51
|
Tan TX, Wu YY, Riley I, Duanmu Y, Rylowicz S, Shimada K. Development of a Three-Dimensionally Printed Ultrasound-Guided Peripheral Intravenous Catheter Phantom. Cureus 2021; 13:e17139. [PMID: 34532175 PMCID: PMC8435066 DOI: 10.7759/cureus.17139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2021] [Indexed: 12/03/2022] Open
Abstract
Introduction Ultrasound-guided peripheral intravenous catheter (US-PIVC) placement is an effective technique to establish PIV access when the traditional approach fails. Many training programs utilize commercial or homemade phantoms for procedural training. However, commercial products tend to be expensive and lack realism, while homemade blocks tend to be single-use and degrade easily. Thanks to the increasing availability of three-dimensional (3D) printers in academic settings, we sought to design and develop a reusable 3D-printed US-PIVC phantom and to evaluate its utility in terms of time needed to achieve IV placement and perceived realism compared to a commercial model among a group of emergency medicine (EM) physicians. Methods The upper extremity vascular phantom was constructed using 3D printing and casting techniques. A convenience sampling of EM physicians was timed by placing a US-PIVC in the 3D-printed and commercial models. Participants were also surveyed to assess their impression of the realism of the models. The primary outcome was the time required for US-PIVC placement in the 3D-printed model compared to the commercial model. Secondary outcomes were the assessment of differences in perceived realism and total cost between the two models. Results Twenty-one EM physicians completed the study. There were no significant differences in the mean time (seconds) for US-PIVC placement in the 3D-printed model (31, SD: 21) compared to the commercial model (30, SD: 18), p=0.77. Mean realism score trended higher for the 3D-printed model (3.6, SD: 0.9) compared to the commercial model (3.1, SD: 1.0), p=0.10. The total cost for the 3D-printed model was $120, with the interchangeable replacement part costing $21, which was much cheaper compared to the commercial phantom, which cost $549. Conclusion We developed a 3D-printed reusable US-PIVC phantom, and it proved to be more economical without sacrificing the realism and time required for US-PIVC placement when compared to a commercial phantom.
Collapse
Affiliation(s)
- Ting Xu Tan
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, USA
| | - Ying Ying Wu
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, USA
| | - Ian Riley
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, USA
| | - Youyou Duanmu
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, USA
| | - Samuel Rylowicz
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, USA
| | - Kenji Shimada
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, USA
| |
Collapse
|
52
|
Creation of Anatomically Correct and Optimized for 3D Printing Human Bones Models. APPLIED SYSTEM INNOVATION 2021. [DOI: 10.3390/asi4030067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Educational institutions in several countries state that the education sector should be modernized to ensure a contemporary, individualized, and more open learning process by introducing and developing advance digital solutions and learning tools. Visualization along with 3D printing have already found their implementation in different medical fields in Pauls Stradiņš Clinical University Hospital, and Rīga Stradiņš University, where models are being used for prosthetic manufacturing, surgery planning, simulation of procedures, and student education. The study aimed to develop a detailed methodology for the creation of anatomically correct and optimized models for 3D printing from radiological data using only free and widely available software. In this study, only free and cross-platform software from widely available internet sources has been used—“Meshmixer”, “3D Slicer”, and “Meshlab”. For 3D printing, the Ultimaker 5S 3D printer along with PLA material was used. In its turn, radiological data have been obtained from the “New Mexico Decedent Image Database”. In total, 28 models have been optimized and printed. The developed methodology can be used to create new models from scratch, which can be used will find implementation in different medical and scientific fields—simulation processes, anthropology, 3D printing, bioprinting, and education.
Collapse
|
53
|
Khonsari RH, Adam J, Benassarou M, Bertin H, Billotet B, Bouaoud J, Bouletreau P, Garmi R, Gellée T, Haen P, Ketoff S, Lescaille G, Louvrier A, Lutz JC, Makaremi M, Nicot R, Pham-Dang N, Praud M, Saint-Pierre F, Schouman T, Sicard L, Simon F, Wojcik T, Meyer C. In-house 3D printing: Why, when, and how? Overview of the national French good practice guidelines for in-house 3D-printing in maxillo-facial surgery, stomatology, and oral surgery. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2021; 122:458-461. [PMID: 34400375 DOI: 10.1016/j.jormas.2021.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 08/11/2021] [Indexed: 01/04/2023]
Abstract
3D-printing is part of the daily practice of maxillo-facial surgeons, stomatologists and oral surgeons. To date, no French health center is producing in-house medical devices according to the new European standards. Based on all the evidence-based data available, a group of experts from the French Society of Stomatology, Maxillo-Facial Surgery and Oral Surgery (Société Française de Chirurgie Maxillofaciale, Stomatologie et Chirurgie Orale, SFSCMFCO), provide good practice guidelines for in-house 3D-printing in maxillo-facial surgery, stomatology, and oral surgery. Briefly, technical considerations related to printers and CAD software, which were the main challenges in the last ten years, are now nearly trivial questions. The central current issues when planning the implementation of an in-house 3D-printing platform are economic and regulatory. Successful in-house 3D platforms rely on close collaborations between health professionals and engineers, backed by regulatory and logistic specialists. Several large-scale academic projects across France will soon provide definitive answers to governance and economical questions related to the use of in-house 3D printing.
