51
|
Abstract
Enriched by a decade of remarkable developments, matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI IMS) has witnessed a phenomenal expansion. Initially introduced for the mapping of peptides and intact proteins from mammalian tissue sections, MALDI IMS applications now extend to a wide range of molecules including peptides, lipids, metabolites and xenobiotics. Technology and methodology are quickly evolving to push the limits of the technique forward. Within a short period of time, numerous protocols and concepts have been developed and introduced in tissue section preparation, nonexhaustively including in situ tissue chemistries and solvent-free matrix depositions. Considering the past progress and current capabilities, this Review aims to cover the different aspects and challenges of tissue section preparation for MALDI IMS.
Collapse
|
52
|
Gerdes MJ, Sood A, Sevinsky C, Pris AD, Zavodszky MI, Ginty F. Emerging understanding of multiscale tumor heterogeneity. Front Oncol 2014; 4:366. [PMID: 25566504 PMCID: PMC4270176 DOI: 10.3389/fonc.2014.00366] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/02/2014] [Indexed: 12/12/2022] Open
Abstract
Cancer is a multifaceted disease characterized by heterogeneous genetic alterations and cellular metabolism, at the organ, tissue, and cellular level. Key features of cancer heterogeneity are summarized by 10 acquired capabilities, which govern malignant transformation and progression of invasive tumors. The relative contribution of these hallmark features to the disease process varies between cancers. At the DNA and cellular level, germ-line and somatic gene mutations are found across all cancer types, causing abnormal protein production, cell behavior, and growth. The tumor microenvironment and its individual components (immune cells, fibroblasts, collagen, and blood vessels) can also facilitate or restrict tumor growth and metastasis. Oncology research is currently in the midst of a tremendous surge of comprehension of these disease mechanisms. This will lead not only to novel drug targets but also to new challenges in drug discovery. Integrated, multi-omic, multiplexed technologies are essential tools in the quest to understand all of the various cellular changes involved in tumorigenesis. This review examines features of cancer heterogeneity and discusses how multiplexed technologies can facilitate a more comprehensive understanding of these features.
Collapse
Affiliation(s)
- Michael J. Gerdes
- Diagnostic Imaging and Biomedical Technologies, GE Global Research, Niskayuna, NY, USA
| | - Anup Sood
- Diagnostic Imaging and Biomedical Technologies, GE Global Research, Niskayuna, NY, USA
| | - Christopher Sevinsky
- Diagnostic Imaging and Biomedical Technologies, GE Global Research, Niskayuna, NY, USA
| | - Andrew D. Pris
- Diagnostic Imaging and Biomedical Technologies, GE Global Research, Niskayuna, NY, USA
| | - Maria I. Zavodszky
- Diagnostic Imaging and Biomedical Technologies, GE Global Research, Niskayuna, NY, USA
| | - Fiona Ginty
- Diagnostic Imaging and Biomedical Technologies, GE Global Research, Niskayuna, NY, USA
| |
Collapse
|
53
|
Kriegsmann J, Kriegsmann M, Casadonte R. MALDI TOF imaging mass spectrometry in clinical pathology: a valuable tool for cancer diagnostics (review). Int J Oncol 2014; 46:893-906. [PMID: 25482502 DOI: 10.3892/ijo.2014.2788] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/04/2014] [Indexed: 11/06/2022] Open
Abstract
Matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) imaging mass spectrometry (IMS) is an evolving technique in cancer diagnostics and combines the advantages of mass spectrometry (proteomics), detection of numerous molecules, and spatial resolution in histological tissue sections and cytological preparations. This method allows the detection of proteins, peptides, lipids, carbohydrates or glycoconjugates and small molecules.Formalin-fixed paraffin-embedded tissue can also be investigated by IMS, thus, this method seems to be an ideal tool for cancer diagnostics and biomarker discovery. It may add information to the identification of tumor margins and tumor heterogeneity. The technique allows tumor typing, especially identification of the tumor of origin in metastatic tissue, as well as grading and may provide prognostic information. IMS is a valuable method for the identification of biomarkers and can complement histology, immunohistology and molecular pathology in various fields of histopathological diagnostics, especially with regard to identification and grading of tumors.
Collapse
Affiliation(s)
- Jörg Kriegsmann
- MVZ for Histology, Cytology and Molecular Diagnostics, Trier, Germany
| | - Mark Kriegsmann
- Institute for Pathology, University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
54
|
Bhandari DR, Schott M, Römpp A, Vilcinskas A, Spengler B. Metabolite localization by atmospheric pressure high-resolution scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging in whole-body sections and individual organs of the rove beetle Paederus riparius. Anal Bioanal Chem 2014; 407:2189-201. [PMID: 25424178 PMCID: PMC4357651 DOI: 10.1007/s00216-014-8327-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 11/04/2014] [Accepted: 11/06/2014] [Indexed: 11/25/2022]
Abstract
Mass spectrometry imaging provides for non-targeted, label-free chemical imaging. In this study, atmospheric pressure high-resolution scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging (AP-SMALDI MSI) was used for the first time to describe the chemical distribution of the defensive compounds pederin, pseudopederin, and pederon in tissue sections (16 μm thick) of the rove beetle Paederus riparius. The whole-insect tissue section was scanned with a 20-μm step size. Mass resolution of the orbital trapping mass spectrometer was set to 100,000 at m/z 200. Additionally, organ-specific compounds were identified for brain, nerve cord, eggs, gut, ovaries, and malpighian tubules. To confirm the distribution of the specific compounds, individual organs from the insect were dissected, and MSI experiments were performed on the dissected organs. Three ganglia of the nerve cord, with a dimension of 250–500 μm, were measured with 10-μm spatial resolution. High-quality m/z images, based on high spatial resolution and high mass accuracy were generated. These features helped to assign mass spectral peaks with high confidence. Mass accuracy of the imaging experiments was <3 ppm root mean square error, and mapping of different compound classes from a single experiment was possible. This approach improved the understanding of the biochemistry of P. riparius. Concentration differences and distributions of pederin and its analogues could be visualized in the whole-insect section. Without any labeling, we assigned key lipids for specific organs to describe their location in the body and to identify morphological structures with a specificity higher than with staining or immunohistology methods.
