51
|
Lin H, Kuzminov FI, Park J, Lee S, Falkowski PG, Gorbunov MY. The fate of photons absorbed by phytoplankton in the global ocean. Science 2016; 351:264-7. [DOI: 10.1126/science.aab2213] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 12/09/2015] [Indexed: 11/03/2022]
Affiliation(s)
- Hanzhi Lin
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, 71 Dudley Road, New Brunswick, NJ, USA
| | - Fedor I. Kuzminov
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, 71 Dudley Road, New Brunswick, NJ, USA
| | - Jisoo Park
- Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-Gu, Incheon, Republic of Korea
| | - SangHoon Lee
- Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-Gu, Incheon, Republic of Korea
| | - Paul G. Falkowski
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, 71 Dudley Road, New Brunswick, NJ, USA
- Department of Earth and Planetary Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Maxim Y. Gorbunov
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, 71 Dudley Road, New Brunswick, NJ, USA
| |
Collapse
|
52
|
Ramanan C, Gruber JM, Malý P, Negretti M, Novoderezhkin V, Krüger TPJ, Mančal T, Croce R, van Grondelle R. The role of exciton delocalization in the major photosynthetic light-harvesting antenna of plants. Biophys J 2016; 108:1047-56. [PMID: 25762317 DOI: 10.1016/j.bpj.2015.01.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 01/05/2015] [Accepted: 01/21/2015] [Indexed: 11/18/2022] Open
Abstract
In the major peripheral plant light-harvesting complex LHCII, excitation energy is transferred between chlorophylls along an energetic cascade before it is transmitted further into the photosynthetic assembly to be converted into chemical energy. The efficiency of these energy transfer processes involves a complicated interplay of pigment-protein structural reorganization and protein dynamic disorder, and the system must stay robust within the fluctuating protein environment. The final, lowest energy site has been proposed to exist within a trimeric excitonically coupled chlorophyll (Chl) cluster, comprising Chls a610-a611-a612. We studied an LHCII monomer with a site-specific mutation resulting in the loss of Chls a611and a612, and find that this mutant exhibits two predominant overlapping fluorescence bands. From a combination of bulk measurements, single-molecule fluorescence characterization, and modeling, we propose the two fluorescence bands originate from differing conditions of exciton delocalization and localization realized in the mutant. Disruption of the excitonically coupled terminal emitter Chl trimer results in an increased sensitivity of the excited state energy landscape to the disorder induced by the protein conformations. Consequently, the mutant demonstrates a loss of energy transfer efficiency. On the contrary, in the wild-type complex, the strong resonance coupling and correspondingly high degree of excitation delocalization within the Chls a610-a611-a612 cluster dampens the influence of the environment and ensures optimal communication with neighboring pigments. These results indicate that the terminal emitter trimer is thus an essential design principle for maintaining the efficient light-harvesting function of LHCII in the presence of protein disorder.
Collapse
Affiliation(s)
- Charusheela Ramanan
- Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands.
| | - J Michael Gruber
- Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Pavel Malý
- Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands; Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic
| | - Marco Negretti
- Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Vladimir Novoderezhkin
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Tjaart P J Krüger
- Department of Physics, Faculty of Natural and Agricultural Sciences, University of Pretoria, Hatfield, South Africa
| | - Tomáš Mančal
- Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands; Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic
| | - Roberta Croce
- Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Rienk van Grondelle
- Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
53
|
Prandi IG, Viani L, Andreussi O, Mennucci B. Combining classical molecular dynamics and quantum mechanical methods for the description of electronic excitations: The case of carotenoids. J Comput Chem 2016; 37:981-91. [PMID: 26748488 DOI: 10.1002/jcc.24286] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/28/2015] [Accepted: 12/02/2015] [Indexed: 01/19/2023]
Abstract
Carotenoids are important actors both in light-harvesting (LH) and in photoprotection functions of photosynthetic pigment-protein complexes. A deep theoretical investigation of this multiple role is still missing owing to the difficulty of describing the delicate interplay between electronic and nuclear degrees of freedom. A possible strategy is to combine accurate quantum mechanical (QM) methods with classical molecular dynamics. To do this, however, accurate force-fields (FF) are necessary. This article presents a new FF for the different carotenoids present in LH complexes of plants. The results show that all the important structural properties described by the new FF are in very good agreement with QM reference values. This increased accuracy in the simulation of the structural fluctuations is also reflected in the description of excited states. Both the energy order and the different nature of the lowest singlet states are preserved during the dynamics when the new FF is used, whereas an unphysical mixing is found when a standard FF is used.
Collapse
Affiliation(s)
- Ingrid G Prandi
- Dipartimento Di Chimica E Chimica Industriale, University of Pisa, via G. Moruzzi 13, Pisa, I-56124, Italy
| | - Lucas Viani
- Dipartimento Di Chimica E Chimica Industriale, University of Pisa, via G. Moruzzi 13, Pisa, I-56124, Italy.,Institute for Fluid Dynamics, Nanoscience and Industrial Mathematics, Universidad Carlos III De Madrid, Av. De La Universidad 30, Leganés, E-28911, Spain
| | - Oliviero Andreussi
- Dipartimento Di Chimica E Chimica Industriale, University of Pisa, via G. Moruzzi 13, Pisa, I-56124, Italy
| | - Benedetta Mennucci
- Dipartimento Di Chimica E Chimica Industriale, University of Pisa, via G. Moruzzi 13, Pisa, I-56124, Italy
| |
Collapse
|
54
|
Janik E, Bednarska J, Zubik M, Sowinski K, Luchowski R, Grudzinski W, Matosiuk D, Gruszecki WI. The xanthophyll cycle pigments, violaxanthin and zeaxanthin, modulate molecular organization of the photosynthetic antenna complex LHCII. Arch Biochem Biophys 2016; 592:1-9. [PMID: 26773208 DOI: 10.1016/j.abb.2016.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/18/2015] [Accepted: 01/05/2016] [Indexed: 10/22/2022]
Abstract
The effect of violaxanthin and zeaxanthin, two main carotenoids of the xanthophyll cycle, on molecular organization of LHCII, the principal photosynthetic antenna complex of plants, was studied in a model system based on lipid-protein membranes, by means of analysis of 77 K chlorophyll a fluorescence and "native" electrophoresis. Violaxanthin was found to promote trimeric organization of LHCII, contrary to zeaxanthin which was found to destabilize trimeric structures. Moreover, violaxanthin was found to induce decomposition of oligomeric LHCII structures formed in the lipid phase and characterized by the fluorescence emission band at 715 nm. Both pigments promoted formation of two-component supramolecular structures of LHCII and xanthophylls. The violaxanthin-stabilized structures were composed mostly of LHCII trimers while, the zeaxanthin-stabilized supramolecular structures of LHCII showed more complex organization which depended periodically on the xanthophyll content. The effect of the xanthophyll cycle pigments on molecular organization of LHCII was analyzed based on the results of molecular modeling and discussed in terms of a physiological meaning of this mechanism. Supramolecular structures of LHCII stabilized by violaxanthin, prevent uncontrolled oligomerization of LHCII, potentially leading to excitation quenching, therefore can be considered as structures protecting the photosynthetic apparatus against energy loses at low light intensities.
Collapse
Affiliation(s)
- Ewa Janik
- Department of Biophysics, Institute of Physics, Maria Curie-Skłodowska University, 20-031, Lublin, Poland
| | - Joanna Bednarska
- Department of Biophysics, Institute of Physics, Maria Curie-Skłodowska University, 20-031, Lublin, Poland
| | - Monika Zubik
- Department of Biophysics, Institute of Physics, Maria Curie-Skłodowska University, 20-031, Lublin, Poland
| | - Karol Sowinski
- Department of Biophysics, Institute of Physics, Maria Curie-Skłodowska University, 20-031, Lublin, Poland; Faculty of Pharmacy, Medical University, Lublin, Poland
| | - Rafal Luchowski
- Department of Biophysics, Institute of Physics, Maria Curie-Skłodowska University, 20-031, Lublin, Poland
| | - Wojciech Grudzinski
- Department of Biophysics, Institute of Physics, Maria Curie-Skłodowska University, 20-031, Lublin, Poland
| | | | - Wieslaw I Gruszecki
- Department of Biophysics, Institute of Physics, Maria Curie-Skłodowska University, 20-031, Lublin, Poland.
| |
Collapse
|
55
|
Chmeliov J, Trinkunas G, van Amerongen H, Valkunas L. Excitation migration in fluctuating light-harvesting antenna systems. PHOTOSYNTHESIS RESEARCH 2016; 127:49-60. [PMID: 25605669 DOI: 10.1007/s11120-015-0083-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/07/2015] [Indexed: 06/04/2023]
Abstract
Complex multi-exponential fluorescence decay kinetics observed in various photosynthetic systems like photosystem II (PSII) have often been explained by the reversible quenching mechanism of the charge separation taking place in the reaction center (RC) of PSII. However, this description does not account for the intrinsic dynamic disorder of the light-harvesting proteins as well as their fluctuating dislocations within the antenna, which also facilitate the repair of RCs, state transitions, and the process of non-photochemical quenching. Since dynamic fluctuations result in varying connectivity between pigment-protein complexes, they can also lead to non-exponential excitation decay kinetics. Based on this presumption, we have recently proposed a simple conceptual model describing excitation diffusion in a continuous medium and accounting for possible variations of the excitation transfer pathways. In the current work, this model is further developed and then applied to describe fluorescence kinetics originating from very diverse antenna systems, ranging from PSII of various sizes to LHCII aggregates and even the entire thylakoid membrane. In all cases, complex multi-exponential fluorescence kinetics are perfectly reproduced on the entire relevant time scale without assuming any radical pair equilibration at the side of the excitation quencher, but using just a few parameters reflecting the mean excitation energy transfer rate as well as the overall average organization of the photosynthetic antenna.