Collapse
Affiliation(s)
- Roman Hossein Khonsari
- Service de chirurgie maxillofaciale et chirurgie plastique, Hôpital Universitaire Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris; Faculté de médecine, Université de Paris; Paris, France.
| | | | - Mourad Benassarou
- Service de chirurgie maxillofaciale et stomatologie, Hôpital Universitaire Pitié-Salpêtrière, Assistance Publique - Hôpitaux de Paris, Faculté de médecine, Sorbonne Université; Paris, France
| | - Hélios Bertin
- Service de chirurgie maxillofaciale et stomatologie, Centre Hospitalier Universitaire Hôtel-Dieu; Faculté de médecine, Université de Nantes; Nantes, France
| | | | - Jebrane Bouaoud
- Service de chirurgie maxillofaciale et stomatologie, Hôpital Universitaire Pitié-Salpêtrière, Assistance Publique - Hôpitaux de Paris, Faculté de médecine, Sorbonne Université; Paris, France
| | - Pierre Bouletreau
- Service de chirurgie maxillofaciale, stomatologie, chirurgie orale et chirurgie plastique de la face, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon; Faculté de Médecine, Université Claude Bernard Lyon I; Lyon, France
| | - Rachid Garmi
- Service de chirurgie maxillofaciale, plastique et reconstructrice, chirurgie orale et implantologie, Centre Hospitalier Universitaire Caen Normandie; Université de Caen Normandie; Caen, France
| | - Timothée Gellée
- Service de chirurgie maxillofaciale et stomatologie, Unité de chirurgie orale, Hôpital Universitaire Pitié-Salpêtrière, Assistance Publique - Hôpitaux de Paris; Faculté de médecine, Sorbonne Université; Paris, France
| | - Pierre Haen
- Service de chirurgie maxillofaciale, Hôpital d'Instruction des Armées Laveran; Marseille, France
| | - Serge Ketoff
- Service de chirurgie maxillofaciale, Groupe Hospitalier Paris Saint-Joseph, Paris, France
| | - Géraldine Lescaille
- Service de chirurgie maxillofaciale et stomatologie, Unité de chirurgie orale, Hôpital Universitaire Pitié-Salpêtrière, Assistance Publique - Hôpitaux de Paris; Faculté de médecine, Sorbonne Université; Paris, France
| | - Aurélien Louvrier
- Service de chirurgie maxillofaciale, stomatologie et odontologie, Centre Hospitalier Régional Universitaire de Besançon; Faculté de Médecine, Université de Franche-Comté; Besançon, France
| | - Jean-Christophe Lutz
- Service de chirurgie maxillofaciale et stomatologie, Centre Hospitalier Universitaire de Strasbourg; Faculté de Médecine, Université de Strasbourg; Strasbourg, France
| | - Masrour Makaremi
- Département d'orthopédie dento-faciale, UFR des sciences odontologiques, Bordeaux, France
| | - Romain Nicot
- Service de chirurgie maxillofaciale et stomatologie, Centre Hospitalier Régional Universitaire de Lille; Faculté de Médecine Henri Warembourg, Université de Lille; Lille, France
| | - Nathalie Pham-Dang
- Service de chirurgie maxillofaciale et chirurgie plastique, Centre Hospitalier Universtiaire de Clermont-Ferrand; Faculté de Médecine, Université de Clermont Auvergne; Clermont-Ferrand, France
| | - Morgan Praud
- Service de chirurgie maxillofaciale et stomatologie, Centre Hospitalier Universitaire Hôtel-Dieu; Faculté de médecine, Université de Nantes; Nantes, France
| | | | - Thomas Schouman
- Service de chirurgie maxillofaciale et stomatologie, Hôpital Universitaire Pitié-Salpêtrière, Assistance Publique - Hôpitaux de Paris, Faculté de médecine, Sorbonne Université; Paris, France
| | - Ludovic Sicard
- Service de chirurgie orale, Hôpital Bretonneau, Assistance Publique - Hôpitaux de Paris; Faculté d'odontologie, Université de Paris; Paris, France
| | - François Simon
- Service de d'otorhinolaryngologie et chirurgie cervico-faciale pédiatrique, Hôpital Universitaire Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris; Faculté de médecine, Université de Paris; Paris, France
| | - Thomas Wojcik
- Service de chirurgie maxillofaciale et stomatologie, Centre Hospitalier Régional Universitaire de Lille; Faculté de Médecine Henri Warembourg, Université de Lille; Lille, France
| | - Christophe Meyer
- Service de chirurgie maxillofaciale, stomatologie et odontologie, Centre Hospitalier Régional Universitaire de Besançon; Faculté de Médecine, Université de Franche-Comté; Besançon, France
| | -