Collapse
Affiliation(s)
- Dhaka Ram Bhandari
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Schubertstraße 60, Building 16, 35392 Giessen, Germany
| | - Matthias Schott
- Institute of Phytopathology and Applied Zoology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Andreas Römpp
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Schubertstraße 60, Building 16, 35392 Giessen, Germany
| | - Andreas Vilcinskas
- Institute of Phytopathology and Applied Zoology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Schubertstraße 60, Building 16, 35392 Giessen, Germany
| |
Collapse
|
55
|
Three-dimensional imaging of lipids and metabolites in tissues by nanospray desorption electrospray ionization mass spectrometry. Anal Bioanal Chem 2014; 407:2063-71. [PMID: 25395201 DOI: 10.1007/s00216-014-8174-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/03/2014] [Accepted: 09/08/2014] [Indexed: 10/24/2022]
Abstract
Three-dimensional (3D) imaging of tissue sections is a new frontier in mass spectrometry imaging (MSI). Here, we report on fast 3D imaging of lipids and metabolites associated with mouse uterine decidual cells and embryo at the implantation site on day 6 of pregnancy. 2D imaging of 16-20 serial tissue sections deposited on the same glass slide was performed using nanospray desorption electrospray ionization (nano-DESI)-an ambient ionization technique that enables sensitive localized analysis of analytes on surfaces without special sample pretreatment. In this proof-of-principle study, nano-DESI was coupled to a high-resolution Q-Exactive instrument operated at high repetition rate of >5 Hz with moderate mass resolution of 35,000 (m/Δm at m/z 200), which enabled acquisition of the entire 3D image with a spatial resolution of ∼150 μm in less than 4.5 h. The results demonstrate localization of acetylcholine in the primary decidual zone (PDZ) of the implantation site throughout the depth of the tissue examined, indicating an important role of this signaling molecule in decidualization. Choline and phosphocholine-metabolites associated with cell growth-are enhanced in the PDZ and abundant in other cellular regions of the implantation site. Very different 3D distributions were obtained for fatty acids (FA), oleic acid and linoleic acid (FA 18:1 and FA 18:2), differing only by one double bond. Localization of FA 18:2 in the PDZ indicates its important role in decidualization while FA 18:1 is distributed more evenly throughout the tissue. In contrast, several lysophosphatidylcholines (LPC) observed in this study show donut-like distributions with localization around the PDZ. Complementary distributions with minimal overlap were observed for LPC 18:0 and FA 18:2 while the 3D image of the potential precursor phosphatidylcholine 36:2 (PC 36:2) showed a significant overlap with both LPC 18:0 and FA 18:2.
Collapse
|
56
|
Breault-Turcot J, Chaurand P, Masson JF. Unravelling Nonspecific Adsorption of Complex Protein Mixture on Surfaces with SPR and MS. Anal Chem 2014; 86:9612-9. [DOI: 10.1021/ac502077b] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Julien Breault-Turcot
- Département
de Chimie, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montreal, Quebec Canada, H3C 3J7
| | - Pierre Chaurand
- Département
de Chimie, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montreal, Quebec Canada, H3C 3J7
| | - Jean-Francois Masson
- Département
de Chimie, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montreal, Quebec Canada, H3C 3J7
- Centre
for Self-Assembled Chemical Structures (CSACS), McGill University, Otto
Maass Building Room 414, 801 Sherbrooke Street West, Montreal, Quebec, Canada, H3A 2K6
| |
Collapse
|
57
|
Affiliation(s)
- Paul A. Sigala
- Departments of Medicine and Molecular Microbiology and the Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri 63110; ,
| | - Daniel E. Goldberg
- Departments of Medicine and Molecular Microbiology and the Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri 63110; ,
| |
Collapse
|
58
|
Cochran KH, Barry JA, Robichaud G, Muddiman DC. Analysis of trace fibers by IR-MALDESI imaging coupled with high resolving power MS. Anal Bioanal Chem 2014; 407:813-20. [PMID: 25081013 DOI: 10.1007/s00216-014-8042-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 07/10/2014] [Accepted: 07/16/2014] [Indexed: 02/06/2023]
Abstract
Trace evidence is a significant portion of forensic cases. Textile fibers are a common form of trace evidence that are gaining importance in criminal cases. Currently, qualitative techniques that do not yield structural information are primarily used for fiber analysis, but mass spectrometry is gaining an increasing role in this field. Mass spectrometry yields more quantitative structural information about the dye and polymer that can be used for more conclusive comparisons. Matrix-assisted laser desorption electrospray ionization (MALDESI) is a hybrid ambient ionization source being investigated for use in mass spectrometric fiber analysis. In this manuscript, IR-MALDESI was used as a source for mass spectrometry imaging (MSI) of a dyed nylon fiber cluster and single fiber. Information about the fiber polymer as well as the dye were obtained from a single fiber which was on the order of 10 μm in diameter. These experiments were performed directly from the surface of a tape lift of the fiber with a background of extraneous fibers.
Collapse
Affiliation(s)
- Kristin H Cochran
- W.M. Keck Fourier Transform Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | | | | | | |
Collapse
|
59
|
Becker L, Carré V, Poutaraud A, Merdinoglu D, Chaimbault P. MALDI mass spectrometry imaging for the simultaneous location of resveratrol, pterostilbene and viniferins on grapevine leaves. Molecules 2014; 19:10587-600. [PMID: 25050857 PMCID: PMC6271053 DOI: 10.3390/molecules190710587] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 07/01/2014] [Accepted: 07/16/2014] [Indexed: 02/06/2023] Open
Abstract
To investigate the in-situ response to a stress, grapevine leaves have been subjected to mass spectrometry imaging (MSI) experiments. The Matrix Assisted Laser Desorption/Ionisation (MALDI) approach using different matrices has been evaluated. Among all the tested matrices, the 2,5-dihydroxybenzoic acid (DHB) was found to be the most efficient matrix allowing a broader range of detected stilbene phytoalexins. Resveratrol, but also more toxic compounds against fungi such as pterostilbene and viniferins, were identified and mapped. Their spatial distributions on grapevine leaves irradiated by UV show their specific colocation around the veins. Moreover, MALDI MSI reveals that resveratrol (and piceids) and viniferins are not specifically located on the same area when leaves are infected by Plasmopara viticola. Results obtained by MALDI mass spectrometry imaging demonstrate that this technique would be essential to improve the level of knowledge concerning the role of the stilbene phytoalexins involved in a stress event.