Collapse
Affiliation(s)
- Jevgenij Chmeliov
- Department of Theoretical Physics, Faculty of Physics, Vilnius University, Saulėtekio Ave. 9, 10222, Vilnius, Lithuania
- Institute of Physics, Center for Physical Sciences and Technology, Gostauto 11, 01108, Vilnius, Lithuania
| | - Gediminas Trinkunas
- Department of Theoretical Physics, Faculty of Physics, Vilnius University, Saulėtekio Ave. 9, 10222, Vilnius, Lithuania
- Institute of Physics, Center for Physical Sciences and Technology, Gostauto 11, 01108, Vilnius, Lithuania
| | - Herbert van Amerongen
- Laboratory of Biophysics, Wageningen University, P.O. Box 8128, 6700, Wageningen, The Netherlands
| | - Leonas Valkunas
- Department of Theoretical Physics, Faculty of Physics, Vilnius University, Saulėtekio Ave. 9, 10222, Vilnius, Lithuania.
- Institute of Physics, Center for Physical Sciences and Technology, Gostauto 11, 01108, Vilnius, Lithuania.
| |
Collapse
|
56
|
Narzi D, Bovi D, De Gaetano P, Guidoni L. Dynamics of the Special Pair of Chlorophylls of Photosystem II. J Am Chem Soc 2015; 138:257-64. [PMID: 26587662 DOI: 10.1021/jacs.5b10523] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cholophylls are at the basis of the photosynthetic energy conversion mechanisms in algae, plants, and cyanobacteria. In photosystem II, the photoproduced electrons leave a special pair of chlorophylls (namely, P(D1) and P(D2)) that becomes cationic. This oxidizing pair [P(D1),P(D2)](+), in turn, triggers a cascade of oxidative events, eventually leading to water splitting and oxygen evolution. In the present work, using quantum mechanics/molecular mechanics calculations, we investigate the electronic structure and the dynamics of the P(D1)P(D2) special pair in both its oxidized and reduced states. In agreement with previously reported static calculations, the symmetry between the two chlorophylls was found to be broken, the positive charge being preferentially located on P(D1). Nevertheless, this study reveals for the first time that large charge fluctuations occur along dynamics, temporarily inverting the charge preference for the two branches. Finally, a vibrational analysis pinpointed that such charge fluctuations are strongly coupled to specific modes of the special pair.
Collapse
|
57
|
Hägele F, Baur S, Menegat A, Gerhards R, Carle R, Schweiggert RM. Chlorophyll Fluorescence Imaging for Monitoring the Effects of Minimal Processing and Warm Water Treatments on Physiological Properties and Quality Attributes of Fresh-Cut Salads. FOOD BIOPROCESS TECH 2015. [DOI: 10.1007/s11947-015-1661-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
58
|
Saga Y, Hayashi K, Hirota K, Harada J, Tamiaki H. Modification of the esterifying farnesyl chain in light-harvesting bacteriochlorophylls in green sulfur photosynthetic bacteria by supplementation of 9-decyn-1-ol, 9-decen-1-ol, and decan-1-ol. J Photochem Photobiol A Chem 2015. [DOI: 10.1016/j.jphotochem.2015.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
59
|
Adamiec M, Gibasiewicz K, Luciński R, Giera W, Chełminiak P, Szewczyk S, Sipińska W, van Grondelle R, Jackowski G. Excitation energy transfer and charge separation are affected in Arabidopsis thaliana mutants lacking light-harvesting chlorophyll a/b binding protein Lhcb3. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 153:423-8. [PMID: 26562806 DOI: 10.1016/j.jphotobiol.2015.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/26/2015] [Accepted: 11/02/2015] [Indexed: 10/22/2022]
Abstract
The composition of LHCII trimers as well as excitation energy transfer and charge separation in grana cores of Arabidopsis thaliana mutant lacking chlorophyll a/b binding protein Lhcb3 have been investigated and compared to those in wild-type plants. In grana cores of lhcb3 plants we observed increased amounts of Lhcb1 and Lhcb2 apoproteins per PSII core. The additional copies of Lhcb1 and Lhcb2 are expected to substitute for Lhcb3 in LHCII trimers M as well as in the LHCII "extra" pool, which was found to be modestly enlarged as a result of the absence of Lhcb3. Time-resolved fluorescence measurements reveal a deceleration of the fast phase of excitation dynamics in grana cores of the mutant by ~15 ps, whereas the average fluorescence lifetime is not significantly altered. Monte Carlo modeling predicts a slowing down of the mean hopping time and an increased stabilization of the primary charge separation in the mutant. Thus our data imply that absence of apoprotein Lhcb3 results in detectable differences in excitation energy transfer and charge separation.
Collapse
Affiliation(s)
- Małgorzata Adamiec
- Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, 61-614 Poznań, Poland
| | - Krzysztof Gibasiewicz
- Department of Molecular Biophysics, Faculty of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań, Poland
| | - Robert Luciński
- Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, 61-614 Poznań, Poland
| | - Wojciech Giera
- Department of Molecular Biophysics, Faculty of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań, Poland
| | - Przemysław Chełminiak
- Department of Solid State Theory, Faculty of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań, Poland
| | - Sebastian Szewczyk
- Department of Molecular Biophysics, Faculty of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań, Poland
| | - Weronika Sipińska
- Department of Molecular Biophysics, Faculty of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań, Poland
| | - Rienk van Grondelle
- Department of Physics and Astronomy, VU University, De Boelelaan 1081,1081 HV Amsterdam, The Netherlands
| | - Grzegorz Jackowski
- Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, 61-614 Poznań, Poland.
| |
Collapse
|
60
|
Hall J, Renger T, Picorel R, Krausz E. Circularly polarized luminescence spectroscopy reveals low-energy excited states and dynamic localization of vibronic transitions in CP43. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:115-128. [PMID: 26449206 DOI: 10.1016/j.bbabio.2015.09.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/23/2015] [Accepted: 09/29/2015] [Indexed: 11/26/2022]
Abstract
Circularly polarized luminescence (CPL) spectroscopy is an established but relatively little-used technique that monitors the chirality of an emission. When applied to photosynthetic pigment assemblies, we find that CPL provides sensitive and detailed information on low-energy exciton states, reflecting the interactions, site energies and geometries of interacting pigments. CPL is the emission analog of circular dichroism (CD) and thus spectra explore the optical activity only of fluorescent states of the pigment-protein complex and consequently the nature of the lowest-energy excited states (trap states), whose study is a critical area of photosynthesis research. In this work, we develop the new approach of temperature-dependent CPL spectroscopy, over the 2-120 K temperature range, and apply it to the CP43 proximal antenna protein of photosystem II. Our results confirm strong excitonic interactions for at least one of the two well-established emitting states of CP43 named "A" and "B". Previous structure-based models of CP43 spectra are evaluated in the light of the new CPL data. Our analysis supports the assignments of Shibata et al. [Shibata et al. J. Am. Chem. Soc. 135 (2013) 6903-6914], particularly for the highly-delocalized B-state. This state dominates CPL spectra and is attributed predominantly to chlorophyll a's labeled Chl 634 and Chl 636 (alternatively labeled Chl 43 and 45 by Shibata et al.). The absence of any CPL intensity in intramolecular vibrational sidebands associated with the delocalized "B" excited state is attributed to the dynamic localization of intramolecular vibronic transitions.
Collapse
Affiliation(s)
- Jeremy Hall
- Research School of Chemistry, Australian National University, Canberra, Australia
| | - Thomas Renger
- Institut für Theoretische Physik, Johannes Kepler Universität, Linz, Austria
| | - Rafael Picorel
- Estacion Experimental de Aula Dei (CSIC), Avda. Montañana, Zaragoza, Spain
| | - Elmars Krausz
- Research School of Chemistry, Australian National University, Canberra, Australia.
| |
Collapse
|
61
|
Voitsekhovskaja OV, Tyutereva EV. Chlorophyll b in angiosperms: Functions in photosynthesis, signaling and ontogenetic regulation. JOURNAL OF PLANT PHYSIOLOGY 2015; 189:51-64. [PMID: 26513460 DOI: 10.1016/j.jplph.2015.09.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 05/22/2023]
Abstract
Chlorophyll b (Chlb) is an antenna chlorophyll. The binding of Chlb by antenna proteins is crucial for the correct assembly of the antenna complexes in thylakoid membranes. Since the levels of the proteins of major and minor antenna are affected to different extents by Chlb binding, the availability of Chlb influences the composition and the size of antenna complexes which in turn determine the supramolecular organization of the thylakoid membranes in grana. Therefore, Chlb synthesis levels have a major impact on lateral mobility and diffusion of membrane molecules, and thus affect not only light harvesting and thermal energy dissipation processes, but also linear electron transport and repair processes in grana. Furthermore, in angiosperms Chlb synthesis affects plant functions beyond chloroplasts. First, the stability of pigment-protein complexes in the antennae, which depends on Chlb, is an important factor in the regulation of plant ontogenesis, and Chlb levels were recently shown to influence plant ontogenetic signaling. Second, the amounts of minor antenna proteins in chloroplasts, which depend on the availability of Chlb, were recently shown to affect ABA levels and signaling in plants. These mechanisms can be examined in mutants where Chlb synthesis is reduced or abolished. The dramatic effects caused by the lack of Chlb on plant productivity are interpreted in this review in light of the pleiotropic effects on photosynthesis and signaling, and the potential to manipulate Chlb biosynthesis for the improvement of crop production is discussed.
