51
|
Plavskii V, Mikulich A, Barulin N, Ananich T, Plavskaya L, Tretyakova A, Leusenka I. Comparative Effect of Low‐intensity Laser Radiation in Green and Red Spectral Regions on Functional Characteristics of Sturgeon Sperm. Photochem Photobiol 2020; 96:1294-1313. [DOI: 10.1111/php.13315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Vitaly Plavskii
- The State Scientific Institution «B.I.Stepanov Institute of Physics of the National Academy of Sciences of Belarus» Minsk Belarus
| | - Aliaksandr Mikulich
- The State Scientific Institution «B.I.Stepanov Institute of Physics of the National Academy of Sciences of Belarus» Minsk Belarus
| | | | - Tatsiana Ananich
- The State Scientific Institution «B.I.Stepanov Institute of Physics of the National Academy of Sciences of Belarus» Minsk Belarus
| | - Ludmila Plavskaya
- The State Scientific Institution «B.I.Stepanov Institute of Physics of the National Academy of Sciences of Belarus» Minsk Belarus
| | - Antonina Tretyakova
- The State Scientific Institution «B.I.Stepanov Institute of Physics of the National Academy of Sciences of Belarus» Minsk Belarus
| | - Ihar Leusenka
- The State Scientific Institution «B.I.Stepanov Institute of Physics of the National Academy of Sciences of Belarus» Minsk Belarus
| |
Collapse
|
52
|
Bumah VV, Morrow BN, Cortez PM, Bowman CR, Rojas P, Masson-Meyers DS, Suprapto J, Tong WG, Enwemeka CS. The importance of porphyrins in blue light suppression of Streptococcus agalactiae. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 212:111996. [PMID: 32863128 DOI: 10.1016/j.jphotobiol.2020.111996] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/06/2020] [Accepted: 08/12/2020] [Indexed: 02/08/2023]
Abstract
It is well documented that blue light absorption by bacterial chromophores triggers downstream production of reactive oxygen species (ROS), which in turn results in bacterial cell death. To elucidate the importance of chromophores in the bactericidal effect of blue light, and to determine whether blue light absorption per se or the presence of porphyrins known to engender ROS is crucial in blue light treatment, we studied the effect of 450 nm pulsed light on Streptococcus agalactiae, also known as Group B Streptococcus (GBS) strain COH1. GBS does not synthesize porphyrins but has a blue light-absorbing chromophore, granadaene. We irradiated planktonic cultures of GBS with or without exogenous chromophore supplementation using either protoporphyrin IX (PPIX), coproporphyrin III (CPIII), Nicotinamide adenine dinucleotide (NAD), reduced nicotinamide adenine dinucleotide (NADH), Flavin adenine dinucleotide (FAD), or Flavin mononucleotide (FMN). Quantification of surviving bacterial colonies, presented as percent survival and CFU/mL (log10), showed that (1) 450 nm blue light does not suppress the growth of GBS, even though its endogenous chromophore, granadaene, absorbs light in the 450 nm spectrum. (2) The addition of either of the two exogenous porphyrins, PPIX or CPIII, significantly suppressed GBS, indicating the importance of porphyrins in the antimicrobial action of blue light. (3) Adding exogenous FMN or FAD, two known absorbers of 450 nm light, minimally potentiated the bactericidal effect of blue light, again confirming that mere absorption of blue light by chromophores does not necessarily result in bacterial suppression. (4) Irradiation of GBS with or without NAD+ or NADH supplementation-two weak absorbers of 450 nm light-minimally suppressed GBS, indicating that a blue light-absorbing chromophore is essential for the bactericidal action of blue light. (5) Collectively, these findings show that in addition to the presence of a blue light-absorbing chromophore in bacteria, a chromophore with the right metabolic machinery and biochemical structure, capable of producing ROS, is necessary for 450 nm blue light to suppress GBS.