Collapse
Affiliation(s)
- Loïc Becker
- Laboratoire de Chimie et Physique-Approche Multi échelle des Milieux Complexes (LCP-A2MC), Institut Jean Barriol (FR 2843), Université de Lorraine, ICPM 1 Boulevard Arago, F-57078 Metz, France.
| | - Vincent Carré
- Laboratoire de Chimie et Physique-Approche Multi échelle des Milieux Complexes (LCP-A2MC), Institut Jean Barriol (FR 2843), Université de Lorraine, ICPM 1 Boulevard Arago, F-57078 Metz, France.
| | - Anne Poutaraud
- Institut National de Recherche en Agronomie (INRA) - Santé de la Vigne et Qualité du Vin (UMR 1131), 28 rue de Herrlisheim, F-68021 Colmar, France.
| | - Didier Merdinoglu
- Institut National de Recherche en Agronomie (INRA) - Santé de la Vigne et Qualité du Vin (UMR 1131), 28 rue de Herrlisheim, F-68021 Colmar, France.
| | - Patrick Chaimbault
- Laboratoire de Chimie et Physique-Approche Multi échelle des Milieux Complexes (LCP-A2MC), Institut Jean Barriol (FR 2843), Université de Lorraine, ICPM 1 Boulevard Arago, F-57078 Metz, France.
| |
Collapse
|
60
|
Lanekoff I, Stevens SL, Stenzel-Poore MP, Laskin J. Matrix effects in biological mass spectrometry imaging: identification and compensation. Analyst 2014; 139:3528-32. [PMID: 24802717 PMCID: PMC4078919 DOI: 10.1039/c4an00504j] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Matrix effects in mass spectrometry imaging (MSI) may affect the observed molecular distribution in chemical and biological systems. In this study, we use mouse brain tissue of a middle cerebral artery occlusion (MCAO) stroke model to examine matrix effects in nanospray desorption electrospray ionization MSI (nano-DESI MSI). This is achieved by normalizing the intensity of the sodium and potassium adducts of endogenous phosphatidylcholine (PC) species to the intensity of the corresponding adduct of the PC standard supplied at a constant rate with the nano-DESI solvent. The use of MCAO model with an ischemic region localized to one hemisphere of the brain enables immediate comparison of matrix effects within one ion image. Furthermore, significant differences in sodium and potassium concentrations in the ischemic region in comparison with the healthy tissue allowed us to distinguish between two types of matrix effects. Specifically, we discuss matrix effects originating from variations in alkali metal concentrations and matrix effects originating from variations in the molecular composition of the tissue. Compensation for both types of matrix effects was achieved by normalizing the signals corresponding to endogenous PC to the signals of the standards. This approach, which does not introduce any complexity in sample preparation, efficiently compensates for signal variations resulting from differences in the local concentrations of sodium and potassium in tissue sections and from the complexity of the extracted analyte mixture derived from local variations in molecular composition.
Collapse
Affiliation(s)
- Ingela Lanekoff
- Physical Sciences Division, Pacific Northwest National Laboratory, PO Box 999, K8-88, Richland, WA 99352, USA.
| | | | | | | |
Collapse
|
61
|
Patterson NH, Thomas A, Chaurand P. Monitoring time-dependent degradation of phospholipids in sectioned tissues by MALDI imaging mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2014; 49:622-7. [PMID: 25044847 DOI: 10.1002/jms.3382] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 05/24/2023]
Abstract
Imaging mass spectrometry (IMS) is useful for visualizing the localization of phospholipids on biological tissue surfaces creating great opportunities for IMS in lipidomic investigations. With advancements in IMS of lipids, there is a demand for large-scale tissue studies necessitating stable, efficient and well-defined sample handling procedures. Our work within this article shows the effects of different storage conditions on the phospholipid composition of sectioned tissues from mouse organs. We have taken serial sections from mouse brain, kidney and liver thaw mounted unto ITO-coated glass slides and stored them under various conditions later analyzing them at fixed time points. A global decrease in phospholipid signal intensity is shown to occur and to be a function of time and temperature. Contrary to the global decrease, oxidized phospholipid and lysophospholipid species are found to increase within 2 h and 24 h, respectively, when mounted sections are kept at ambient room conditions. Imaging experiments reveal that degradation products increase globally across the tissue. Degradation is shown to be inhibited by cold temperatures, with sample integrity maintained up to a week after storage in -80 °C freezer under N2 atmosphere. Overall, the results demonstrate a timeline of the effects of lipid degradation specific to sectioned tissues and provide several lipid species which can serve as markers of degradation. Importantly, the timeline demonstrates oxidative sample degradation begins appearing within the normal timescale of IMS sample preparation of lipids (i.e. 1-2 h) and that long-term degradation is global. Taken together, these results strengthen the notion that standardized procedures are required for phospholipid IMS of large sample sets, or in studies where many serial sections are prepared together but analyzed over time such as in 3-D IMS reconstruction experiments.
Collapse
|
62
|
Horn PJ, Chapman KD. Lipidomics in situ: Insights into plant lipid metabolism from high resolution spatial maps of metabolites. Prog Lipid Res 2014; 54:32-52. [DOI: 10.1016/j.plipres.2014.01.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 01/14/2014] [Accepted: 01/14/2014] [Indexed: 12/31/2022]
|
63
|
Bennett RV, Gamage CM, Galhena AS, Fernández FM. Contrast-Enhanced Differential Mobility-Desorption Electrospray Ionization-Mass Spectrometry Imaging of Biological Tissues. Anal Chem 2014; 86:3756-63. [DOI: 10.1021/ac5007816] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Rachel V. Bennett
- School of Chemistry
and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Chaminda M. Gamage
- School of Chemistry
and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Asiri S. Galhena
- School of Chemistry
and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Facundo M. Fernández
- School of Chemistry
and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States
| |
Collapse
|
64
|
Gessel MM, Norris JL, Caprioli RM. MALDI imaging mass spectrometry: spatial molecular analysis to enable a new age of discovery. J Proteomics 2014; 107:71-82. [PMID: 24686089 DOI: 10.1016/j.jprot.2014.03.021] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 03/20/2014] [Indexed: 12/26/2022]
Abstract
Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) combines the sensitivity and selectivity of mass spectrometry with spatial analysis to provide a new dimension for histological analyses to provide unbiased visualization of the arrangement of biomolecules in tissue. As such, MALDI IMS has the capability to become a powerful new molecular technology for the biological and clinical sciences. In this review, we briefly describe several applications of MALDI IMS covering a range of molecular weights, from drugs to proteins. Current limitations and challenges are discussed along with recent developments to address these issues. This article is part of a Special Issue entitled: 20years of Proteomics in memory of Viatliano Pallini. Guest Editors: Luca Bini, Juan J. Calvete, Natacha Turck, Denis Hochstrasser and Jean-Charles Sanchez.