Collapse
Affiliation(s)
- O V Voitsekhovskaja
- Komarov Botanical Institute, Russian Academy of Sciences, Plant Ecological Physiology, ul. Professora Popova, 2, 197376 St. Petersburg, Russia.
| | - E V Tyutereva
- Komarov Botanical Institute, Russian Academy of Sciences, Plant Ecological Physiology, ul. Professora Popova, 2, 197376 St. Petersburg, Russia
| |
Collapse
|
62
|
Printz B, Guerriero G, Sergeant K, Renaut J, Lutts S, Hausman JF. Ups and downs in alfalfa: Proteomic and metabolic changes occurring in the growing stem. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 238:13-25. [PMID: 26259170 DOI: 10.1016/j.plantsci.2015.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/16/2015] [Indexed: 05/05/2023]
Abstract
The expanding interest for using lignocellulosic biomass in industry spurred the study of the mechanisms underlying plant cell-wall synthesis. Efforts using genetic approaches allowed the disentanglement of major steps governing stem fibre synthesis. Nonetheless, little is known about the relations between the stem maturation and the evolution of its proteome. During Medicago sativa L. maturation, the different internodes grow asynchronously allowing the discrimination of various developmental stages on a same stem. In this study, the proteome of three selected regions of the stem of alfalfa (apical, intermediate and basal) was analyzed and combined with a compositional analysis of the different stem parts. Interestingly, the apical and the median regions share many similarities: high abundance of chloroplast- and mitochondrial-related proteins together with the accumulation of proteins acting in the early steps of fibre production. In the mature basal region, forisomes and stress-related proteins accumulate. The RT-qPCR assessment of the expression of genes coding for members of the cellulose synthase family likewise indicates that fibres and the machinery responsible for the deposition of secondary cell walls are predominantly formed in the apical section. Altogether, this study reflects the metabolic change from the fibre production in the upper stem regions to the acquisition of defence-related functions in the fibrous basal part.
Collapse
Affiliation(s)
- Bruno Printz
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5, Avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg; Groupe de Recherche en Physiologie végétale (GRPV), Earth and Life Institute Agronomy (ELI-A), Université catholique de Louvain, 5 (bte 7.07.13) Place Croix du Sud, B-1348 Louvain-la-Neuve, Belgium
| | - Gea Guerriero
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5, Avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg
| | - Kjell Sergeant
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5, Avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg.
| | - Jenny Renaut
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5, Avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg
| | - Stanley Lutts
- Groupe de Recherche en Physiologie végétale (GRPV), Earth and Life Institute Agronomy (ELI-A), Université catholique de Louvain, 5 (bte 7.07.13) Place Croix du Sud, B-1348 Louvain-la-Neuve, Belgium
| | - Jean-Francois Hausman
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5, Avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg
| |
Collapse
|
63
|
Michael Gruber J, Chmeliov J, Krüger TPJ, Valkunas L, van Grondelle R. Singlet-triplet annihilation in single LHCII complexes. Phys Chem Chem Phys 2015; 17:19844-53. [PMID: 26156159 PMCID: PMC11289710 DOI: 10.1039/c5cp01806d] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/28/2015] [Indexed: 08/02/2024]
Abstract
In light harvesting complex II (LHCII) of higher plants and green algae, carotenoids (Cars) have an important function to quench chlorophyll (Chl) triplet states and therefore avoid the production of harmful singlet oxygen. The resulting Car triplet states lead to a non-linear self-quenching mechanism called singlet-triplet (S-T) annihilation that strongly depends on the excitation density. In this work we investigated the fluorescence decay kinetics of single immobilized LHCIIs at room temperature and found a two-exponential decay with a slow (3.5 ns) and a fast (35 ps) component. The relative amplitude fraction of the fast component increases with increasing excitation intensity, and the resulting decrease in the fluorescence quantum yield suggests annihilation effects. Modulation of the excitation pattern by means of an acousto-optic modulator (AOM) furthermore allowed us to resolve the time-dependent accumulation and decay rate (∼7 μs) of the quenching species. Inspired by singlet-singlet (S-S) annihilation studies, we developed a stochastic model and then successfully applied it to describe and explain all the experimentally observed steady-state and time-dependent kinetics. That allowed us to distinctively identify the quenching mechanism as S-T annihilation. Quantitative fitting resulted in a conclusive set of parameters validating our interpretation of the experimental results. The obtained stochastic model can be generalized to describe S-T annihilation in small molecular aggregates where the equilibration time of excitations is much faster than the annihilation-free singlet excited state lifetime.
Collapse
Affiliation(s)
- J. Michael Gruber
- Department of Biophysics, Faculty of Sciences, Vrije UniversiteitDe Boeleaan 10811081HV AmsterdamThe Netherlands
| | - Jevgenij Chmeliov
- Department of Theoretical Physics, Faculty of Physics, Vilnius UniversitySaulėtekio Ave. 9LT-10222 VilniusLithuania
- Institute of Physics, Center for Physical Sciences and TechnologyGoštauto 11LT-01108 VilniusLithuania
| | - Tjaart P. J. Krüger
- Department of Physics, Faculty of Natural and Agricultural Sciences, University of PretoriaPrivate bag X20Hatfield 0028South Africa
| | - Leonas Valkunas
- Department of Theoretical Physics, Faculty of Physics, Vilnius UniversitySaulėtekio Ave. 9LT-10222 VilniusLithuania
- Institute of Physics, Center for Physical Sciences and TechnologyGoštauto 11LT-01108 VilniusLithuania
| | - Rienk van Grondelle
- Department of Biophysics, Faculty of Sciences, Vrije UniversiteitDe Boeleaan 10811081HV AmsterdamThe Netherlands
| |
Collapse
|
64
|
Tian L, Dinc E, Croce R. LHCII Populations in Different Quenching States Are Present in the Thylakoid Membranes in a Ratio that Depends on the Light Conditions. J Phys Chem Lett 2015; 6:2339-44. [PMID: 26266614 DOI: 10.1021/acs.jpclett.5b00944] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
LHCII is the major antenna complex of plants and algae, where it is involved in light harvesting and photoprotection. Its properties have been extensively studied in vitro, after isolation of the pigment-protein complex from the membranes, but are these properties representative for LHCII in the thylakoid membrane? In this work, we have studied LHCII in the cells of the green alga C. reinhardtii acclimated to different light conditions in the absence of the other components of the photosynthetic apparatus. We show that LHCII exists in the membranes in different fluorescence quenching states, all having a shorter excited-state lifetime than isolated LHCII in detergent. The ratio between these populations depends on the light conditions, indicating that the light is able to regulate the properties of the complexes in the membrane.
Collapse
Affiliation(s)
- Lijin Tian
- Department of Physics and Astronomy, Faculty of Sciences and LaserLaB Amsterdam, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Emine Dinc
- Department of Physics and Astronomy, Faculty of Sciences and LaserLaB Amsterdam, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Roberta Croce
- Department of Physics and Astronomy, Faculty of Sciences and LaserLaB Amsterdam, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
65
|
García-Plazaola JI, Rojas R, Christie DA, Coopman RE. Photosynthetic responses of trees in high-elevation forests: comparing evergreen species along an elevation gradient in the Central Andes. AOB PLANTS 2015; 7:plv058. [PMID: 26002745 PMCID: PMC4512032 DOI: 10.1093/aobpla/plv058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 05/12/2015] [Indexed: 05/17/2023]
Abstract
Plant growth at extremely high elevations is constrained by high daily thermal amplitude, strong solar radiation and water scarcity. These conditions are particularly harsh in the tropics, where the highest elevation treelines occur. In this environment, the maintenance of a positive carbon balance involves protecting the photosynthetic apparatus and taking advantage of any climatically favourable periods. To characterize photoprotective mechanisms at such high elevations, and particularly to address the question of whether these mechanisms are the same as those previously described in woody plants along extratropical treelines, we have studied photosynthetic responses in Polylepis tarapacana Philippi in the central Andes (18°S) along an elevational gradient from 4300 to 4900 m. For comparative purposes, this gradient has been complemented with a lower elevation site (3700 m) where another Polylepis species (P. rugulosa Bitter) occurs. During the daily cycle, two periods of photosynthetic activity were observed: one during the morning when, despite low temperatures, assimilation was high; and the second starting at noon when the stomata closed because of a rise in the vapour pressure deficit and thermal dissipation is prevalent over photosynthesis. From dawn to noon there was a decrease in the content of antenna pigments (chlorophyll b and neoxanthin), together with an increase in the content of xanthophyll cycle carotenoids. These results could be caused by a reduction in the antenna size along with an increase in photoprotection. Additionally, photoprotection was enhanced by a partial overnight retention of de-epoxized xanthophylls. The unique combination of all of these mechanisms made possible the efficient use of the favourable conditions during the morning while still providing enough protection for the rest of the day. This strategy differs completely from that of extratropical mountain trees, which uncouple light-harvesting and energy-use during long periods of unfavourable, winter conditions.
