival rate, few research have been done investigating significantly differentially expressed genes in the lungs before and after MSCs therapy. The aim of this study is to identify differentially expressed genes in lung tissues before and after hAD-MSC treatment. Methods and Results Human amnion-derived MSCs (hAD-MSCs) were cultured and met the MSCs criteria for cell phenotype and multidirectional differentiation. Then we confirmed the size of hAD-MSCs-EXOs and their expressed markers. An intratracheal drip of living cells showed the strongest effect on NHLI compared to cellular secretions or exosomes, both in terms of ameliorating pulmonary edema and reducing inflammatory cell infiltration. Through gene chip hybridization, PCR, and western blotting, acylaminoacyl-peptide hydrolase (APEH) expression was found to be significantly decreased under hyperoxia, and significantly increased after hAD-MSC treatment. Conclusions The intratracheal transplantation of hAD-MSCs ameliorated NHLI in neonatal rats through APEH.
Collapse
Affiliation(s)
- Zhenghao Li
- Department of Pediatrics, Qilu Hospital of Shandong University, Ji'nan, China.,Department of Pediatrics, Yidu Central Hospital of Weifang, Qingzhou, China
| | - Xiangcui Gong
- Department of Pediatrics, Qingdao Women and Children's Hospital, Qingdao, China
| | - Dong Li
- Stem Cell and Regenerative Medicine Research Center of Shandong University, Ji'nan, China
| | - Xiaofei Yang
- Department of Pediatrics, Yidu Central Hospital of Weifang, Qingzhou, China
| | - Qing Shi
- Stem Cell and Regenerative Medicine Research Center of Shandong University, Ji'nan, China
| | - Xiuli Ju
- Department of Pediatrics, Qilu Hospital of Shandong University, Ji'nan, China.,Stem Cell and Regenerative Medicine Research Center of Shandong University, Ji'nan, China
| |
Collapse
|
90
|
Zhuxiao R, Fang X, Chunyi Z, Jianlan W, Qi Z, Wenji Z, Wei W, Qi W, Jie Y. Ten‐year follow‐up outcomes of a single intravenous infusion of autologous cord blood mononuclear cells in preterm neonates. Clin Transl Med 2020. [DOI: 10.1002/ctm2.144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Ren Zhuxiao
- Department of NeonatologyGuangdong Women and Children HospitalGuangzhou Medical University Guangzhou P. R. China
| | - Xu Fang
- Department of NeonatologyGuangdong Women and Children HospitalGuangzhou Medical University Guangzhou P. R. China
| | - Zhang Chunyi
- Department of NeonatologyGuangdong Women and Children HospitalGuangzhou Medical University Guangzhou P. R. China
| | - Wang Jianlan
- Department of NeonatologyGuangdong Women and Children HospitalGuangzhou Medical University Guangzhou P. R. China
| | - Zhang Qi
- Department of Clinical Genetic CenterGuangdong Women and Children HospitalGuangzhou Medical University Guangzhou P. R. China
| | - Zhou Wenji
- Department of NeonatologyGuangdong Women and Children HospitalGuangzhou Medical University Guangzhou P. R. China
| | - Wei Wei
- Guang Dong Cord Blood and Stem Cell Bank Guangzhou P. R. China
| | - Wang Qi
- Department of NeonatologyGuangdong Women and Children HospitalGuangzhou Medical University Guangzhou P. R. China
- Guang Dong Cord Blood and Stem Cell Bank Guangzhou P. R. China
| | - Yang Jie
- Department of NeonatologyGuangdong Women and Children HospitalGuangzhou Medical University Guangzhou P. R. China
| |
Collapse
|
91
|
Forsberg MH, Kink JA, Hematti P, Capitini CM. Mesenchymal Stromal Cells and Exosomes: Progress and Challenges. Front Cell Dev Biol 2020; 8:665. [PMID: 32766255 PMCID: PMC7379234 DOI: 10.3389/fcell.2020.00665] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022] Open
Abstract
Due to their robust immunomodulatory capabilities, mesenchymal stem/stromal cells (MSCs) have been used as a cellular therapy for a number of human diseases. Part of the mechanism of action of MSCs is the production of extracellular vesicles (EVs) that contain proteins, nucleic acids, and lipids that transmit signals to recipient cells that change their biologic behavior. This review briefly summarizes the development of MSCs as a treatment for human diseases as well as describes our present understanding of exosomes; how they exert their effects on target cells, and how they are differentiated from other EVs. The current treatment paradigm for acute radiation syndrome (ARS) is discussed, and how MSCs and MSC derived exosomes are emerging as treatment options for treating patients after radiation exposure. Other conditions such as graft-versus-host disease and cardiovascular disease/stroke are discussed as examples to highlight the immunomodulatory and regenerative capacity of MSC-exosomes. Finally, a consideration is given to how these cell-based therapies could possibly be deployed in the event of a catastrophic radiation exposure event.