Collapse
Affiliation(s)
- Megan M Gessel
- National Research Resource for Imaging Mass Spectrometry, Mass Spectrometry Research Center, Vanderbilt University School of Medicine, 9160 Medical Research Building III, 465 21st Avenue South, Nashville, TN 37232-8575, United States; Department of Biochemistry, Vanderbilt University School of Medicine, 9160 Medical Research Building III, 465 21st Avenue South, Nashville, TN 37232-8575, United States
| | - Jeremy L Norris
- National Research Resource for Imaging Mass Spectrometry, Mass Spectrometry Research Center, Vanderbilt University School of Medicine, 9160 Medical Research Building III, 465 21st Avenue South, Nashville, TN 37232-8575, United States; Department of Biochemistry, Vanderbilt University School of Medicine, 9160 Medical Research Building III, 465 21st Avenue South, Nashville, TN 37232-8575, United States
| | - Richard M Caprioli
- National Research Resource for Imaging Mass Spectrometry, Mass Spectrometry Research Center, Vanderbilt University School of Medicine, 9160 Medical Research Building III, 465 21st Avenue South, Nashville, TN 37232-8575, United States; Department of Biochemistry, Vanderbilt University School of Medicine, 9160 Medical Research Building III, 465 21st Avenue South, Nashville, TN 37232-8575, United States.
| |
Collapse
|
65
|
Robichaud G, Barry JA, Muddiman DC. IR-MALDESI mass spectrometry imaging of biological tissue sections using ice as a matrix. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:319-28. [PMID: 24385399 PMCID: PMC3950934 DOI: 10.1007/s13361-013-0787-6] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 11/14/2013] [Accepted: 11/16/2013] [Indexed: 05/04/2023]
Abstract
Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) mass spectrometry imaging of biological tissue sections using a layer of deposited ice as an energy-absorbing matrix was investigated. Dynamics of plume ablation were first explored using a nanosecond exposure shadowgraphy system designed to simultaneously collect pictures of the plume with a camera and collect the Fourier transform ion cyclotron resonance FT-ICR mass spectrum corresponding to that same ablation event. Ablation of fresh tissue analyzed with and without using ice as a matrix were compared using this technique. Effect of spot-to-spot distance, number of laser shots per pixel, and tissue condition (matrix) on ion abundance were also investigated for 50 μm-thick tissue sections. Finally, the statistical method called design of experiments was used to compare source parameters and determine the optimal conditions for IR-MALDESI of tissue sections using deposited ice as a matrix. With a better understanding of the fundamentals of ablation dynamics and a systematic approach to explore the experimental space, it was possible to improve ion abundance by nearly one order of magnitude.
Collapse
Affiliation(s)
| | | | - David C. Muddiman
- Author for Correspondence. David C. Muddiman, Ph.D., W.M. Keck Fourier Transform Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, Phone: 919-513-0084,
| |
Collapse
|
66
|
Bjarnholt N, Li B, D'Alvise J, Janfelt C. Mass spectrometry imaging of plant metabolites--principles and possibilities. Nat Prod Rep 2014; 31:818-37. [PMID: 24452137 DOI: 10.1039/c3np70100j] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: up to the end of 2013 New mass spectrometry imaging (MSI) techniques are gaining importance in the analysis of plant metabolite distributions, and significant technological improvements have been introduced in the past decade. This review provides an introduction to the different MSI techniques and their applications in plant science. The most common methods for sample preparation are described, and the review also features a comprehensive table of published studies in MSI of plant material. A number of significant works are highlighted for their contributions to advance the understanding of plant biology through applications of plant metabolite imaging. Particular attention is given to the possibility for imaging of surface metabolites since this is highly dependent on the methods and techniques which are applied in imaging studies.
Collapse
Affiliation(s)
- Nanna Bjarnholt
- Department of Plant and Environmental Sciences, University of Copenhagen, Bülowsvej 17, 1870 Frederiksberg C, Copenhagen, Denmark
| | | | | | | |
Collapse
|
67
|
Lim MJ, Liu Z, Braunschweiger KI, Awad A, Rothschild KJ. Correlated matrix-assisted laser desorption/ionization mass spectrometry and fluorescent imaging of photocleavable peptide-coded random bead-arrays. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:49-62. [PMID: 24285390 PMCID: PMC3894740 DOI: 10.1002/rcm.6754] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 09/27/2013] [Accepted: 09/29/2013] [Indexed: 05/13/2023]
Abstract
RATIONALE Rapidly performing global proteomic screens is an important goal in the post-genomic era. Correlated matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and fluorescent imaging of photocleavable peptide-coded random bead-arrays was evaluated as a critical step in a new method for proteomic screening that combines many of the advantages of MS with fluorescence-based microarrays. METHODS Small peptide-coded model bead libraries containing up to 20 different bead species were constructed by attaching peptides to 30-34 µm diameter glass, agarose or TentaGel® beads using photocleavable biotin or a custom-designed photocleavable linker. The peptide-coded bead libraries were randomly arrayed into custom gold-coated micro-well plates with 45 µm diameter wells and subjected to fluorescence and MALDI mass spectrometric imaging (MALDI-MSI). RESULTS Photocleavable mass-tags from individual beads in these libraries were spatially localized as ~65 µm spots using MALDI-MSI with high sensitivity and mass resolution. Fluorescently tagged beads were identified and correlated with their matching photocleavable mass-tags by comparing the fluorescence and MALDI-MS images of the same bead-array. Post-translational modification of the peptide Kemptide was also detected on individual beads in a photocleavable peptide-coded bead-array by MALDI-MSI alone, after exposure of the beads to protein kinase A (PKA). CONCLUSIONS Correlated MALDI-MS and fluorescent imaging of photocleavable peptide-coded random bead-arrays can provide a basis for performing global proteomic screening.