Collapse
Affiliation(s)
- José I García-Plazaola
- Departamento de Biología Vegetal y Ecología, Universidad del País Vasco UPV/EHU, Apdo. 644, E-48080 Bilbao, Spain
| | - Roke Rojas
- Laboratorio de Ecofisiología para la Conservación de Bosques, Instituto de Conservación, Biodiversidad y Territorio, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, Casilla 567, Valdivia, Chile
| | - Duncan A Christie
- Laboratorio de Dendrocronología y Cambio Global, Instituto de Conservación, Biodiversidad y Territorio, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, Casilla 567, Valdivia, Chile Center for Climate and Resilience Research (CR), Chile
| | - Rafael E Coopman
- Laboratorio de Ecofisiología para la Conservación de Bosques, Instituto de Conservación, Biodiversidad y Territorio, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, Casilla 567, Valdivia, Chile
| |
Collapse
|
66
|
Esteban R, Barrutia O, Artetxe U, Fernández-Marín B, Hernández A, García-Plazaola JI. Internal and external factors affecting photosynthetic pigment composition in plants: a meta-analytical approach. THE NEW PHYTOLOGIST 2015; 206:268-280. [PMID: 25414007 DOI: 10.1111/nph.13186] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 10/22/2014] [Indexed: 05/08/2023]
Abstract
Photosynthetic pigment composition has been a major study target in plant ecophysiology during the last three decades. Although more than 2000 papers have been published, a comprehensive evaluation of the responses of photosynthetic pigment composition to environmental conditions is not yet available. After an extensive survey, we compiled data from 525 papers including 809 species (subkingdom Viridiplantae) in which pigment composition was described. A meta-analysis was then conducted to assess the ranges of photosynthetic pigment content. Calculated frequency distributions of pigments were compared with those expected from the theoretical pigment composition. Responses to environmental factors were also analysed. The results revealed that lutein and xanthophyll cycle pigments (VAZ) were highly responsive to the environment, emphasizing the high phenotypic plasticity of VAZ, whereas neoxanthin was very stable. The present meta-analysis supports the existence of relatively narrow limits for pigment ratios and also supports the presence of a pool of free 'unbound' VAZ. Results from this study provide highly reliable ranges of photosynthetic pigment contents as a framework for future research on plant pigments.
Collapse
Affiliation(s)
- Raquel Esteban
- Institute of Agrobiotechnology, IdAB-CSIC-UPNA-Government of Navarre, E-31192, Pamplona, Spain
| | - Oihana Barrutia
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), c/ Sarriena s/n; apdo. 644, 48080, Bilbao, Spain
| | - Unai Artetxe
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), c/ Sarriena s/n; apdo. 644, 48080, Bilbao, Spain
| | - Beatriz Fernández-Marín
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), c/ Sarriena s/n; apdo. 644, 48080, Bilbao, Spain
- Institute of Botany and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Sternwartestraße 15, A-6020, Innsbruck, Austria
| | - Antonio Hernández
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), c/ Sarriena s/n; apdo. 644, 48080, Bilbao, Spain
| | - José Ignacio García-Plazaola
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), c/ Sarriena s/n; apdo. 644, 48080, Bilbao, Spain
| |
Collapse
|
67
|
Affiliation(s)
- Aurélia Chenu
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Gregory D. Scholes
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544;
| |
Collapse
|
68
|
Abstract
Oxygenic photosynthesis is the principal converter of sunlight into chemical energy on Earth. Cyanobacteria and plants provide the oxygen, food, fuel, fibers, and platform chemicals for life on Earth. The conversion of solar energy into chemical energy is catalyzed by two multisubunit membrane protein complexes, photosystem I (PSI) and photosystem II (PSII). Light is absorbed by the pigment cofactors, and excitation energy is transferred among the antennae pigments and converted into chemical energy at very high efficiency. Oxygenic photosynthesis has existed for more than three billion years, during which its molecular machinery was perfected to minimize wasteful reactions. Light excitation transfer and singlet trapping won over fluorescence, radiation-less decay, and triplet formation. Photosynthetic reaction centers operate in organisms ranging from bacteria to higher plants. They are all evolutionarily linked. The crystal structure determination of photosynthetic protein complexes sheds light on the various partial reactions and explains how they are protected against wasteful pathways and why their function is robust. This review discusses the efficiency of photosynthetic solar energy conversion.
Collapse
Affiliation(s)
- Nathan Nelson
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel;
| | | |
Collapse
|
69
|
Gibasiewicz K, Adamiec M, Luciński R, Giera W, Chełminiak P, Szewczyk S, Sipińska W, Głów E, Karolczak J, van Grondelle R, Jackowski G. Monte Carlo simulations of excitation and electron transfer in grana membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:314-327. [DOI: 10.1016/j.bbabio.2014.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 12/05/2014] [Accepted: 12/09/2014] [Indexed: 11/30/2022]
|
70
|
Stirbet A, Riznichenko GY, Rubin AB, Govindjee. Modeling chlorophyll a fluorescence transient: relation to photosynthesis. BIOCHEMISTRY (MOSCOW) 2015; 79:291-323. [PMID: 24910205 DOI: 10.1134/s0006297914040014] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To honor Academician Alexander Abramovitch Krasnovsky, we present here an educational review on the relation of chlorophyll a fluorescence transient to various processes in photosynthesis. The initial event in oxygenic photosynthesis is light absorption by chlorophylls (Chls), carotenoids, and, in some cases, phycobilins; these pigments form the antenna. Most of the energy is transferred to reaction centers where it is used for charge separation. The small part of energy that is not used in photochemistry is dissipated as heat or re-emitted as fluorescence. When a photosynthetic sample is transferred from dark to light, Chl a fluorescence (ChlF) intensity shows characteristic changes in time called fluorescence transient, the OJIPSMT transient, where O (the origin) is for the first measured minimum fluorescence level; J and I for intermediate inflections; P for peak; S for semi-steady state level; M for maximum; and T for terminal steady state level. This transient is a real signature of photosynthesis, since diverse events can be related to it, such as: changes in redox states of components of the linear electron transport flow, involvement of alternative electron routes, the build-up of a transmembrane pH gradient and membrane potential, activation of different nonphotochemical quenching processes, activation of the Calvin-Benson cycle, and other processes. In this review, we present our views on how different segments of the OJIPSMT transient are influenced by various photosynthetic processes, and discuss a number of studies involving mathematical modeling and simulation of the ChlF transient. A special emphasis is given to the slower PSMT phase, for which many studies have been recently published, but they are less known than on the faster OJIP phase.
Collapse
Affiliation(s)
- A Stirbet
- 204 Anne Burras Lane, Newport News, VA 23606, USA.
| | | | | | - Govindjee
- Department of Plant Biology, Department of Biochemistry and Center of Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
71
|
Chmeliov J, Bricker WP, Lo C, Jouin E, Valkunas L, Ruban AV, Duffy CDP. An ‘all pigment’ model of excitation quenching in LHCII. Phys Chem Chem Phys 2015; 17:15857-67. [DOI: 10.1039/c5cp01905b] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This work presents the first all-pigment microscopic model of a major light-harvesting complex of plants and the first attempt to capture the dissipative character of the known structure.
Collapse
Affiliation(s)
- Jevgenij Chmeliov
- Department of Theoretical Physics
- Faculty of Physics
- Vilnius University
- LT-10222 Vilnius
- Lithuania
| | - William P. Bricker
- Department of Energy
- Environmental and Chemical Engineering
- Washington University in St. Louis
- Saint Louis
- USA
| | - Cynthia Lo
- Department of Energy
- Environmental and Chemical Engineering
- Washington University in St. Louis
- Saint Louis
- USA
| | - Elodie Jouin
- The School of Biological and Chemical Sciences
- Queen Mary
- University of London
- London E1 4NS
- UK
| | - Leonas Valkunas
- Department of Theoretical Physics
- Faculty of Physics
- Vilnius University
- LT-10222 Vilnius
- Lithuania
| | - Alexander V. Ruban
- The School of Biological and Chemical Sciences
- Queen Mary
- University of London
- London E1 4NS
- UK
| | | |
Collapse
|
72
|
Büchel C. Evolution and function of light harvesting proteins. JOURNAL OF PLANT PHYSIOLOGY 2015; 172:62-75. [PMID: 25240794 DOI: 10.1016/j.jplph.2014.04.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/11/2014] [Accepted: 04/14/2014] [Indexed: 05/10/2023]
Abstract
Photosynthetic eukaryotes exhibit very different light-harvesting proteins, but all contain membrane-intrinsic light-harvesting complexes (Lhcs), either as additional or sole antennae. Lhcs non-covalently bind chlorophyll a and in most cases another Chl, as well as very different carotenoids, depending on the taxon. The proteins fall into two major groups: The well-defined Lhca/b group of proteins binds typically Chl b and lutein, and the group is present in the 'green lineage'. The other group consists of Lhcr/Lhcf, Lhcz and Lhcx/LhcSR proteins. The former are found in the so-called Chromalveolates, where they mostly bind Chl c and carotenoids very efficient in excitation energy transfer, and in their red algae ancestors. Lhcx/LhcSR are present in most Chromalveolates and in some members of the green lineage as well. Lhcs function in light harvesting, but also in photoprotection, and they influence the organisation of the thylakoid membrane. The different functions of the Lhc subfamilies are discussed in the light of their evolution.