Collapse
Affiliation(s)
- Violet Vakunseh Bumah
- Department of Chemistry and Biochemistry, College of Sciences, 5500 Campanile Dr, San Diego, CA 92182, USA; College of Health and Human Services, San Diego State University, 5500 Campanile Dr, San Diego, CA 92182, USA.
| | | | | | | | - Paulina Rojas
- Department of Biology, 5500 Campanile Dr, San Diego, CA 92182. USA
| | - Daniela Santos Masson-Meyers
- College of Health and Human Services, San Diego State University, 5500 Campanile Dr, San Diego, CA 92182, USA; Marquette University School of Dentistry, 1801 W Wisconsin Ave, Milwaukee, WI 53233, USA
| | - James Suprapto
- Department of Chemistry and Biochemistry, College of Sciences, 5500 Campanile Dr, San Diego, CA 92182, USA.
| | - William G Tong
- Department of Chemistry and Biochemistry, College of Sciences, 5500 Campanile Dr, San Diego, CA 92182, USA.
| | - Chukuka Samuel Enwemeka
- College of Health and Human Services, San Diego State University, 5500 Campanile Dr, San Diego, CA 92182, USA.
| |
Collapse
|
53
|
Caires CSA, Farias LAS, Gomes LE, Pinto BP, Gonçalves DA, Zagonel LF, Nascimento VA, Alves DCB, Colbeck I, Whitby C, Caires ARL, Wender H. Effective killing of bacteria under blue-light irradiation promoted by green synthesized silver nanoparticles loaded on reduced graphene oxide sheets. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 113:110984. [PMID: 32487400 DOI: 10.1016/j.msec.2020.110984] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/03/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022]
Abstract
Graphene oxide (GO) materials loaded with silver nanoparticles (AgNPs) have drawn considerable attention due to their capacity to efficiently inactivate bacteria though a multifaceted mechanism of action, as well as for presenting a synergetic effect against bacteria when compared to the activity of AgNPs and GO alone. In this investigation, we present an inexpensive and environmentally-friendly method for synthesizing reduced GO sheets coated with silver nanoparticles (AgNPs/r-GO) using a coffee extract solution as a green reducing agent. The physical and chemical properties of the produced materials were extensively characterized by scanning electron microscopy (SEM), field-emission gun transmission electron microscopy (FEG-TEM), ultraviolet and visible absorption (UV-Vis), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), inductively coupled plasma-optical emission spectroscopy (ICP-OES) and ion release determination. The results demonstrated that AgNPs/r-GO composites were successfully produced, revealing the formation of micrometer-sized r-GO sheets decorated by AgNPs of approximately 70 nm diameter. Finally, bactericidal and photobactericidal effects of the AgNPs/r-GO composites were tested against Staphylococcus aureus, in which the results showed that the composites presented antimicrobial and photoantimicrobial activities. Moreover, our results demonstrated for the first time, to our knowledge, that an efficient process of bacterial inactivation can be achieved by using AgNPs/r-GO composites under blue light irradiation as a result of three different bacterial killing processes: (i) chemical effect promoted by Ag+ ion release from AgNPs; (ii) photocatalytic activity induced by AgNPs/r-GO composites, enhancing the bacterial photoinactivation due to the excited-Plasmons of the AgNPs when anchored on r-GO; and (iii) photodynamic effect produced by bacterial endogenous photosensitizers under blue-light irradiation. In summary, the present findings demonstrated that AgNPs/r-GO can be obtained by a non-toxic procedure with great potential for biomedical-related applications.
Collapse
Affiliation(s)
- Cynthia S A Caires
- Laboratory of Spectroscopy and Bioinformatics Applied to Biodiversity and Health, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul 79070-900, Brazil; School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Luiz A S Farias
- Laboratory of Nanomaterials and Applied Nanotechnology (LNNA), Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul 79070-900, Brazil
| | - Luiz E Gomes
- Laboratory of Nanomaterials and Applied Nanotechnology (LNNA), Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul 79070-900, Brazil
| | - Bruno P Pinto
- Laboratory of Nanomaterials and Applied Nanotechnology (LNNA), Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul 79070-900, Brazil
| | - Daniel A Gonçalves
- Laboratory of Spectroscopy and Bioinformatics Applied to Biodiversity and Health, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul 79070-900, Brazil; Department of Chemistry, Minas Gerais State University - UEMG, Ituiutaba, MG 38302-192, Brazil
| | - Luiz F Zagonel
- "Gleb Wataghin" Institute of Physics, University of Campinas - UNICAMP, 13083-859 Campinas, São Paulo, Brazil
| | - Valter A Nascimento
- Laboratory of Spectroscopy and Bioinformatics Applied to Biodiversity and Health, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul 79070-900, Brazil
| | - Diego C B Alves
- Laboratory of Nanomaterials and Applied Nanotechnology (LNNA), Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul 79070-900, Brazil
| | - Ian Colbeck
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Corinne Whitby
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Anderson R L Caires
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK; Laboratory of Optics and Photonics, Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul 79070-900, Brazil.