- Service de chirurgie maxillofaciale et chirurgie plastique, Hôpital Universitaire Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris; Faculté de médecine, Université de Paris; Paris, France; BONE 3D, Paris, France; Service de chirurgie maxillofaciale et stomatologie, Hôpital Universitaire Pitié-Salpêtrière, Assistance Publique - Hôpitaux de Paris, Faculté de médecine, Sorbonne Université; Paris, France; Service de chirurgie maxillofaciale et stomatologie, Centre Hospitalier Universitaire Hôtel-Dieu; Faculté de médecine, Université de Nantes; Nantes, France; ENNOIA, Besançon, France; Service de chirurgie maxillofaciale, stomatologie, chirurgie orale et chirurgie plastique de la face, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon; Faculté de Médecine, Université Claude Bernard Lyon I; Lyon, France; Service de chirurgie maxillofaciale, plastique et reconstructrice, chirurgie orale et implantologie, Centre Hospitalier Universitaire Caen Normandie; Université de Caen Normandie; Caen, France; Service de chirurgie maxillofaciale et stomatologie, Unité de chirurgie orale, Hôpital Universitaire Pitié-Salpêtrière, Assistance Publique - Hôpitaux de Paris; Faculté de médecine, Sorbonne Université; Paris, France; Service de chirurgie maxillofaciale, Hôpital d'Instruction des Armées Laveran; Marseille, France; Service de chirurgie maxillofaciale, Groupe Hospitalier Paris Saint-Joseph, Paris, France; Service de chirurgie maxillofaciale, stomatologie et odontologie, Centre Hospitalier Régional Universitaire de Besançon; Faculté de Médecine, Université de Franche-Comté; Besançon, France; Service de chirurgie maxillofaciale et stomatologie, Centre Hospitalier Universitaire de Strasbourg; Faculté de Médecine, Université de Strasbourg; Strasbourg, France; Département d'orthopédie dento-faciale, UFR des sciences odontologiques, Bordeaux, France; Service de chirurgie maxillofaciale et stomatologie, Centre Hospitalier Régional Universitaire de Lille; Faculté de Médecine Henri Warembourg, Université de Lille; Lille, France; Service de chirurgie maxillofaciale et chirurgie plastique, Centre Hospitalier Universtiaire de Clermont-Ferrand; Faculté de Médecine, Université de Clermont Auvergne; Clermont-Ferrand, France; Méthodologie, Sorbonne Université; Paris, France; Service de chirurgie orale, Hôpital Bretonneau, Assistance Publique - Hôpitaux de Paris; Faculté d'odontologie, Université de Paris; Paris, France; Service de d'otorhinolaryngologie et chirurgie cervico-faciale pédiatrique, Hôpital Universitaire Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris; Faculté de médecine, Université de Paris; Paris, France
| |
Collapse
|
54
|
Wu CA, Squelch A, Sun Z. Investigation of Three-dimensional Printing Materials for Printing Aorta Model Replicating Type B Aortic Dissection. Curr Med Imaging 2021; 17:843-849. [PMID: 33602103 DOI: 10.2174/1573405617666210218102046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 11/25/2020] [Accepted: 01/06/2021] [Indexed: 11/22/2022]
Abstract
AIM This study aims to determine a printing material that has both elastic property and radiology equivalence close to the real aorta for simulation of endovascular stent-graft repair of aortic dissection. BACKGROUND With the rapid development of Three-Dimensional (3D) printing technology, a patient- specific 3D printed model is able to help surgeons to make a better treatment plan for Type B aortic dissection patients. However, the radiological properties of most 3D printing materials have not been well characterized. This study aims to investigate the appropriate materials for printing human aorta with mechanical and radiological properties similar to the real aortic Computed Tomography (CT) attenuation. OBJECTIVE Quantitative assessment of CT attenuation of different materials used in 3D printed models of aortic dissection for developing patient-specific 3D printed aorta models to simulate type B aortic dissection. METHODS A 25-mm length of aorta model was segmented from a patient's image dataset with a diagnosis of type B aortic dissection. Four different elastic commercial 3D printing materials, namely Agilus A40 and A50, Visijet CE-NT A30 and A70 were selected and printed with different hardness. Totally four models were printed out and CT scanned twice on a 192-slice CT scanner using the standard aortic CT angiography protocol, with and without contrast inside the lumen. Five reference points with the Region Of Interest (ROI) of 1.77 mm2 were selected at the aortic wall, and intimal flap and their Hounsfield units (HU) were measured and compared with the CT attenuation of original CT images. The comparison between the patient's aorta and models was performed through a paired-sample t-test to determine if there is any significant difference. RESULTS