Collapse
Affiliation(s)
- Mark J Lim
- AmberGen, Incorporated313 Pleasant Street, Watertown, MA, 02472, USA
- * Correspondence to: M. J. Lim, AmberGen, Incorporated, 313 Pleasant Street, Watertown, MA 02472, USA., E-mail:
| | - Ziying Liu
- AmberGen, Incorporated313 Pleasant Street, Watertown, MA, 02472, USA
| | | | - Amany Awad
- AmberGen, Incorporated313 Pleasant Street, Watertown, MA, 02472, USA
| | - Kenneth J Rothschild
- AmberGen, Incorporated313 Pleasant Street, Watertown, MA, 02472, USA
- Molecular Biophysics Laboratory, Department of Physics and Photonics Center, Boston UniversityBoston, MA, 02215, USA
| |
Collapse
|
68
|
Etxebarria J, Calvo J, Reichardt NC. Nanostructured weathering steel for matrix-free laser desorption ionisation mass spectrometry and imaging of metabolites, drugs and complex glycans. Analyst 2014; 139:2873-83. [DOI: 10.1039/c4an00216d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
69
|
James SA, Feltis BN, de Jonge MD, Sridhar M, Kimpton JA, Altissimo M, Mayo S, Zheng C, Hastings A, Howard DL, Paterson DJ, Wright PFA, Moorhead GF, Turney TW, Fu J. Quantification of ZnO nanoparticle uptake, distribution, and dissolution within individual human macrophages. ACS NANO 2013; 7:10621-35. [PMID: 24187959 DOI: 10.1021/nn403118u] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The usefulness of zinc oxide (ZnO) nanoparticles has led to their wide distribution in consumer products, despite only a limited understanding of how this nanomaterial behaves within biological systems. From a nanotoxicological viewpoint the interaction(s) of ZnO nanoparticles with cells of the immune system is of specific interest, as these nanostructures are readily phagocytosed. In this study, rapid scanning X-ray fluorescence microscopy was used to assay the number ZnO nanoparticles associated with ∼1000 individual THP-1 monocyte-derived human macrophages. These data showed that nanoparticle-treated cells endured a 400% elevation in total Zn levels, 13-fold greater than the increase observed when incubated in the presence of an equitoxic concentration of ZnCl2. Even after excluding the contribution of internalized nanoparticles, Zn levels in nanoparticle treated cells were raised ∼200% above basal levels. As dissolution of ZnO nanoparticles is critical to their cytotoxic response, we utilized a strategy combining ion beam milling, X-ray fluorescence and scanning electron microscopy to directly probe the distribution and composition of ZnO nanoparticles throughout the cellular interior. This study demonstrated that correlative photon and ion beam imaging techniques can provide both high-resolution and statistically powerful information on the biology of metal oxide nanoparticles at the single-cell level. Our approach promises ready application to broader studies of phenomena at the interface of nanotechnology and biology.
Collapse
Affiliation(s)
- Simon A James
- Australian Synchrotron , Clayton, Victoria 3168, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Konermann L, Vahidi S, Sowole MA. Mass Spectrometry Methods for Studying Structure and Dynamics of Biological Macromolecules. Anal Chem 2013; 86:213-32. [DOI: 10.1021/ac4039306] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7 Canada
| | - Siavash Vahidi
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7 Canada
| | - Modupeola A. Sowole
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7 Canada
| |
Collapse
|
71
|
Škrášková K, Heeren RM. A review of complementary separation methods and matrix assisted laser desorption ionization-mass spectrometry imaging: Lowering sample complexity. J Chromatogr A 2013; 1319:1-13. [DOI: 10.1016/j.chroma.2013.10.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
72
|
Alexandrov T, Chernyavsky I, Becker M, von Eggeling F, Nikolenko S. Analysis and Interpretation of Imaging Mass Spectrometry Data by Clustering Mass-to-Charge Images According to Their Spatial Similarity. Anal Chem 2013; 85:11189-95. [DOI: 10.1021/ac401420z] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Theodore Alexandrov
- Center for Industrial
Mathematics, University of Bremen, 28359 Bremen, Germany
- SCiLS GmbH, 28359 Bremen, Germany
- Steinbeis Innovation
Center SCiLS Research, 28359 Bremen, Germany
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, United States
| | - Ilya Chernyavsky
- Center for Industrial
Mathematics, University of Bremen, 28359 Bremen, Germany
- St. Petersburg Academic University, St. Petersburg 194021, Russia
| | | | - Ferdinand von Eggeling
- Core Unit Chip
Application,
Institute of Human Genetics, Jena University Hospital, 07743 Jena, Germany
| | - Sergey Nikolenko
- National Research University Higher School of Economics, St. Petersburg 101000, Russia
- Steklov Mathematical Institute, St. Petersburg 119991, Russia
| |
Collapse
|
73
|
Lanekoff I, Burnum-Johnson K, Thomas M, Short J, Carson JP, Cha J, Dey SK, Yang P, Conaway MCP, Laskin J. High-speed tandem mass spectrometric in situ imaging by nanospray desorption electrospray ionization mass spectrometry. Anal Chem 2013; 85:9596-603. [PMID: 24040919 PMCID: PMC3867692 DOI: 10.1021/ac401760s] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nanospray desorption electrospray ionization (nano-DESI) combined with tandem mass spectrometry (MS/MS), high-resolution mass analysis of the fragment ions (m/Δm = 17 500 at m/z 200), and rapid spectral acquisition enabled simultaneous imaging and identification of a large number of metabolites and lipids from 92 selected m/z windows (±1 Da) with a spatial resolution of better than 150 μm. Mouse uterine sections of implantation sites on day 6 of pregnancy were analyzed in the ambient environment without any sample pretreatment. MS/MS imaging was performed by scanning the sample under the nano-DESI probe at 10 μm/s, while higher-energy collision-induced dissociation (HCD) spectra were acquired for a targeted inclusion list of 92 m/z values at a rate of ∼6.3 spectra/s. Molecular ions and their corresponding fragments, separated by high-resolution mass analysis, were assigned on the basis of accurate mass measurement. Using this approach, we were able to identify and image both abundant and low-abundance isobaric and isomeric species within each m/z window. MS/MS analysis enabled efficient separation and identification of isomeric and isobaric phospholipids that are difficult to separate in full-scan mode. Furthermore, we identified several metabolites associated with early pregnancy and obtained the first 2D images of these molecules.
Collapse
Affiliation(s)
- Ingela Lanekoff
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352
| | - Kristin Burnum-Johnson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352
| | - Mathew Thomas
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352
| | - Joshua Short
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352
| | - James P. Carson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352
| | - Jeeyeon Cha
- Division of Reproductive Sciences, The Perinatal Institute, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Sudhansu K. Dey
- Division of Reproductive Sciences, The Perinatal Institute, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | | | | | - Julia Laskin
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352
| |
Collapse
|
74
|
Alexandrov T, Bartels A. Testing for presence of known and unknown molecules in imaging mass spectrometry. ACTA ACUST UNITED AC 2013; 29:2335-42. [PMID: 23873892 DOI: 10.1093/bioinformatics/btt388] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
MOTIVATION Imaging mass spectrometry has emerged in the past decade as a label-free, spatially resolved and multi-purpose bioanalytical technique for direct analysis of biological samples. However, solving two everyday data analysis problems still requires expert judgment: (i) the detection of unknown molecules and (ii) the testing for presence of known molecules. RESULTS We developed a measure of spatial chaos of a molecular image corresponding to a mass-to-charge value, which is a proxy for the molecular presence, and developed methods solving considered problems. The statistical evaluation was performed on a dataset from a rat brain section with test sets of molecular images selected by an expert. The measure of spatial chaos has shown high agreement with expert judges. The method for detection of unknown molecules allowed us to find structured molecular images corresponding to spectral peaks of any low intensity. The test for presence applied to a list of endogenous peptides ranked them according to the proposed measure of their presence in the sample. AVAILABILITY The source code and test sets of mass-to-charge images are available at http://www.math.uni-bremen.de/∼theodore. SUPPLEMENTARY INFORMATION Supplementary materials are available at Bioinformatics online. CONTACT theodore@uni-bremen.de.