| | - Heberton Wender
- Laboratory of Nanomaterials and Applied Nanotechnology (LNNA), Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul 79070-900, Brazil.
| |
Collapse
|
54
|
Angarano V, Smet C, Akkermans S, Watt C, Chieffi A, Van Impe JF. Visible Light as an Antimicrobial Strategy for Inactivation of Pseudomonas fluorescens and Staphylococcus epidermidis Biofilms. Antibiotics (Basel) 2020; 9:E171. [PMID: 32290162 PMCID: PMC7235755 DOI: 10.3390/antibiotics9040171] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
The increase of antimicrobial resistance is challenging the scientific community to find solutions to eradicate bacteria, specifically biofilms. Light-Emitting Diodes (LED) represent an alternative way to tackle this problem in the presence of endogenous or exogenous photosensitizers. This work adds to a growing body of research on photodynamic inactivation using visible light against biofilms. Violet (400 nm), blue (420 nm), green (570 nm), yellow (584 nm) and red (698 nm) LEDs were used against Pseudomonas fluorescens and Staphylococcus epidermidis. Biofilms, grown on a polystyrene surface, were irradiated for 4 h. Different irradiance levels were investigated (2.5%, 25%, 50% and 100% of the maximum irradiance). Surviving cells were quantified and the inactivation kinetic parameters were estimated. Violet light could successfully inactivate P. fluorescens and S. epidermidis (up to 6.80 and 3.69 log10 reduction, respectively), while blue light was effective only against P. fluorescens (100% of maximum irradiance). Green, yellow and red irradiation neither increased nor reduced the biofilm cell density. This is the first research to test five different wavelengths (each with three intensities) in the visible spectrum against Gram-positive and Gram-negative biofilms. It provides a detailed study of the potential of visible light against biofilms of a different Gram-nature.
Collapse
Affiliation(s)
- Valeria Angarano
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, 9000 Gent, Belgium; (V.A.); (C.S.); (S.A.); (C.W.)
| | - Cindy Smet
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, 9000 Gent, Belgium; (V.A.); (C.S.); (S.A.); (C.W.)
| | - Simen Akkermans
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, 9000 Gent, Belgium; (V.A.); (C.S.); (S.A.); (C.W.)
| | - Charlotte Watt
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, 9000 Gent, Belgium; (V.A.); (C.S.); (S.A.); (C.W.)
| | - Andre Chieffi
- Procter & Gamble, Newcastle Innovation Center, Newcastle NE12 9TS, UK;
| | - Jan F.M. Van Impe
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, 9000 Gent, Belgium; (V.A.); (C.S.); (S.A.); (C.W.)