Collapse
Affiliation(s)
- Claudia Büchel
- Goethe University Frankfurt, Institute of Molecular Biosciences, Max von Laue Str. 9, 60438 Frankfurt, Germany.
| |
Collapse
|
73
|
Dall'Osto L, Ünlü C, Cazzaniga S, van Amerongen H. Disturbed excitation energy transfer in Arabidopsis thaliana mutants lacking minor antenna complexes of photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1981-1988. [DOI: 10.1016/j.bbabio.2014.09.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 09/28/2014] [Accepted: 09/29/2014] [Indexed: 10/24/2022]
|
74
|
Shabestari MH, Wolfs CJAM, Spruijt RB, van Amerongen H, Huber M. Exploring the structure of the 100 amino-acid residue long N-terminus of the plant antenna protein CP29. Biophys J 2014; 106:1349-58. [PMID: 24655510 DOI: 10.1016/j.bpj.2013.11.4506] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 11/14/2013] [Accepted: 11/27/2013] [Indexed: 12/01/2022] Open
Abstract
The structure of the unusually long (∼100 amino-acid residues) N-terminal domain of the light-harvesting protein CP29 of plants is not defined in the crystal structure of this membrane protein. We studied the N-terminus using two electron paramagnetic resonance (EPR) approaches: the rotational diffusion of spin labels at 55 residues with continuous-wave EPR, and three sets of distances with a pulsed EPR method. The N-terminus is relatively structured. Five regions that differ considerably in their dynamics are identified. Two regions have low rotational diffusion, one of which shows α-helical character suggesting contact with the protein surface. This immobile part is flanked by two highly dynamic, unstructured regions (loops) that cover residues 10-22 and 82-91. These loops may be important for the interaction with other light-harvesting proteins. The region around residue 4 also has low rotational diffusion, presumably because it attaches noncovalently to the protein. This section is close to a phosphorylation site (Thr-6) in related proteins, such as those encoded by the Lhcb4.2 gene. Phosphorylation might influence the interaction with other antenna complexes, thereby regulating the supramolecular organization in the thylakoid membrane.
Collapse
Affiliation(s)
| | - Cor J A M Wolfs
- Laboratory of Biophysics, Wageningen University, Wageningen, The Netherlands
| | - Ruud B Spruijt
- Laboratory of Biophysics, Wageningen University, Wageningen, The Netherlands
| | | | - Martina Huber
- Department of Molecular Physics, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
75
|
Sun R, Liu K, Dong L, Wu Y, Paulsen H, Yang C. Direct energy transfer from the major antenna to the photosystem II core complexes in the absence of minor antennae in liposomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:248-261. [PMID: 25461977 DOI: 10.1016/j.bbabio.2014.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 11/13/2014] [Accepted: 11/18/2014] [Indexed: 10/24/2022]
Abstract
Minor antennae of photosystem (PS) II, located between the PSII core complex and the major antenna (LHCII), are important components for the structural and functional integrity of PSII supercomplexes. In order to study the functional significance of minor antennae in the energetic coupling between LHCII and the PSII core, characteristics of PSII-LHCII proteoliposomes, with or without minor antennae, were investigated. Two types of PSII preparations containing different antenna compositions were isolated from pea: 1) the PSII preparation composed of the PSII core complex, all of the minor antennae, and a small amount of major antennae (MCC); and 2) the purified PSII dimeric core complexes without periphery antenna (CC). They were incorporated, together with LHCII, into liposomes composed of thylakoid membrane lipids. The spectroscopic and functional characteristics were measured. 77K fluorescence emission spectra revealed an increased spectral weight of fluorescence from PSII reaction center in the CC-LHCII proteoliposomes, implying energetic coupling between LHCII and CC in the proteoliposomes lacking minor antennae. This result was further confirmed by chlorophyll a fluorescence induction kinetics. The incorporation of LHCII together with CC markedly increased the antenna cross-section of the PSII core complex. The 2,6-dichlorophenolindophenol photoreduction measurement implied that the lack of minor antennae in PSII supercomplexes did not block the energy transfer from LHCII to the PSII core complex. In conclusion, it is possible, in liposomes, that LHCII transfer energy directly to the PSII core complex, in the absence of minor antennae.
Collapse
Affiliation(s)
- Ruixue Sun
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Beijing 100093, China; University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Kun Liu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Beijing 100093, China
| | - Lianqing Dong
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Beijing 100093, China; University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Yuling Wu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Beijing 100093, China; University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Harald Paulsen
- Institut für Allgemeine Botanik, Johannes-Gutenberg-Universität Mainz, Johannes-von-Müllerweg 6, 55099 Mainz, Germany
| | - Chunhong Yang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Beijing 100093, China.
| |
Collapse
|
76
|
Natali A, Roy LM, Croce R. In vitro reconstitution of light-harvesting complexes of plants and green algae. J Vis Exp 2014:e51852. [PMID: 25350712 PMCID: PMC4692416 DOI: 10.3791/51852] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In plants and green algae, light is captured by the light-harvesting complexes (LHCs), a family of integral membrane proteins that coordinate chlorophylls and carotenoids. In vivo, these proteins are folded with pigments to form complexes which are inserted in the thylakoid membrane of the chloroplast. The high similarity in the chemical and physical properties of the members of the family, together with the fact that they can easily lose pigments during isolation, makes their purification in a native state challenging. An alternative approach to obtain homogeneous preparations of LHCs was developed by Plumley and Schmidt in 19871, who showed that it was possible to reconstitute these complexes in vitro starting from purified pigments and unfolded apoproteins, resulting in complexes with properties very similar to that of native complexes. This opened the way to the use of bacterial expressed recombinant proteins for in vitro reconstitution. The reconstitution method is powerful for various reasons: (1) pure preparations of individual complexes can be obtained, (2) pigment composition can be controlled to assess their contribution to structure and function, (3) recombinant proteins can be mutated to study the functional role of the individual residues (e.g., pigment binding sites) or protein domain (e.g., protein-protein interaction, folding). This method has been optimized in several laboratories and applied to most of the light-harvesting complexes. The protocol described here details the method of reconstituting light-harvesting complexes in vitro currently used in our laboratory,and examples describing applications of the method are provided.
Collapse
Affiliation(s)
- Alberto Natali
- Department of Physics and Astronomy, VU University Amsterdam
| | - Laura M Roy
- Department of Physics and Astronomy, VU University Amsterdam
| | - Roberta Croce
- Department of Physics and Astronomy, VU University Amsterdam;
| |
Collapse
|
77
|
Amphipols and Photosynthetic Light-Harvesting Pigment-Protein Complexes. J Membr Biol 2014; 247:1031-41. [DOI: 10.1007/s00232-014-9712-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 07/23/2014] [Indexed: 10/24/2022]
|
78
|
Natural strategies for photosynthetic light harvesting. Nat Chem Biol 2014; 10:492-501. [PMID: 24937067 DOI: 10.1038/nchembio.1555] [Citation(s) in RCA: 620] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 05/15/2014] [Indexed: 12/13/2022]
Abstract
Photosynthetic organisms are crucial for life on Earth as they provide food and oxygen and are at the basis of most energy resources. They have a large variety of light-harvesting strategies that allow them to live nearly everywhere where sunlight can penetrate. They have adapted their pigmentation to the spectral composition of light in their habitat, they acclimate to slowly varying light intensities and they rapidly respond to fast changes in light quality and quantity. This is particularly important for oxygen-producing organisms because an overdose of light in combination with oxygen can be lethal. Rapid progress is being made in understanding how different organisms maximize light harvesting and minimize deleterious effects. Here we summarize the latest findings and explain the main design principles used in nature. The available knowledge can be used for optimizing light harvesting in both natural and artificial photosynthesis to improve light-driven production processes.
Collapse
|
79
|
Chen L, Liu C, Hu R, Feng J, Wang S, Li S, Yang C, Yang G. Two photon absorption energy transfer in the light-harvesting complex of photosystem II (LHC-II) modified with organic boron dye. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 128:295-299. [PMID: 24681315 DOI: 10.1016/j.saa.2014.02.166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/19/2014] [Accepted: 02/24/2014] [Indexed: 06/03/2023]
Abstract
The plant light-harvesting complexes of photosystem II (LHC-II) play important roles in collecting solar energy and transferring the energy to the reaction centers of photosystems I and II. A two photon absorption compound, 4-(bromomethyl)-N-(4-(dimesitylboryl)phenyl)-N-phenylaniline (DMDP-CH2Br), was synthesized and covalently linked to the LHC-II in formation of a LHC-II-dye complex, which still maintained the biological activity of LHC-II system. Under irradiation with femtosecond laser pulses at 754 nm, the LHC-II-dye complex can absorb two photons of the laser light effectively compared with the wild type LHC-II. The absorbed excitation energy is then transferred to chlorophyll a with an obvious fluorescence enhancement. The results may be interesting and give potentials for developing hybrid photosystems.