Collapse
Affiliation(s)
- Theodore Alexandrov
- Center for Industrial Mathematics, University of Bremen, 28359 Bremen, Germany.
| | | |
Collapse
|
75
|
Lietz CB, Gemperline E, Li L. Qualitative and quantitative mass spectrometry imaging of drugs and metabolites. Adv Drug Deliv Rev 2013; 65:1074-85. [PMID: 23603211 DOI: 10.1016/j.addr.2013.04.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 03/27/2013] [Accepted: 04/09/2013] [Indexed: 12/26/2022]
Abstract
Mass spectrometric imaging (MSI) has rapidly increased its presence in the pharmaceutical sciences. While quantitative whole-body autoradiography and microautoradiography are the traditional techniques for molecular imaging of drug delivery and metabolism, MSI provides advantageous specificity that can distinguish the parent drug from metabolites and modified endogenous molecules. This review begins with the fundamentals of MSI sample preparation/ionization, and then moves on to both qualitative and quantitative applications with special emphasis on drug discovery and delivery. Cutting-edge investigations on sub-cellular imaging and endogenous signaling peptides are also highlighted, followed by perspectives on emerging technology and the path for MSI to become a routine analysis technique.
Collapse
|
76
|
Norris JL, Caprioli RM. Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research. Chem Rev 2013; 113:2309-42. [PMID: 23394164 PMCID: PMC3624074 DOI: 10.1021/cr3004295] [Citation(s) in RCA: 535] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jeremy L. Norris
- National Research Resource for Imaging Mass Spectrometry, Mass Spectrometry Research Center, and Department of Biochemistry, Vanderbilt University School of Medicine, 9160 Medical Research Building III, 465 21st Avenue South, Nashville, TN 37232-8575
| | - Richard M. Caprioli
- National Research Resource for Imaging Mass Spectrometry, Mass Spectrometry Research Center, and Department of Biochemistry, Vanderbilt University School of Medicine, 9160 Medical Research Building III, 465 21st Avenue South, Nashville, TN 37232-8575
| |
Collapse
|
77
|
Prior N, Little SA, Pirone C, Gill JE, Smith D, Han J, Hardie D, O’Leary SJB, Wagner RE, Cross T, Coulter A, Borchers C, Olafson RW, von Aderkas P. Application of proteomics to the study of pollination drops. APPLICATIONS IN PLANT SCIENCES 2013; 1:apps1300008. [PMID: 25202539 PMCID: PMC4105296 DOI: 10.3732/apps.1300008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 03/16/2013] [Indexed: 05/06/2023]
Abstract
PREMISE OF THE STUDY Pollination drops are a formative component in gymnosperm pollen-ovule interactions. Proteomics offers a direct method for the discovery of proteins associated with this early stage of sexual reproduction. • METHODS Pollination drops were sampled from eight gymnosperm species: Chamaecyparis lawsoniana (Port Orford cedar), Ephedra monosperma, Ginkgo biloba, Juniperus oxycedrus (prickly juniper), Larix ×marschlinsii, Pseudotsuga menziesii (Douglas-fir), Taxus ×media, and Welwitschia mirabilis. Drops were collected by micropipette using techniques focused on preventing sample contamination. Drop proteins were separated using both gel and gel-free methods. Tandem mass spectrometric methods were used including a triple quadrupole and an Orbitrap. • RESULTS Proteins are present in all pollination drops. Consistency in the protein complement over time was shown in L. ×marschlinsii. Representative mass spectra from W. mirabilis chitinase peptide and E. monosperma serine carboxypeptidase peptide demonstrated high quality results. We provide a summary of gymnosperm pollination drop proteins that have been discovered to date via proteomics. • DISCUSSION Using proteomic methods, a dozen classes of proteins have been identified to date. Proteomics presents a way forward in deepening our understanding of the biological function of pollination drops.