| |
Collapse
|
55
|
The effect of glucose and human serum on 5-aminolevulinic acid mediated photodynamic inactivation of Candida albicans. Photodiagnosis Photodyn Ther 2020; 29:101623. [DOI: 10.1016/j.pdpdt.2019.101623] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/04/2019] [Accepted: 12/17/2019] [Indexed: 12/11/2022]
|
56
|
Morici P, Battisti A, Tortora G, Menciassi A, Checcucci G, Ghetti F, Sgarbossa A. The in vitro Photoinactivation of Helicobacter pylori by a Novel LED-Based Device. Front Microbiol 2020; 11:283. [PMID: 32153551 PMCID: PMC7047934 DOI: 10.3389/fmicb.2020.00283] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/07/2020] [Indexed: 12/22/2022] Open
Abstract
The rise of antibiotic resistance is the main cause for the failure of conventional antibiotic therapy of Helicobacter pylori infection, which is often associated with severe gastric diseases, including gastric cancer. In the last years, alternative non-pharmacological approaches have been considered in the treatment of H. pylori infection. Among these, antimicrobial PhotoDynamic Therapy (aPDT), a light-based treatment able to photoinactivate a wide range of bacteria, viruses, fungal and protozoan parasites, could represent a promising therapeutic strategy. In the case of H. pylori, aPDT can exploit photoactive endogenous porphyrins, such as protoporphyrin IX and coproporphyrin I and III, to induce photokilling, without any other exogenous photosensitizers. With the aim of developing an ingestible LED-based robotic pill for minimally invasive intragastric treatment of H. pylori infection, it is crucial to determine the best illumination parameters to activate the endogenous photosensitizers. In this study the photokilling effect on H. pylori has been evaluated by using a novel LED-based device, designed for testing the appropriate LEDs for the pill and suitable to perform in vitro irradiation experiments. Exposure to visible light induced bacterial photokilling most effectively at 405 nm and 460 nm. Sub-lethal light dose at 405 nm caused morphological changes on bacterial surface indicating the cell wall as one of the main targets of photodamage. For the first time endogenous photosensitizing molecules other than porphyrins, such as flavins, have been suggested to be involved in the 460 nm H. pylori photoinactivation.
Collapse
Affiliation(s)
- Paola Morici
- Nanoscience Institute, CNR and NEST, Scuola Normale Superiore, Pisa, Italy
| | - Antonella Battisti
- Nanoscience Institute, CNR and NEST, Scuola Normale Superiore, Pisa, Italy
| | - Giuseppe Tortora
- The BioRobotics Institute, Polo Sant'Anna Valdera, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Arianna Menciassi
- The BioRobotics Institute, Polo Sant'Anna Valdera, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Giovanni Checcucci
- Nanoscience Institute, CNR and NEST, Scuola Normale Superiore, Pisa, Italy
| | - Francesco Ghetti
- Nanoscience Institute, CNR and NEST, Scuola Normale Superiore, Pisa, Italy
| | | |
Collapse
|
57
|
Chen Z, Li W, Hu X, Liu M. Irradiance plays a significant role in photobiomodulation of B16F10 melanoma cells by increasing reactive oxygen species and inhibiting mitochondrial function. BIOMEDICAL OPTICS EXPRESS 2020; 11:27-39. [PMID: 32010497 PMCID: PMC6968738 DOI: 10.1364/boe.11.000027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 05/03/2023]
Abstract
Melanoma is a type of aggressive cancer. Recent studies have indicated that blue light has an inhibition effect on melanoma cells, but the effect of photobiomodulation (PBM) parameters on the treatment of melanoma remains unknown. Thus, this study was aimed to investigate B16F10 melanoma cells responses to PBM with varying irradiance and doses, and further explored the molecular mechanism of PBM. Our results suggested that the responses of B16F10 melanoma cells to PBM with varying irradiance and dose were different and the inhibition of blue light on cells under high irradiance was better than low irradiance at a constant total dose (0.04, 0.07, 0.15, 0.22, 0.30, 0.37, 0.45, 0.56 or 1.12 J/cm2), presumably due to that high irradiance can produce more ROS, thus disrupting mitochondrial function.