Collapse
Affiliation(s)
- Li Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Cheng Liu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Rui Hu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiao Feng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shuangqing Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Shayu Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chunhong Yang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Guoqiang Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
80
|
Krüger TP, Ilioaia C, Johnson MP, Ruban AV, van Grondelle R. Disentangling the low-energy states of the major light-harvesting complex of plants and their role in photoprotection. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1027-38. [DOI: 10.1016/j.bbabio.2014.02.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 02/10/2014] [Accepted: 02/12/2014] [Indexed: 11/28/2022]
|
81
|
Müh F, Lindorfer D, Schmidt am Busch M, Renger T. Towards a structure-based exciton Hamiltonian for the CP29 antenna of photosystem II. Phys Chem Chem Phys 2014; 16:11848-63. [PMID: 24603694 DOI: 10.1039/c3cp55166k] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
The exciton Hamiltonian pertaining to the first excited states of chlorophyll (Chl) a and b pigments in the minor light-harvesting complex CP29 of plant photosystem II is determined based on the recent crystal structure at 2.8 Å resolution applying a combined quantum chemical/electrostatic approach as used earlier for the major light-harvesting complex LHCII. Two electrostatic methods for the calculation of the local transition energies (site energies), referred to as the Poisson-Boltzmann/quantum chemical (PBQC) and charge density coupling (CDC) method, which differ in the way the polarizable environment of the pigments is described, are compared and found to yield comparable results, when tested against fits of measured optical spectra (linear absorption, linear dichroism, circular dichroism, and fluorescence). The crystal structure shows a Chl a/b ratio of 2.25, whereas a ratio between 2.25 and 3.0 can be estimated from the simulation of experimental spectra. Thus, it is possible that up to one Chl b is lost in CP29 samples. The lowest site energy is found to be located at Chl a604 close to neoxanthin. This assignment is confirmed by the simulation of wild-type-minus-mutant difference spectra of reconstituted CP29, where a tyrosine residue next to Chl a604 is modified in the mutant. Nonetheless, the terminal emitter domain (TED), i.e. the pigments contributing mostly to the lowest exciton state, is found at the Chl a611-a612-a615 trimer due to strong excitonic coupling between these pigments, with the largest contributions from Chls a611 and a612. A major difference between CP29 and LHCII is that Chl a610 is not the energy sink in CP29, which is presumably to a large extent due to the replacement of a lysine residue with alanine close to the TED.
Collapse
Affiliation(s)
- Frank Müh
- Institute for Theoretical Physics, Johannes Kepler University Linz, Altenberger Str. 69, 4040 Linz, Austria.
| | | | | | | |
Collapse
|
82
|
Chmeliov J, Trinkunas G, van Amerongen H, Valkunas L. Light harvesting in a fluctuating antenna. J Am Chem Soc 2014; 136:8963-72. [PMID: 24870124 DOI: 10.1021/ja5027858] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One of the major players in oxygenic photosynthesis, photosystem II (PSII), exhibits complex multiexponential fluorescence decay kinetics that for decades has been ascribed to reversible charge separation taking place in the reaction center (RC). However, in this description the protein dynamics is not taken into consideration. The intrinsic dynamic disorder of the light-harvesting proteins along with their fluctuating dislocations within the antenna inevitably result in varying connectivity between pigment-protein complexes and therefore can also lead to nonexponential excitation decay kinetics. On the basis of this presumption, we propose a simple conceptual model describing excitation diffusion in a continuous medium and accounting for possible variations of the excitation transfer rates. Recently observed fluorescence kinetics of PSII of different sizes are perfectly reproduced with only two adjustable parameters instead of the many decay times and amplitudes required in standard analysis procedures; no charge recombination in the RC is required. The model is also able to provide valuable information about the structural and functional organization of the photosynthetic antenna and in a straightforward way solves various contradictions currently existing in the literature.
Collapse
Affiliation(s)
- Jevgenij Chmeliov
- Department of Theoretical Physics, Faculty of Physics, Vilnius University , Sauletekio Avenue 9, LT-10222 Vilnius, Lithuania
| | | | | | | |
Collapse
|
83
|
Kell A, Feng X, Lin C, Yang Y, Li J, Reus M, Holzwarth AR, Jankowiak R. Charge-transfer character of the low-energy Chl a Q(y) absorption band in aggregated light harvesting complexes II. J Phys Chem B 2014; 118:6086-91. [PMID: 24838007 DOI: 10.1021/jp501735p] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One of the key functions of the major light harvesting complex II (LHCII) of higher plants is to protect Photosystem II from photodamage at excessive light conditions in a process called "non-photochemical quenching" (NPQ). Using hole-burning (HB) spectroscopy, we investigated the nature of the low-energy absorption band in aggregated LHCII complexes - which are highly quenched and have been established as a good in vitro model for NPQ. Nonresonant holes reveal that the lowest energy state (located near 683.3 nm) is red-shifted by ~4 nm and significantly broader (by a factor of 4) as compared to nonaggregated trimeric LHCII. Resonant holes burned in the low-energy wing of the absorption spectrum (685-710 nm) showed a high electron-phonon (el-ph) coupling strength with a Huang-Rhys factor S of 3-4. This finding combined with the very low HB efficiency in the long-wavelength absorption tail is consistent with a dominant charge-transfer (CT) character of the lowest energy transition(s) in aggregated LHCII. The value of S decreases at shorter wavelengths (<685 nm), in agreement with previous studies (J. Pieper et al., J. Phys. Chem. B 1999, 103, 2422-2428), proving that the low-energy excitonic state is strongly mixed with the CT states. Our findings support the mechanistic model in which Chl-Chl CT states formed in aggregated LHCII are intermediates in the efficient excited state quenching process (M. G. Müller et al., Chem. Phys. Chem. 2010, 11, 1289-1296; Y. Miloslavina et al., FEBS Lett. 2008, 582, 3625-3631).
Collapse
Affiliation(s)
- Adam Kell
- Department of Chemistry and ‡Department of Physics, Kansas State University , Manhattan, Kansas 66505, United States
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Drop B, Yadav K N S, Boekema EJ, Croce R. Consequences of state transitions on the structural and functional organization of photosystem I in the green alga Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:181-91. [PMID: 24506306 DOI: 10.1111/tpj.12459] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/16/2014] [Accepted: 01/22/2014] [Indexed: 05/10/2023]
Abstract
State transitions represent a photoacclimation process that regulates the light-driven photosynthetic reactions in response to changes in light quality/quantity. It balances the excitation between photosystem I (PSI) and II (PSII) by shuttling LHCII, the main light-harvesting complex of green algae and plants, between them. This process is particularly important in Chlamydomonas reinhardtii in which it is suggested to induce a large reorganization in the thylakoid membrane. Phosphorylation has been shown to be necessary for state transitions and the LHCII kinase has been identified. However, the consequences of state transitions on the structural organization and the functionality of the photosystems have not yet been elucidated. This situation is mainly because the purification of the supercomplexes has proved to be particularly difficult, thus preventing structural and functional studies. Here, we have purified and analysed PSI and PSII supercomplexes of C. reinhardtii in states 1 and 2, and have studied them using biochemical, spectroscopic and structural methods. It is shown that PSI in state 2 is able to bind two LHCII trimers that contain all four LHCII types, and one monomer, most likely CP29, in addition to its nine Lhcas. This structure is the largest PSI complex ever observed, having an antenna size of 340 Chls/P700. Moreover, all PSI-bound Lhcs are efficient in transferring energy to PSI. A projection map at 20 Å resolution reveals the structural organization of the complex. Surprisingly, only LHCII type I, II and IV are phosphorylated when associated with PSI, while LHCII type III and CP29 are not, but CP29 is phosphorylated when associated with PSII in state2.
Collapse
Affiliation(s)
- Bartlomiej Drop
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
85
|
Scholes GD, Smyth C. Perspective: Detecting and measuring exciton delocalization in photosynthetic light harvesting. J Chem Phys 2014; 140:110901. [DOI: 10.1063/1.4869329] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
86
|
Fassioli F, Dinshaw R, Arpin PC, Scholes GD. Photosynthetic light harvesting: excitons and coherence. J R Soc Interface 2014; 11:20130901. [PMID: 24352671 PMCID: PMC3899860 DOI: 10.1098/rsif.2013.0901] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 11/29/2013] [Indexed: 12/15/2022] Open
Abstract
Photosynthesis begins with light harvesting, where specialized pigment-protein complexes transform sunlight into electronic excitations delivered to reaction centres to initiate charge separation. There is evidence that quantum coherence between electronic excited states plays a role in energy transfer. In this review, we discuss how quantum coherence manifests in photosynthetic light harvesting and its implications. We begin by examining the concept of an exciton, an excited electronic state delocalized over several spatially separated molecules, which is the most widely available signature of quantum coherence in light harvesting. We then discuss recent results concerning the possibility that quantum coherence between electronically excited states of donors and acceptors may give rise to a quantum coherent evolution of excitations, modifying the traditional incoherent picture of energy transfer. Key to this (partially) coherent energy transfer appears to be the structure of the environment, in particular the participation of non-equilibrium vibrational modes. We discuss the open questions and controversies regarding quantum coherent energy transfer and how these can be addressed using new experimental techniques.