Collapse
Affiliation(s)
- Matthew H Forsberg
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - John A Kink
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States.,Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Peiman Hematti
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States.,Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Christian M Capitini
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States.,Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
92
|
Ji HL, Liu C, Zhao RZ. Stem cell therapy for COVID-19 and other respiratory diseases: Global trends of clinical trials. World J Stem Cells 2020; 12:471-480. [PMID: 32742564 PMCID: PMC7360994 DOI: 10.4252/wjsc.v12.i6.471] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/17/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023] Open
Abstract
Respiratory diseases, including coronavirus disease 2019 and chronic obstructive pulmonary disease (COPD), are leading causes of global fatality. There are no effective and curative treatments, but supportive care only. Cell therapy is a promising therapeutic strategy for refractory and unmanageable pulmonary illnesses, as proved by accumulating preclinical studies. Stem cells consist of totipotent, pluripotent, multipotent, and unipotent cells with the potential to differentiate into cell types requested for repair. Mesenchymal stromal cells, endothelial progenitor cells, peripheral blood stem cells, and lung progenitor cells have been applied to clinical trials. To date, the safety and feasibility of stem cell and extracellular vesicles administration have been confirmed by numerous phase I/II trials in patients with COPD, acute respiratory distress syndrome, bronchial dysplasia, idiopathic pulmonary fibrosis, pulmonary artery hypertension, and silicosis. Five routes and a series of doses have been tested for tolerance and advantages of different regimes. In this review, we systematically summarize the global trends for the cell therapy of common airway and lung diseases registered for clinical trials. The future directions for both new clinical trials and preclinical studies are discussed.
Collapse
Affiliation(s)
- Hong-Long Ji
- Department of Cellular and Molecular Biology, University of Texas Health Science Centre at Tyler, Tyler, TX 75708, United States
- Texas Lung Injury Institute, University of Texas Health Science Centre at Tyler, Tyler, TX 75708, United States
| | - Cong Liu
- School of Medicine, Southern University of Science and Technology, Shenzhen 518000, Guangdong Province, China
| | - Run-Zhen Zhao
- Department of Cellular and Molecular Biology, University of Texas Health Science Centre at Tyler, Tyler, TX 75708, United States
| |
Collapse
|
93
|
Apolipoprotein A-I Supports MSCs Survival under Stress Conditions. Int J Mol Sci 2020; 21:ijms21114062. [PMID: 32517119 PMCID: PMC7312015 DOI: 10.3390/ijms21114062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022] Open
Abstract
Clinical trials have shown the safety of mesenchymal stem/stromal cells (MSCs) transplantation, but the effectiveness of these treatments is limited. Since, transplanted MSCs will undergo metabolic disturbances in the bloodstream, we investigated the influence of blood plasmas of type 2 diabetes (T2D) patients on MSCs viability and examined whether apolipoprotein A-I (apoA-I) could protect cells from stressful conditions of serum deprivation (SD), hypoxia, and elevated concentrations of reactive oxygen species (ROS). ApoA-I exhibits anti-inflammatory, immune activities, improves glycemic control, and is suitable for T2D patients but its influence on MSCs remains unknown. For the first time we have shown that apoA-I decreases intracellular ROS and supports proliferative rate of MSCs, thereby increasing cell count in oxidation conditions. ApoA-I did not influence cell cycle when MSCs were predominantly in the G0/G1 phases under conditions of SD/hypoxia, activated proliferation rapidly, and reduced apoptosis during MSCs transition to the oxygenation or oxidation conditions. Finally, it was found that the blood plasma of T2D individuals had a cytotoxic effect on MSCs in 39% of cases and had a wide variability of antioxidant properties. ApoA-I protects cells under all adverse conditions and can increase the efficiency of MSCs transplantation in T2D patients.