Collapse
Affiliation(s)
- Zeqing Chen
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai,200433, China
- Institute for Electric Light Sources, Fudan University, 220th Handan Road, Shanghai, 200433, China
- Engineering Research Centre of Advanced Lighting Technology, Ministry of Education, Fudan University, 220th Handan Road, Shanghai, 200433, China
| | - Wenqi Li
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai,200433, China
- Institute for Electric Light Sources, Fudan University, 220th Handan Road, Shanghai, 200433, China
- Engineering Research Centre of Advanced Lighting Technology, Ministry of Education, Fudan University, 220th Handan Road, Shanghai, 200433, China
| | - Xiaojian Hu
- Institute for Electric Light Sources, Fudan University, 220th Handan Road, Shanghai, 200433, China
- Engineering Research Centre of Advanced Lighting Technology, Ministry of Education, Fudan University, 220th Handan Road, Shanghai, 200433, China
| | - Muqing Liu
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai,200433, China
- Institute for Electric Light Sources, Fudan University, 220th Handan Road, Shanghai, 200433, China
- Engineering Research Centre of Advanced Lighting Technology, Ministry of Education, Fudan University, 220th Handan Road, Shanghai, 200433, China
| |
Collapse
|
58
|
Sæbø Pettersen K, Sundaram AYM, Skjerdal T, Wasteson Y, Kijewski A, Lindbäck T, Aspholm M. Exposure to Broad-Spectrum Visible Light Causes Major Transcriptomic Changes in Listeria monocytogenes EGDe. Appl Environ Microbiol 2019; 85:e01462-19. [PMID: 31492665 PMCID: PMC6821972 DOI: 10.1128/aem.01462-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 08/09/2019] [Indexed: 01/22/2023] Open
Abstract
Listeria monocytogenes, the causative agent of the serious foodborne disease listeriosis, can rapidly adapt to a wide range of environmental stresses, including visible light. This study shows that exposure of the L. monocytogenes EGDe strain to low-intensity, broad-spectrum visible light inhibited bacterial growth and caused altered multicellular behavior during growth on semisolid agar compared to when the bacteria were grown in complete darkness. These light-dependent changes were observed regardless of the presence of the blue light receptor (Lmo0799) and the stressosome regulator sigma B (SigB), which have been suggested to be important for the ability of L. monocytogenes to respond to blue light. A genome-wide transcriptional analysis revealed that exposure of L. monocytogenes EGDe to broad-spectrum visible light caused altered expression of 2,409 genes belonging to 18 metabolic pathways compared to bacteria grown in darkness. The light-dependent differentially expressed genes are involved in functions such as glycan metabolism, cell wall synthesis, chemotaxis, flagellar synthesis, and resistance to oxidative stress. Exposure to light conferred reduced bacterial motility in semisolid agar, which correlates well with the light-dependent reduction in transcript levels of flagellar and chemotaxis genes. Similar light-induced reduction in growth and motility was also observed in two different L. monocytogenes food isolates, suggesting that these responses are typical for L. monocytogenes Together, the results show that even relatively small doses of broad-spectrum visible light cause genome-wide transcriptional changes, reduced growth, and motility in L. monocytogenesIMPORTANCE Despite major efforts to control L. monocytogenes, this pathogen remains a major problem for the food industry, where it poses a continuous risk of food contamination. The ability of L. monocytogenes to sense and adapt to different stressors in the environment enables it to persist in many different niches, including food production facilities and in food products. The present study shows that exposure of L. monocytogenes to low-intensity broad-spectrum visible light reduces its growth and motility and alters its multicellular behavior. Light exposure also caused genome-wide changes in transcript levels, affecting multiple metabolic pathways, which are likely to influence the bacterial physiology and lifestyle. In practical terms, the data presented in this study suggest that broad-spectrum visible light is an important environmental variable to consider as a strategy to improve food safety by reducing L. monocytogenes contamination in food production environments.