Collapse
Affiliation(s)
| | | | | | - Gregory D. Scholes
- Department of Chemistry, University of Toronto, 80 St George St., Toronto, Ontario, CanadaM5S 3H6
| |
Collapse
|
87
|
Dall'Osto L, Cazzaniga S, Wada M, Bassi R. On the origin of a slowly reversible fluorescence decay component in the Arabidopsis npq4 mutant. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130221. [PMID: 24591708 DOI: 10.1098/rstb.2013.0221] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Over-excitation of photosynthetic apparatus causing photoinhibition is counteracted by non-photochemical quenching (NPQ) of chlorophyll fluorescence, dissipating excess absorbed energy into heat. The PsbS protein plays a key role in this process, thus making the PsbS-less npq4 mutant unable to carry out qE, the major and most rapid component of NPQ. It was proposed that npq4 does perform qE-type quenching, although at lower rate than WT Arabidopsis. Here, we investigated the kinetics of NPQ in PsbS-depleted mutants of Arabidopsis. We show that red light was less effective than white light in decreasing maximal fluorescence in npq4 mutants. Also, the kinetics of fluorescence dark recovery included a decay component, qM, exhibiting the same amplitude and half-life in both WT and npq4 mutants. This component was uncoupler-sensitive and unaffected by photosystem II repair or mitochondrial ATP synthesis inhibitors. Targeted reverse genetic analysis showed that traits affecting composition of the photosynthetic apparatus, carotenoid biosynthesis and state transitions did not affect qM. This was depleted in the npq4phot2 mutant which is impaired in chloroplast photorelocation, implying that fluorescence decay, previously described as a quenching component in npq4 is, in fact, the result of decreased photon absorption caused by chloroplast relocation rather than a change in the activity of quenching reactions.
Collapse
Affiliation(s)
- Luca Dall'Osto
- Dipartimento di Biotecnologie, Università di Verona, , Verona 37134, Italy
| | | | | | | |
Collapse
|
88
|
Alterations in Structural Organization Affect the Functional Ability of Photosynthetic Apparatus. ACTA ACUST UNITED AC 2014. [DOI: 10.1201/b16675-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
89
|
Chukhutsina VU, Büchel C, van Amerongen H. Disentangling two non-photochemical quenching processes in Cyclotella meneghiniana by spectrally-resolved picosecond fluorescence at 77K. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:899-907. [PMID: 24582663 DOI: 10.1016/j.bbabio.2014.02.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 02/17/2014] [Accepted: 02/19/2014] [Indexed: 11/24/2022]
Abstract
Diatoms, which are primary producers in the oceans, can rapidly switch on/off efficient photoprotection to respond to fast light-intensity changes in moving waters. The corresponding thermal dissipation of excess-absorbed-light energy can be observed as non-photochemical quenching (NPQ) of chlorophyll a fluorescence. Fluorescence-induction measurements on Cyclotella meneghiniana diatoms show two NPQ processes: qE1 relaxes rapidly in the dark while qE2 remains present upon switching to darkness and is related to the presence of the xanthophyll-cycle pigment diatoxanthin (Dtx). We performed picosecond fluorescence measurements on cells locked in different (quenching) states, revealing the following sequence of events during full development of NPQ. At first, trimers of light-harvesting complexes (fucoxanthin-chlorophyll a/c proteins), or FCPa, become quenched, while being part of photosystem II (PSII), due to the induced pH gradient across the thylakoid membrane. This is followed by (partial) detachment of FCPa from PSII after which quenching persists. The pH gradient also causes the formation of Dtx which leads to further quenching of isolated PSII cores and some aggregated FCPa. In subsequent darkness, the pH gradient disappears but Dtx remains present and quenching partly pertains. Only in the presence of some light the system completely recovers to the unquenched state.
Collapse
Affiliation(s)
- Volha U Chukhutsina
- Laboratory of Biophysics, Wageningen University, 6703HA Wageningen, The Netherlands; BioSolar Cells, P.O. Box 98, 6700 AB Wageningen, The Netherlands
| | - Claudia Büchel
- Institute for Molecular Biosciences, Johann Wolfgang Goethe-University, 60438 Frankfurt am Main, Germany
| | - Herbert van Amerongen
- Laboratory of Biophysics, Wageningen University, 6703HA Wageningen, The Netherlands; BioSolar Cells, P.O. Box 98, 6700 AB Wageningen, The Netherlands; MicroSpectroscopy Centre, Wageningen University, 6703HA Wageningen, The Netherlands.
| |
Collapse
|
90
|
Passarini F, Xu P, Caffarri S, Hille J, Croce R. Towards in vivo mutation analysis: knock-out of specific chlorophylls bound to the light-harvesting complexes of Arabidopsis thaliana - the case of CP24 (Lhcb6). BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1500-6. [PMID: 24561227 DOI: 10.1016/j.bbabio.2014.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/20/2014] [Accepted: 02/12/2014] [Indexed: 12/19/2022]
Abstract
In the last ten years, a large series of studies have targeted antenna complexes of plants (Lhc) with the aim of understanding the mechanisms of light harvesting and photoprotection. Combining spectroscopy, modeling and mutation analyses, the role of individual pigments in these processes has been highlighted in vitro. In plants, however, these proteins are associated with multiple complexes of the photosystems and function within this framework. In this work, we have envisaged a way to bridge the gap between in vitro and in vivo studies by knocking out in vivo pigments that have been proposed to play an important role in excitation energy transfer between the complexes or in photoprotection. We have complemented a CP24 knock-out mutant of Arabidopsis thaliana with the CP24 (Lhcb6) gene carrying a His-tag and with a mutated version lacking the ligand for chlorophyll 612, a specific pigment that in vitro experiments have indicated as the lowest energy site of the complex. Both complexes efficiently integrated into the thylakoid membrane and assembled into the PSII supercomplexes, indicating that the His-tag does not impair the organization in vivo. The presence of the His-tag allowed the purification of CP24-WT and of CP24-612 mutant in their native states. It is shown that CP24-WT coordinates 10 chlorophylls and 2 carotenoid molecules and has properties identical to those of the reconstituted complex, demonstrating that the complex self-assembled in vitro assumes the same folding as in the plant. The absence of the ligand for chlorophyll 612 leads to the loss of one Chl a and of lutein, again as in vitro, indicating the feasibility of the method. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy.
Collapse
Affiliation(s)
- Francesca Passarini
- Department of Biophysical chemistry, Groningen Biological Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Pengqi Xu
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Stefano Caffarri
- Aix Marseille Université, CNRS, CEA, UMR 7265 Biologie Végétale et Microbiologie Environnementales, 13009 Marseille, France
| | - Jacques Hille
- Department Molecular Biology of Plants, Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Linnaeusborg, 9747 AG Groningen, The Netherlands
| | - Roberta Croce
- Department of Biophysical chemistry, Groningen Biological Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands; Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
91
|
State transitions in Chlamydomonas reinhardtii strongly modulate the functional size of photosystem II but not of photosystem I. Proc Natl Acad Sci U S A 2014; 111:3460-5. [PMID: 24550508 DOI: 10.1073/pnas.1319164111] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plants and green algae optimize photosynthesis in changing light conditions by balancing the amount of light absorbed by photosystems I and II. These photosystems work in series to extract electrons from water and reduce NADP(+) to NADPH. Light-harvesting complexes (LHCs) are held responsible for maintaining the balance by moving from one photosystem to the other in a process called state transitions. In the green alga Chlamydomonas reinhardtii, a photosynthetic model organism, state transitions are thought to involve 80% of the LHCs. Here, we demonstrate with picosecond-fluorescence spectroscopy on C. reinhardtii cells that, although LHCs indeed detach from photosystem II in state 2 conditions, only a fraction attaches to photosystem I. The detached antenna complexes become protected against photodamage via shortening of the excited-state lifetime. It is discussed how the transition from state 1 to state 2 can protect C. reinhardtii in high-light conditions and how this differs from the situation in plants.
Collapse
|
92
|
Drop B, Webber-Birungi M, Yadav SK, Filipowicz-Szymanska A, Fusetti F, Boekema EJ, Croce R. Light-harvesting complex II (LHCII) and its supramolecular organization in Chlamydomonas reinhardtii. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:63-72. [DOI: 10.1016/j.bbabio.2013.07.012] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/23/2013] [Accepted: 07/30/2013] [Indexed: 11/25/2022]
|
93
|
Ostroumov EE, Khan YR, Scholes GD, Govindjee. Photophysics of Photosynthetic Pigment-Protein Complexes. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2014. [DOI: 10.1007/978-94-017-9032-1_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
94
|
Ghosh D, Saha U, Mukherjea KK. A light harvesting mononuclear manganese(ii) complex: synthesis, characterization, DFT and TDDFT calculations and photophysical profile. RSC Adv 2014. [DOI: 10.1039/c4ra00729h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new manganese(ii) [MnII(DEMP)(NCS)(H2O)] (DEMP = Schiff base derived from salicylaldehyde and 2-diethylaminoethylamine) complex has been synthesized and characterized. The complex absorbs light ranging from 200–850 nm. Thus, the molecule is capable of harvesting the entire range of sunlight falling on earth.