Collapse
|
94
|
Bonadies L, Zaramella P, Porzionato A, Perilongo G, Muraca M, Baraldi E. Present and Future of Bronchopulmonary Dysplasia. J Clin Med 2020; 9:jcm9051539. [PMID: 32443685 PMCID: PMC7290764 DOI: 10.3390/jcm9051539] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/04/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common respiratory disorder among infants born extremely preterm. The pathogenesis of BPD involves multiple prenatal and postnatal mechanisms affecting the development of a very immature lung. Their combined effects alter the lung's morphogenesis, disrupt capillary gas exchange in the alveoli, and lead to the pathological and clinical features of BPD. The disorder is ultimately the result of an aberrant repair response to antenatal and postnatal injuries to the developing lungs. Neonatology has made huge advances in dealing with conditions related to prematurity, but efforts to prevent and treat BPD have so far been only partially effective. Seeing that BPD appears to have a role in the early origin of chronic obstructive pulmonary disease, its prevention is pivotal also in long-term respiratory outcome of these patients. There is currently some evidence to support the use of antenatal glucocorticoids, surfactant therapy, protective noninvasive ventilation, targeted saturations, early caffeine treatment, vitamin A, and fluid restriction, but none of the existing strategies have had any significant impact in reducing the burden of BPD. New areas of research are raising novel therapeutic prospects, however. For instance, early topical (intratracheal or nebulized) steroids seem promising: they might help to limit BPD development without the side effects of systemic steroids. Evidence in favor of stem cell therapy has emerged from several preclinical trials, and from a couple of studies in humans. Mesenchymal stromal/stem cells (MSCs) have revealed a reparatory capability, preventing the progression of BPD in animal models. Administering MSC-conditioned media containing extracellular vesicles (EVs) have also demonstrated a preventive action, without the potential risks associated with unwanted engraftment or the adverse effects of administering cells. In this paper, we explore these emerging treatments and take a look at the revolutionary changes in BPD and neonatology on the horizon.
Collapse
Affiliation(s)
- Luca Bonadies
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (L.B.); (P.Z.)
| | - Patrizia Zaramella
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (L.B.); (P.Z.)
| | - Andrea Porzionato
- Human Anatomy Section, Department of Neurosciences, University of Padova, 35128 Padova, Italy;
| | - Giorgio Perilongo
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy;
| | - Maurizio Muraca
- Institute of Pediatric Research “Città della Speranza”, Stem Cell and Regenerative Medicine Laboratory, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy;
| | - Eugenio Baraldi
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (L.B.); (P.Z.)
- Correspondence: ; Tel.: +39-049-821-3560; Fax: +39-049-821-3502
| |
Collapse
|
95
|
Abstract
Abstract
Purpose of Review
Mesenchymal stromal cell (MSC)–based therapies provide a platform for new therapeutic strategies in lung diseases. This review provides an overview of the current status of the field, along with some of the challenges ahead including better understanding of MSC actions in different lung diseases, personalized approaches to select patients most likely to benefit, and the growing problem of stem cell tourism.
Recent Findings
A newly evolving concept suggests that MSCs shape their immunomodulatory actions depending on the environment they encounter. Furthermore, in some models, it appears that dying or dead cells may contribute to the therapeutic efficacy by activating the host response.
Summary
Despite many pre-clinical studies demonstrating that MSCs can be used to treat lung disorders, clinical trials have failed to show improved outcome. Understanding the complex interaction between MSCs and the host microenvironment is likely to be an important area for enhancing the efficacy of MSC-based cell therapies.
Collapse
|
96
|
De Paepe ME, Wong T, Chu S, Mao Q. Stromal cell-derived factor-1 (SDF-1) expression in very preterm human lungs: potential relevance for stem cell therapy for bronchopulmonary dysplasia. Exp Lung Res 2020; 46:146-156. [PMID: 32281423 DOI: 10.1080/01902148.2020.1751899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Background: The axis formed by CXC chemokine receptor 4 (CXCR4), expressed on mesenchymal stromal cells (MSCs), and stromal cell-derived factor-1 (SDF-1), expressed in recipient organs, is a critical mediator of MSC migration in non-pulmonary injury models. The role and regulation of SDF-1 expression in preterm lungs, of potential relevance for MSC-based cell therapy for bronchopulmonary dysplasia (BPD), is unknown. The aim of this study was to determine the spatiotemporal pattern of CXCR4/SDF-1 expression in lungs of extremely preterm infants at risk for BPD.Methods: Postmortem lung samples were collected from ventilated extremely preterm infants who died between 23 and 29 wks ("short-term ventilated") or between 36 and 39 wks ("long-term ventilated") corrected postmenstrual age. Results were compared with age-matched infants who had lived <12 h or stillborn infants ("early" and "late" controls). CXCR4 and SDF-1 expression was studied by immunohistochemistry, immunofluorescence/confocal microscopy, and qRT-PCR analysis.Results: Compared with age-matched controls without antenatal infection, lungs of early control infants with evidence of intrauterine infection/inflammation showed significant upregulation of SDF-1 expression, localized to the respiratory epithelium, and of CXCR4 expression, localized to stromal cells. Similarly, pulmonary SDF-1 mRNA levels were significantly higher in long-term ventilated ex-premature infants with established BPD than in age-matched controls. The pulmonary vasculature was devoid of SDF-1 expression at all time points. Endogenous CXCR4-positive stromal cells were preferentially localized along the basal aspect of SDF-1-positive bronchial and respiratory epithelial cells, suggestive of functionality of the CXCR4/SDF-1 axis.Conclusions: Incipient and established neonatal lung injury is associated with upregulation of SDF-1 expression, restricted to the respiratory epithelium. Knowledge of the clinical associations, time-course and localization of pulmonary SDF-1 expression may guide decisions about the optimal timing and delivery route of MSC-based cell therapy for BPD.