Collapse
Affiliation(s)
- Natalie Prior
- Centre for Forest Biology, Department of Biology, University of Victoria, P.O. Box 3020 Station CSC, Victoria, British Columbia V8W 3N5, Canada
- Author for correspondence:
| | - Stefan A. Little
- Centre for Forest Biology, Department of Biology, University of Victoria, P.O. Box 3020 Station CSC, Victoria, British Columbia V8W 3N5, Canada
| | - Cary Pirone
- Arnold Arboretum of Harvard University, 125 Arborway, Boston, Massachusetts 02130-3500 USA
| | - Julia E. Gill
- Centre for Forest Biology, Department of Biology, University of Victoria, P.O. Box 3020 Station CSC, Victoria, British Columbia V8W 3N5, Canada
| | - Derek Smith
- University of Victoria—Genome BC Proteomics Centre, University of Victoria, Victoria, British Columbia V8Z 7X8, Canada
| | - Jun Han
- University of Victoria—Genome BC Proteomics Centre, University of Victoria, Victoria, British Columbia V8Z 7X8, Canada
| | - Darryl Hardie
- University of Victoria—Genome BC Proteomics Centre, University of Victoria, Victoria, British Columbia V8Z 7X8, Canada
| | - Stephen J. B. O’Leary
- Centre for Forest Biology, Department of Biology, University of Victoria, P.O. Box 3020 Station CSC, Victoria, British Columbia V8W 3N5, Canada
| | - Rebecca E. Wagner
- Centre for Forest Biology, Department of Biology, University of Victoria, P.O. Box 3020 Station CSC, Victoria, British Columbia V8W 3N5, Canada
| | - Tyra Cross
- University of Victoria—Genome BC Proteomics Centre, University of Victoria, Victoria, British Columbia V8Z 7X8, Canada
| | - Andrea Coulter
- Centre for Forest Biology, Department of Biology, University of Victoria, P.O. Box 3020 Station CSC, Victoria, British Columbia V8W 3N5, Canada
| | - Christoph Borchers
- University of Victoria—Genome BC Proteomics Centre, University of Victoria, Victoria, British Columbia V8Z 7X8, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Robert W. Olafson
- University of Victoria—Genome BC Proteomics Centre, University of Victoria, Victoria, British Columbia V8Z 7X8, Canada
| | - Patrick von Aderkas
- Centre for Forest Biology, Department of Biology, University of Victoria, P.O. Box 3020 Station CSC, Victoria, British Columbia V8W 3N5, Canada
| |
Collapse
|
78
|
Dufresne M, Thomas A, Breault-Turcot J, Masson JF, Chaurand P. Silver-assisted laser desorption ionization for high spatial resolution imaging mass spectrometry of olefins from thin tissue sections. Anal Chem 2013; 85:3318-24. [PMID: 23425078 DOI: 10.1021/ac3037415] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Silver has been demonstrated to be a powerful cationization agent in mass spectrometry (MS) for various olefinic species such as cholesterol and fatty acids. This work explores the utility of metallic silver sputtering on tissue sections for high resolution imaging mass spectrometry (IMS) of olefins by laser desorption ionization (LDI). For this purpose, sputtered silver coating thickness was optimized on an assorted selection of mouse and rat tissues including brain, kidney, liver, and testis. For mouse brain tissue section, the thickness was adjusted to 23 ± 2 nm of silver to prevent ion suppression effects associated with a higher cholesterol and lipid content. On all other tissues, a thickness of at 16 ± 2 nm provided the best desorption/ionization efficiency. Characterization of the species by MS/MS showed a wide variety of olefinic compounds allowing the IMS of different lipid classes including cholesterol, arachidonic acid, docosahexaenoic acid, and triacylglyceride 52:3. A range of spatial resolutions for IMS were investigated from 150 μm down to the high resolution cellular range at 5 μm. The applicability of direct on-tissue silver sputtering to LDI-IMS of cholesterol and other olefinic compounds presents a novel approach to improve the amount of information that can be obtained from tissue sections. This IMS strategy is thus of interest for providing new biological insights on the role of cholesterol and other olefins in physiological pathways or disease.
Collapse
Affiliation(s)
- Martin Dufresne
- Department of Chemistry, University of Montreal, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
79
|
Thomas A, Patterson NH, Marcinkiewicz MM, Lazaris A, Metrakos P, Chaurand P. Histology-driven data mining of lipid signatures from multiple imaging mass spectrometry analyses: application to human colorectal cancer liver metastasis biopsies. Anal Chem 2013; 85:2860-6. [PMID: 23347294 DOI: 10.1021/ac3034294] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Imaging mass spectrometry (IMS) represents an innovative tool in the cancer research pipeline, which is increasingly being used in clinical and pharmaceutical applications. The unique properties of the technique, especially the amount of data generated, make the handling of data from multiple IMS acquisitions challenging. This work presents a histology-driven IMS approach aiming to identify discriminant lipid signatures from the simultaneous mining of IMS data sets from multiple samples. The feasibility of the developed workflow is evaluated on a set of three human colorectal cancer liver metastasis (CRCLM) tissue sections. Lipid IMS on tissue sections was performed using MALDI-TOF/TOF MS in both negative and positive ionization modes after 1,5-diaminonaphthalene matrix deposition by sublimation. The combination of both positive and negative acquisition results was performed during data mining to simplify the process and interrogate a larger lipidome into a single analysis. To reduce the complexity of the IMS data sets, a sub data set was generated by randomly selecting a fixed number of spectra from a histologically defined region of interest, resulting in a 10-fold data reduction. Principal component analysis confirmed that the molecular selectivity of the regions of interest is maintained after data reduction. Partial least-squares and heat map analyses demonstrated a selective signature of the CRCLM, revealing lipids that are significantly up- and down-regulated in the tumor region. This comprehensive approach is thus of interest for defining disease signatures directly from IMS data sets by the use of combinatory data mining, opening novel routes of investigation for addressing the demands of the clinical setting.
Collapse
Affiliation(s)
- Aurélien Thomas
- Department of Chemistry, University of Montreal, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
80
|
Thomas A, Patterson NH, Laveaux Charbonneau J, Chaurand P. Orthogonal organic and aqueous-based washes of tissue sections to enhance protein sensitivity by MALDI imaging mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2013; 48:42-48. [PMID: 23303746 DOI: 10.1002/jms.3114] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 09/26/2012] [Accepted: 09/27/2012] [Indexed: 06/01/2023]
Abstract
Imaging mass spectrometry (IMS) is an emergent and innovative approach for measuring the composition, abundance and regioselectivity of molecules within an investigated area of fixed dimension. Although providing unprecedented molecular information compared with conventional MS techniques, enhancement of protein signature by IMS is still necessary and challenging. This paper demonstrates the combination of conventional organic washes with an optimized aqueous-based buffer for tissue section preparation before matrix-assisted laser desorption/ionization (MALDI) IMS of proteins. Based on a 500 mM ammonium formate in water-acetonitrile (9:1; v/v, 0.1% trifluororacetic acid, 0.1% Triton) solution, this buffer wash has shown to significantly enhance protein signature by profiling and IMS (~fourfold) when used after organic washes (70% EtOH followed by 90% EtOH), improving the quality and number of ion images obtained from mouse kidney and a 14-day mouse fetus whole-body tissue sections, while maintaining a similar reproducibility with conventional tissue rinsing. Even if some protein losses were observed, the data mining has demonstrated that it was primarily low abundant signals and that the number of new peaks found is greater with the described procedure. The proposed buffer has thus demonstrated to be of high efficiency for tissue section preparation providing novel and complementary information for direct on-tissue MALDI analysis compared with solely conventional organic rinsing.
Collapse
Affiliation(s)
- Aurélien Thomas
- Department of Chemistry, University of Montreal, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
81
|
Matros A, Mock HP. Mass spectrometry based imaging techniques for spatially resolved analysis of molecules. FRONTIERS IN PLANT SCIENCE 2013; 4:89. [PMID: 23626593 PMCID: PMC3630297 DOI: 10.3389/fpls.2013.00089] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 03/22/2013] [Indexed: 05/18/2023]
Abstract
Higher plants are composed of a multitude of tissues with specific functions, reflected by distinct profiles for transcripts, proteins, and metabolites. Comprehensive analysis of metabolites and proteins has advanced tremendously within recent years, and this progress has been driven by the rapid development of sophisticated mass spectrometric techniques. In most of the current "omics"-studies, analysis is performed on whole organ or whole plant extracts, rendering to the loss of spatial information. Mass spectrometry imaging (MSI) techniques have opened a new avenue to obtain information on the spatial distribution of metabolites and of proteins. Pioneered in the field of medicine, the approaches are now applied to study the spatial profiles of molecules in plant systems. A range of different plant organs and tissues have been successfully analyzed by MSI, and patterns of various classes of metabolites from primary and secondary metabolism could be obtained. It can be envisaged that MSI approaches will substantially contribute to build spatially resolved biochemical networks.