Collapse
Affiliation(s)
- Debalina Ghosh
- Department of Chemistry
- Jadavpur University
- Calcutta (Kolkata), India
| | - Urmila Saha
- Department of Chemistry
- Jadavpur University
- Calcutta (Kolkata), India
| | | |
Collapse
|
95
|
Garab G. Hierarchical organization and structural flexibility of thylakoid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:481-94. [PMID: 24333385 DOI: 10.1016/j.bbabio.2013.12.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 11/26/2013] [Accepted: 12/02/2013] [Indexed: 10/25/2022]
Abstract
Chloroplast thylakoid membranes accommodate densely packed protein complexes in ordered, often semi-crystalline arrays and are assembled into highly organized multilamellar systems, an organization warranting a substantial degree of stability. At the same time, they exhibit remarkable structural flexibility, which appears to play important - yet not fully understood - roles in different short-term adaptation mechanisms in response to rapidly changing environmental conditions. In this review I will focus on dynamic features of the hierarchically organized photosynthetic machineries at different levels of structural complexity: (i) isolated light harvesting complexes, (ii) molecular macroassemblies and supercomplexes, (iii) thylakoid membranes and (iv) their multilamellar membrane systems. Special attention will be paid to the most abundant systems, the major light harvesting antenna complex, LHCII, and to grana. Two physical mechanisms, which are less frequently treated in the literature, will receive special attention: (i) thermo-optic mechanism -elementary structural changes elicited by ultrafast local heat transients due to the dissipation of photon energy, which operates both in isolated antenna assemblies and the native thylakoid membranes, regulates important enzymatic functions and appears to play role in light adaptation and photoprotection mechanisms; and (ii) the mechanism by which non-bilayer lipids and lipid phases play key role in the functioning of xanthophyll cycle de-epoxidases and are proposed to regulate the protein-to-lipid ratio in thylakoid membranes and contribute to membrane dynamics. This article is part of a Special Issue entitled: Dynamic and ultrastructure of bioenergetic membranes and their components.
Collapse
Affiliation(s)
- Győző Garab
- Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary.
| |
Collapse
|
96
|
Liguori N, Roy LM, Opacic M, Durand G, Croce R. Regulation of light harvesting in the green alga Chlamydomonas reinhardtii: the C-terminus of LHCSR is the knob of a dimmer switch. J Am Chem Soc 2013; 135:18339-42. [PMID: 24261574 DOI: 10.1021/ja4107463] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Feedback mechanisms that dissipate excess photoexcitations in light-harvesting complexes (LHCs) are necessary to avoid detrimental oxidative stress in most photosynthetic eukaryotes. Here we demonstrate the unique ability of LHCSR, a stress-related LHC from the model organism Chlamydomonas reinhardtii, to sense pH variations, reversibly tuning its conformation from a light-harvesting state to a dissipative one. This conformational change is induced exclusively by the acidification of the environment, and the magnitude of quenching is correlated to the degree of acidification of the environment. We show that this ability to respond to different pH values is missing in the related major LHCII, despite high structural homology. Via mutagenesis and spectroscopic characterization, we show that LHCSR's uniqueness relies on its peculiar C-terminus subdomain, which acts as a sensor of the lumenal pH, able to tune the quenching level of the complex.
Collapse
Affiliation(s)
- Nicoletta Liguori
- Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, VU University Amsterdam , De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
97
|
van Oort B, Kargul J, Maghlaoui K, Barber J, van Amerongen H. Fluorescence kinetics of PSII crystals containing Ca(2+) or Sr(2+) in the oxygen evolving complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:264-9. [PMID: 24269510 DOI: 10.1016/j.bbabio.2013.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 11/06/2013] [Accepted: 11/12/2013] [Indexed: 12/11/2022]
Abstract
Photosystem II (PSII) is the pigment-protein complex which converts sunlight energy into chemical energy by catalysing the process of light-driven oxidation of water into reducing equivalents in the form of protons and electrons. Three-dimensional structures from x-ray crystallography have been used extensively to model these processes. However, the crystal structures are not necessarily identical to those of the solubilised complexes. Here we compared picosecond fluorescence of solubilised and crystallised PSII core particles isolated from the thermophilic cyanobacterium Thermosynechococcus elongatus. The fluorescence of the crystals is sensitive to the presence of artificial electron acceptors (K3Fe(CN)3) and electron transport inhibitors (DCMU). In PSII with reaction centres in the open state, the picosecond fluorescence of PSII crystals and solubilised PSII is indistinguishable. Additionally we compared picosecond fluorescence of native PSII with PSII in which Ca(2) in the oxygen evolving complex (OEC) is biosynthetically replaced by Sr(2+). With the Sr(2+) replaced OEC the average fluorescence decay slows down slightly (81ps to 85ps), and reaction centres are less readily closed, indicating that both energy transfer/trapping and electron transfer are affected by the replacement.
Collapse
Affiliation(s)
- Bart van Oort
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands.
| | - Joanna Kargul
- Department of Plant Molecular Physiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | | | - James Barber
- Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - Herbert van Amerongen
- Laboratory of Biophysics, Wageningen University, P. O. Box 8128, 6700 ET Wageningen, The Netherlands
| |
Collapse
|
98
|
Kirchhoff H. Diffusion of molecules and macromolecules in thylakoid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:495-502. [PMID: 24246635 DOI: 10.1016/j.bbabio.2013.11.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 10/28/2013] [Accepted: 11/06/2013] [Indexed: 10/26/2022]
Abstract
The survival and fitness of photosynthetic organisms is critically dependent on the flexible response of the photosynthetic machinery, harbored in thylakoid membranes, to environmental changes. A central element of this flexibility is the lateral diffusion of membrane components along the membrane plane. As demonstrated, almost all functions of photosynthetic energy conversion are dependent on lateral diffusion. The mobility of both small molecules (plastoquinone, xanthophylls) as well as large protein supercomplexes is very sensitive to changes in structural boundary conditions. Knowledge about the design principles that govern the mobility of photosynthetic membrane components is essential to understand the dynamic response of the photosynthetic machinery. This review summarizes our knowledge about the factors that control diffusion in thylakoid membranes and bridges structural membrane alterations to changes in mobility and function. This article is part of a Special Issue entitled: Dynamic and ultrastructure of bioenergetic membranes and their components.
Collapse
Affiliation(s)
- Helmut Kirchhoff
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA.
| |
Collapse
|
99
|
Antal TK, Kovalenko IB, Rubin AB, Tyystjärvi E. Photosynthesis-related quantities for education and modeling. PHOTOSYNTHESIS RESEARCH 2013; 117:1-30. [PMID: 24162971 DOI: 10.1007/s11120-013-9945-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 10/07/2013] [Indexed: 05/24/2023]
Abstract
A quantitative understanding of the photosynthetic machinery depends largely on quantities, such as concentrations, sizes, absorption wavelengths, redox potentials, and rate constants. The present contribution is a collection of numbers and quantities related mainly to photosynthesis in higher plants. All numbers are taken directly from a literature or database source and the corresponding reference is provided. The numerical values, presented in this paper, provide ranges of values, obtained in specific experiments for specific organisms. However, the presented numbers can be useful for understanding the principles of structure and function of photosynthetic machinery and for guidance of future research.
Collapse
Affiliation(s)
- Taras K Antal
- Biological Faculty, Moscow State University, Vorobyevi Gory, 119992, Moscow, Russia
| | | | | | | |
Collapse
|
100
|
van Amerongen H, Croce R. Light harvesting in photosystem II. PHOTOSYNTHESIS RESEARCH 2013; 116:251-63. [PMID: 23595278 PMCID: PMC3824292 DOI: 10.1007/s11120-013-9824-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 04/08/2013] [Indexed: 05/18/2023]
Abstract
Water oxidation in photosynthesis takes place in photosystem II (PSII). This photosystem is built around a reaction center (RC) where sunlight-induced charge separation occurs. This RC consists of various polypeptides that bind only a few chromophores or pigments, next to several other cofactors. It can handle far more photons than the ones absorbed by its own pigments and therefore, additional excitations are provided by the surrounding light-harvesting complexes or antennae. The RC is located in the PSII core that also contains the inner light-harvesting complexes CP43 and CP47, harboring 13 and 16 chlorophyll pigments, respectively. The core is surrounded by outer light-harvesting complexes (Lhcs), together forming the so-called supercomplexes, at least in plants. These PSII supercomplexes are complemented by some "extra" Lhcs, but their exact location in the thylakoid membrane is unknown. The whole system consists of many subunits and appears to be modular, i.e., both its composition and organization depend on environmental conditions, especially on the quality and intensity of the light. In this review, we will provide a short overview of the relation between the structure and organization of pigment-protein complexes in PSII, ranging from individual complexes to entire membranes and experimental and theoretical results on excitation energy transfer and charge separation. It will become clear that time-resolved fluorescence data can provide invaluable information about the organization and functioning of thylakoid membranes. At the end, an overview will be given of unanswered questions that should be addressed in the near future.
Collapse
Affiliation(s)
- Herbert van Amerongen
- Laboratory of Biophysics, Wageningen University, P. O. Box 8128, 6700 ET, Wageningen, The Netherlands,
| | | |
Collapse
|