Collapse
Affiliation(s)
- Monique E De Paepe
- Department of Pathology and Laboratory Medicine, Women and Infants Hospital, Alpert Medical School of Brown University, Providence, RI, USA
| | - Talia Wong
- Department of Pathology and Laboratory Medicine, Women and Infants Hospital, Alpert Medical School of Brown University, Providence, RI, USA
| | - Sharon Chu
- Department of Pathology and Laboratory Medicine, Women and Infants Hospital, Alpert Medical School of Brown University, Providence, RI, USA
| | - Quanfu Mao
- Department of Pathology and Laboratory Medicine, Women and Infants Hospital, Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
97
|
Abstract
PURPOSE OF REVIEW Clinical trials of mesenchymal stem/stromal cell (MSC) therapy for bronchopulmonary dysplasia (BPD) are underway. A thorough understanding of the preclinical work that underpins these trials is critical for neonatal practitioners to properly evaluate them. RECENT FINDINGS Significant progress has been made in understanding that MSCs have anti-inflammatory and proangiogenic effects, and that these can be mediated by the noncellular exosome fraction of MSCs. SUMMARY In rodent hyperoxia models of BPD, MSCs have a proangiogenic effect mediated largely by vascular endothelial growth factor and shift the balance of endogenous lung cells from a proinflammatory to a prohealing phenotype. MSC-derived exosomes can recapitulate these effects.
Collapse
|
98
|
Moreira AG, Siddiqui SK, Macias R, Johnson-Pais TL, Wilson D, Gelfond JAL, Vasquez MM, Seidner SR, Mustafa SB. Oxygen and mechanical ventilation impede the functional properties of resident lung mesenchymal stromal cells. PLoS One 2020; 15:e0229521. [PMID: 32142526 PMCID: PMC7064315 DOI: 10.1371/journal.pone.0229521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/07/2020] [Indexed: 01/18/2023] Open
Abstract
Resident/endogenous mesenchymal stromal cells function to promote the normal development, growth, and repair of tissues. Following premature birth, the effects of routine neonatal care (e.g. oxygen support and mechanical ventilation) on the biological properties of lung endogenous mesenchymal stromal cells is (L-MSCs) is poorly understood. New Zealand white preterm rabbits were randomized into the following groups: (i) sacrificed at birth (Fetal), (ii) spontaneously breathing with 50% O2 for 4 hours (SB), or (iii) mechanical ventilation with 50% O2 for 4h (MV). At time of necropsy, L-MSCs were isolated, characterized, and compared. L-MSCs isolated from the MV group had decreased differentiation capacity, ability to form stem cell colonies, and expressed less vascular endothelial growth factor mRNA. Compared to Fetal L-MSCs, 98 and 458 genes were differentially expressed in the L-MSCs derived from the SB and MV groups, respectively. Gene ontology analysis revealed these genes were involved in key regulatory processes including cell cycle, cell division, and angiogenesis. Furthermore, the L-MSCs from the SB and MV groups had smaller mitochondria, nuclear changes, and distended endoplasmic reticula. Short-term hyperoxia/mechanical ventilation after birth alters the biological properties of L-MSCs and stimulates genomic changes that may impact their reparative potential.