Collapse
Affiliation(s)
- Kristin Sæbø Pettersen
- Norwegian Veterinary Institute, Oslo, Norway
- Norwegian University of Life Sciences, Oslo, Norway
| | - Arvind Y M Sundaram
- Norwegian Sequencing Centre, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
59
|
Hoenes K, Wenzel U, Spellerberg B, Hessling M. Photoinactivation Sensitivity of
Staphylococcus carnosus
to Visible‐light Irradiation as a Function of Wavelength. Photochem Photobiol 2019; 96:156-169. [DOI: 10.1111/php.13168] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/16/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Katharina Hoenes
- Institute of Medical Engineering and Mechatronics Ulm University of Applied Sciences Ulm Germany
| | - Ulla Wenzel
- Institute of Medical Engineering and Mechatronics Ulm University of Applied Sciences Ulm Germany
| | | | - Martin Hessling
- Institute of Medical Engineering and Mechatronics Ulm University of Applied Sciences Ulm Germany
| |
Collapse
|
60
|
Antimicrobial Effect of Visible Light-Photoinactivation of Legionella rubrilucens by Irradiation at 450, 470, and 620 nm. Antibiotics (Basel) 2019; 8:antibiotics8040187. [PMID: 31618994 PMCID: PMC6963517 DOI: 10.3390/antibiotics8040187] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/11/2019] [Accepted: 10/13/2019] [Indexed: 01/12/2023] Open
Abstract
Despite the high number of legionella infections, there are currently no convincing preventive measures. Photoinactivation with visible light is a promising new approach and the photoinactivation sensitivity properties of planktonic Legionella rubrilucens to 450, 470, and 620 nm irradiation were thus investigated and compared to existing 405 nm inactivation data for obtaining information on responsible endogenous photosensitizers. Legionella were streaked on agar plates and irradiated with different doses by light emitting diodes (LEDs) of different visible wavelengths. When irradiating bacterial samples with blue light of 450 nm, a 5-log reduction could be achieved by applying a dose of 300 J cm−2, whereas at 470 nm, a comparable reduction required about 500 J cm−2. For red irradiation at 620 nm, no inactivation could be observed, even at 500 J cm−2. The declining photoinactivation sensitivity with an increasing wavelength is consistent with the assumption of porphyrins and flavins being among the relevant photosensitizers. These results were obtained for L. rubrilucens, but there is reason to believe that its inactivation behavior is similar to that of pathogenic legionella species. Therefore, this photoinactivation might lead to new future concepts for legionella reduction and prevention in technical applications or even on or inside the human body.
Collapse
|
61
|
Wang Y, Ferrer-Espada R, Baglo Y, Gu Y, Dai T. Antimicrobial Blue Light Inactivation of Neisseria gonorrhoeae: Roles of Wavelength, Endogenous Photosensitizer, Oxygen, and Reactive Oxygen Species. Lasers Surg Med 2019; 51:815-823. [PMID: 31157931 DOI: 10.1002/lsm.23104] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND OBJECTIVES The aim of this study was to investigate the efficacy, safety, and mechanism of action of antimicrobial blue light (aBL) for the inactivation of Neisseria gonorrhoeae, the etiological agent of gonorrhea. STUDY DESIGN/MATERIALS AND METHODS The susceptibilities of N. gonorrhoeae (ATCC 700825) in planktonic suspensions to aBL at 405- and 470-nm wavelengths were compared. The roles of oxygen in the anti-gonococcal activity of aBL were studied by examining the effects of hypoxic condition (blowing N2 ) on the anti-gonococcal efficiency of 405-nm aBL. The presence, identification, and quantification of endogenous photosensitizers in N. gonorrhoeae cells and human vaginal epithelial cells (VK2/E6E7 cells) were determined using fluorescence spectroscopy and ultra-performance liquid chromatography (UPLC). Finally, the selectivity of aBL inactivation of N. gonorrhoeae over the host cells were investigated by irradiating the co-cultures of N. gonorrhoeae and human vaginal epithelial cells using 405-nm aBL. RESULTS About 3.12-log10 reduction of bacterial colony forming units (CFU) was achieved by 27 J/cm 2 exposure at 405 nm, while about 3.70-log10 reduction of bacterial CFU was achieved by 234 J/cm2 exposure at 470 nm. The anti-gonococcal efficacy of 405-nm aBL was significantly suppressed under hypoxic condition. Spectroscopic and UPLC analyses revealed the presence of endogenous porphyrins and flavins in N. gonorrhoeae. The concentrations of endogenous photosensitizers in N. gonorrhoeae (ATCC 700825) cells were more than 10 times higher than those in the VK2/E6E7 cells. In the co-cultures of N. gonorrhoeae and VK2/E6E7 cells, 405-nm aBL at 108 J/cm2 preferentially inactivated N. gonorrhoeae cells while sparing the vaginal epithelial cells. CONCLUSIONS aBL at 405-nm wavelength is more effective than 470-nm wavelength in inactivating N. gonorrhoeae while sparing the vaginal epithelial cells. Reactive oxygen species generated from the photochemical reactions between aBL and endogenous photosensitizers play a vital role in the anti-gonococcal activity of 405-nm aBL. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ying Wang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts, 02114.,Department of Laser Medicine, Chinese PLA General Hospital, Medical School of Chinese PLA, 28 Fuxing Road, 100853, Beijing, China
| | - Raquel Ferrer-Espada
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts, 02114.,Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Charlestown, Massachusetts, 02129
| | - Yan Baglo
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts, 02114
| | - Ying Gu
- Department of Laser Medicine, Chinese PLA General Hospital, Medical School of Chinese PLA, 28 Fuxing Road, 100853, Beijing, China
| | - Tianhong Dai
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts, 02114.,Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Charlestown, Massachusetts, 02129
| |
Collapse
|
62
|
Tsutsumi-Arai C, Arai Y, Terada-Ito C, Takebe Y, Ide S, Umeki H, Tatehara S, Tokuyama-Toda R, Wakabayashi N, Satomura K. Effectiveness of 405-nm blue LED light for degradation of Candida biofilms formed on PMMA denture base resin. Lasers Med Sci 2019; 34:1457-1464. [DOI: 10.1007/s10103-019-02751-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 02/12/2019] [Indexed: 12/19/2022]
|
63
|
Hoenes K, Hess M, Vatter P, Spellerberg B, Hessling M. 405 nm and 450 nm Photoinactivation of Saccharomyces cerevisiae. Eur J Microbiol Immunol (Bp) 2018; 8:142-148. [PMID: 30719331 PMCID: PMC6348701 DOI: 10.1556/1886.2018.00023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 09/21/2018] [Indexed: 01/08/2023] Open
Abstract
Photoinactivation of bacteria with visible light has been reported in numerous studies. Radiation around 405 nm is absorbed by endogenous porphyrins and generates reactive oxygen species that destroy bacteria from within. Blue light in the spectral range of 450-470 nm also exhibits an antibacterial effect, but it is weaker than 405 nm radiation, and the photosensitizers involved have not been clarified yet, even though flavins and porphyrins are possible candidates. There are significantly fewer photoinactivation studies on fungi. To test if visible light can inactivate fungi and to elucidate the mechanisms involved, the model organism Saccharomyces cerevisiae (DSM no. 70449) was irradiated with violet (405 nm) and blue (450 nm) light. The mean irradiation doses required for a one log reduction of colony forming units for this strain were 182 J/cm2 and 526 J/cm2 for 405 nm and 450 nm irradiation, respectively. To investigate the cell damaging mechanisms, trypan blue staining was performed. However, even strongly irradiated cultures hardly showed any stained S. cerevisiae cells, indicating an intact cell membrane and thus arguing against the previously suspected mechanism of cell membrane damage during photoinactivation with visible light at least for the investigated strain. The results are compatible with photoinactivated Saccharomyces cerevisiae cells being in a viable but nonculturable state. To identify potential fungal photosensitizers, the absorption and fluorescence of Saccharomyces cerevisiae cell lysates were determined. The spectral absorption and fluorescence results are in favor of protoporphyrin IX as the most important photosensitizer at 405 nm radiation. For 450 nm irradiation, riboflavin and other flavins may be the main photosensitizer candidates, since porphyrins do not play a prominent role at this wavelength. No evidence of the involvement of other photosensitizers was found in the spectral data of this strain.
Collapse
Affiliation(s)
- K Hoenes
- Ulm University of Applied Sciences, Albert-Einstein-Allee 55, D 89081 Ulm, Germany
| | - M Hess
- Ulm University of Applied Sciences, Albert-Einstein-Allee 55, D 89081 Ulm, Germany
| | - P Vatter
- Ulm University of Applied Sciences, Albert-Einstein-Allee 55, D 89081 Ulm, Germany
| | - B Spellerberg
- Institute of Medical Microbiology and Hygiene, University of Ulm, Ulm, Germany
| | - M Hessling
- Ulm University of Applied Sciences, Albert-Einstein-Allee 55, D 89081 Ulm, Germany
| |
Collapse
|