Collapse
Affiliation(s)
- Andrea Matros
- Leibniz Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| | - Hans-Peter Mock
- Leibniz Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
- *Correspondence: Hans-Peter Mock, Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstrasse 3, 06466 Gatersleben, Germany. e-mail:
| |
Collapse
|
82
|
Satoh T, Kubo A, Shimma S, Toyoda M. Mass Spectrometry Imaging and Structural Analysis of Lipids Directly on Tissue Specimens by Using a Spiral Orbit Type Tandem Time-of-Flight Mass Spectrometer, SpiralTOF-TOF. Mass Spectrom (Tokyo) 2012; 1:A0013. [PMID: 24349914 DOI: 10.5702/massspectrometry.a0013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 10/23/2012] [Indexed: 01/12/2023] Open
Abstract
In this paper, we report the use of mass spectrometry imaging and structural analysis of lipids directly on a tissue specimen, carried out by means of matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry, using a combination of spiral orbit-type and reflectron-type time-of-flight mass spectrometers. The most intense peak observed in the mass spectrum from a brain tissue specimen was confirmed as phosphatidylcholine (34 : 1) [M+K](+), using tandem mass spectrometry. The charge remote fragmentation channels, which are characteristically observed using high-energy collision-induced dissociation, contributed significantly to this confirmation. Accurate mass analysis was further facilitated by mass correction using the confirmed peak. In mass spectrometry imaging, the high resolving power of our system could separate doublet peak of less than 0.1 u difference, which would otherwise be problematic when using a low-resolution reflectron type time-of-flight mass spectrometer. Two compounds, observed at m/z 848.56 and 848.65, were found to be located in complementary positions on a brain tissue specimen. These results demonstrate the importance of a high-performance tandem time-of-flight mass spectrometer for mass spectrometry imaging and analysis of observed compounds, to allow distinction between biological molecules.
Collapse
Affiliation(s)
| | | | - Shuichi Shimma
- Division of Integrative Omics and Bioinformatics, National Cancer Center Research Institute
| | - Michisato Toyoda
- Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University
| |
Collapse
|
83
|
Lagarrigue M, Alexandrov T, Dieuset G, Perrin A, Lavigne R, Baulac S, Thiele H, Martin B, Pineau C. New Analysis Workflow for MALDI Imaging Mass Spectrometry: Application to the Discovery and Identification of Potential Markers of Childhood Absence Epilepsy. J Proteome Res 2012; 11:5453-63. [DOI: 10.1021/pr3006974] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mélanie Lagarrigue
- Inserm U1085, IRSET, Proteomics Core Facility Biogenouest, Campus de Beaulieu,
F-35042 Rennes, France
| | - Theodore Alexandrov
- Center for Industrial Mathematics, University of Bremen, 28359 Bremen, Germany
- Steinbeis Innovation Center SCiLS, Richard-Dehmel-Str. 69 D, 28211
Bremen, Germany
| | - Gabriel Dieuset
- INSERM U1099, F-35000 Rennes, France
- Université de Rennes 1, LTSI, F-35000 Rennes, France
| | - Aline Perrin
- Inserm UMR S975/CNRS UMR 7225, Centre
de Recherche de l’Institut du Cerveau et de la Moelle Épinière,
Université Pierre et Marie Curie, Hôpital de la Pitié-Salpêtrière, F-75013
Paris, France
| | - Régis Lavigne
- Inserm U1085, IRSET, Proteomics Core Facility Biogenouest, Campus de Beaulieu,
F-35042 Rennes, France
| | - Stéphanie Baulac
- Inserm UMR S975/CNRS UMR 7225, Centre
de Recherche de l’Institut du Cerveau et de la Moelle Épinière,
Université Pierre et Marie Curie, Hôpital de la Pitié-Salpêtrière, F-75013
Paris, France
| | - Herbert Thiele
- Steinbeis Innovation Center SCiLS, Richard-Dehmel-Str. 69 D, 28211
Bremen, Germany
| | - Benoit Martin
- INSERM U1099, F-35000 Rennes, France
- Université de Rennes 1, LTSI, F-35000 Rennes, France
| | - Charles Pineau
- Inserm U1085, IRSET, Proteomics Core Facility Biogenouest, Campus de Beaulieu,
F-35042 Rennes, France
| |
Collapse
|
84
|
Lanekoff I, Heath BS, Liyu A, Thomas M, Carson JP, Laskin J. Automated Platform for High-Resolution Tissue Imaging Using Nanospray Desorption Electrospray Ionization Mass Spectrometry. Anal Chem 2012; 84:8351-6. [DOI: 10.1021/ac301909a] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ingela Lanekoff
- Chemical and Materials Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
99352
| | - Brandi S. Heath
- Chemical and Materials Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
99352
| | - Andrey Liyu
- Environmental and
Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352
| | - Mathew Thomas
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
99352, United States
| | - James P. Carson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
99352, United States
| | - Julia Laskin
- Chemical and Materials Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
99352
| |
Collapse
|
85
|
Nováková L. Challenges in the development of bioanalytical liquid chromatography-mass spectrometry method with emphasis on fast analysis. J Chromatogr A 2012; 1292:25-37. [PMID: 22999195 DOI: 10.1016/j.chroma.2012.08.087] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/26/2012] [Accepted: 08/29/2012] [Indexed: 01/21/2023]
Abstract
The development of bioanalytical methods has become more and more challenging over the past years due to very demanding requirements in terms of method reliability, sensitivity, speed of analysis and sample throughput. LC-MS/MS has established itself as a method of choice for routine analysis of biological materials. A development of such method consists of several steps including sample preparation and clean-up step, efficient chromatographic separation, sensitive and selective detection of analytes in complex matrices, a choice of convenient data processing and calibration approach and finally method validation. Each of these steps has its own constraints and challenges, which are discussed in detail in this review. Novel and modern approaches in sample preparation, chromatography and detection are especially emphasized. Attention is paid to proper calibration approach and matrix effects that can seriously affect method accuracy and precision.
Collapse
Affiliation(s)
- Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| |
Collapse
|