Collapse
Affiliation(s)
- Alvaro G. Moreira
- Division of Neonatology, Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Sartaj K. Siddiqui
- Division of Neonatology, Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Rolando Macias
- Division of Neonatology, Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Teresa L. Johnson-Pais
- Department of Urology, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Desiree Wilson
- Department of Periodontics, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Jonathon A. L. Gelfond
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Margarita M. Vasquez
- Division of Neonatology, Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Steven R. Seidner
- Division of Neonatology, Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Shamimunisa B. Mustafa
- Division of Neonatology, Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
99
|
Mesenchymal stem/stromal cells stably transduced with an inhibitor of CC chemokine ligand 2 ameliorate bronchopulmonary dysplasia and pulmonary hypertension. Cytotherapy 2020; 22:180-192. [PMID: 32139242 DOI: 10.1016/j.jcyt.2020.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/20/2022]
Abstract
Perinatal bronchopulmonary dysplasia (BPD) is defined as lung injury in preterm infants caused by various factors, resulting in serious respiratory dysfunction and high mortality. The administration of mesenchymal stem/stromal cells (MSCs) to treat/prevent BPD has proven to have certain therapeutic effects. However, MSCs can only weakly regulate macrophage function, which is strongly involved in the development of BPD. 7ND-MSCs are MSCs transfected with 7ND, a truncated version of CC chemokine ligand 2 (CCL2) that promotes macrophage activation, using a lentiviral vector. In the present study, we show in a BPD rat model that 7ND-MSC administration, but not MSCs alone, ameliorated the impaired alveolarization evaluated by volume density and surface area in the lung tissue, as well as pulmonary artery remodeling and pulmonary hypertension induced by BPD. In addition, 7ND-MSCs, but not MSCs alone, reduced M1 macrophages and the messenger RNA expressions of interleukin-6 and CCL2 in the lung tissue. Thus, the present study showed the treatment effect of 7ND-MSCs in a BPD rat model, which was more effective than that of MSCs alone.
Collapse
|
100
|
Behnke J, Kremer S, Shahzad T, Chao CM, Böttcher-Friebertshäuser E, Morty RE, Bellusci S, Ehrhardt H. MSC Based Therapies-New Perspectives for the Injured Lung. J Clin Med 2020; 9:jcm9030682. [PMID: 32138309 PMCID: PMC7141210 DOI: 10.3390/jcm9030682] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 12/11/2022] Open
Abstract
Chronic lung diseases pose a tremendous global burden. At least one in four people suffer from severe pulmonary sequelae over the course of a lifetime. Despite substantial improvements in therapeutic interventions, persistent alleviation of clinical symptoms cannot be offered to most patients affected to date. Despite broad discrepancies in origins and pathomechanisms, the important disease entities all have in common the pulmonary inflammatory response which is central to lung injury and structural abnormalities. Mesenchymal stem cells (MSC) attract particular attention due to their broadly acting anti-inflammatory and regenerative properties. Plenty of preclinical studies provided congruent and convincing evidence that MSC have the therapeutic potential to alleviate lung injuries across ages. These include the disease entities bronchopulmonary dysplasia, asthma and the different forms of acute lung injury and chronic pulmonary diseases in adulthood. While clinical trials are so far restricted to pioneering trials on safety and feasibility, preclinical results point out possibilities to boost the therapeutic efficacy of MSC application and to take advantage of the MSC secretome. The presented review summarizes the most recent advances and highlights joint mechanisms of MSC action across disease entities which provide the basis to timely tackle this global disease burden.
Collapse
Affiliation(s)
- Judith Behnke
- Department of General Pediatrics and Neonatology, Justus-Liebig-University, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Feulgenstrasse 12, 35392 Gießen, Germany; (J.B.); (S.K.); (T.S.); (C.-M.C.)
| | - Sarah Kremer
- Department of General Pediatrics and Neonatology, Justus-Liebig-University, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Feulgenstrasse 12, 35392 Gießen, Germany; (J.B.); (S.K.); (T.S.); (C.-M.C.)
| | - Tayyab Shahzad
- Department of General Pediatrics and Neonatology, Justus-Liebig-University, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Feulgenstrasse 12, 35392 Gießen, Germany; (J.B.); (S.K.); (T.S.); (C.-M.C.)
| | - Cho-Ming Chao
- Department of General Pediatrics and Neonatology, Justus-Liebig-University, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Feulgenstrasse 12, 35392 Gießen, Germany; (J.B.); (S.K.); (T.S.); (C.-M.C.)
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center (UGMLC), Cardiopulmonary Institute (CPI), German Center for Lung Research (DZL), Aulweg 130, 35392 Giessen, Germany;
| | | | - Rory E. Morty
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, German Center for Lung Research (DZL), Ludwigstrasse 43, 61231 Bad Nauheim, Germany;
| | - Saverio Bellusci
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center (UGMLC), Cardiopulmonary Institute (CPI), German Center for Lung Research (DZL), Aulweg 130, 35392 Giessen, Germany;
| | - Harald Ehrhardt
- Department of General Pediatrics and Neonatology, Justus-Liebig-University, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Feulgenstrasse 12, 35392 Gießen, Germany; (J.B.); (S.K.); (T.S.); (C.-M.C.)
- Correspondence: ; Tel.: +49-985-43400; Fax: +49-985-43419
| |
Collapse
|