The mean CT attenuation of the aortic wall of the original CT images was 80.7 HU. Analysis of images without using contrast medium showed that the material of Agilus A50 produced the mean CT attenuation of 82.6 HU, which is similar to that of original CT images. The CT attenuation measured at images acquired with the other three materials was significantly lower than that of the original images (p<0.05). After adding contrast medium, Visijet CE-NT A30 had an average CT attenuation of 90.6 HU, which is close to that of the original images without a statistically significant difference (p>0.05). In contrast, the CT attenuation measured at images acquired with other three materials (Agilus A40, A50 and Visiject CE-NT A70) was 129 HU, 135 HU and 129.6 HU, respectively, which is significantly higher than that of original CT images (p<0.05). CONCLUSION Both Visijet CE-NT and Agilus have tensile strength and elongation close to actual patient's tissue properties producing similar CT attenuation. Visijet CE-NT A30 is considered the appropriate material for printing aorta to simulate contrast-enhanced CT imaging of type B aortic dissection. Due to the lack of body phantoms in the experiments, further research with the simulation of realistic anatomical body environment should be conducted.
Collapse
Affiliation(s)
- Chia-An Wu
- Discipline of Medical Radiation Science, Curtin Medical School, Curtin University, Perth, 6845, Australia
| | - Andrew Squelch
- Discipline of Exploration Geophysics, WA School of Mines: Mineral, Energy and Chemical Engineering, Curtin University, Perth, 6845, Australia
| | - Zhonghua Sun
- Discipline of Medical Radiation Science, Curtin Medical School, Curtin University, Perth, 6845, Australia
| |
Collapse
|
55
|
McGuire LS, Fuentes A, Alaraj A. Three-Dimensional Modeling in Training, Simulation, and Surgical Planning in Open Vascular and Endovascular Neurosurgery: A Systematic Review of the Literature. World Neurosurg 2021; 154:53-63. [PMID: 34293525 DOI: 10.1016/j.wneu.2021.07.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND The expanding use of three-dimensional (3D) printing in open vascular and endovascular neurosurgery presents a promising new tool in resident learning as well as operative planning. Recent studies have investigated the accuracy, efficacy, and practicality of 3D-printed models of patient-specific disease. OBJECTIVE To review the literature exploring 3D modeling in neurovascular and endovascular surgery for training, simulation, and surgical preparation. METHODS A systematic search of the PubMed database was conducted using keywords relating to 3D printing and neurovascular or endovascular surgery. Articles were manually screened to include those that focused on resident training, surgical simulation, or preoperative planning. Information on fabrication method, materials, cost, and validation measures was collected. RESULTS A total of 27 articles were identified that met inclusion criteria. Twenty-one studies used 3D printing to produce aneurysm models, 5 produced arteriovenous malformation models, and 1 produced aneurysm and arteriovenous malformation models. Stereolithography was the most common fabrication method used, with acrylonitrile butadiene styrene and VeroClearTangoPlus (Stratasys) being the most frequently used materials. The mean manufacturing cost per model was U.S. $624.83. Outcomes included model measurement accuracy, concordance of intraoperative devices with those selected preoperatively, and qualitative feedback. CONCLUSIONS Models generated by 3D printing are anatomically accurate and aid in resident learning as well as operative planning in open vascular and endovascular neurosurgery. As advancements in printing methods are made and manufacturing costs decrease, this tool may supplement training on a wider scale in a field in which direct exposure to cases is limited.
Collapse
Affiliation(s)
- Laura Stone McGuire
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, Illinois, USA.
| | - Angelica Fuentes
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Ali Alaraj
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
56
|
Abstract
Purpose: Surgical simulation of microvascular anastomosis has become increasingly popular. There are several living and silicone models available. Current silicone models fail to accurately reproduce a vessel’s loose adventitial layer, which may lead to the development of improper microsurgical technique. Our purpose is to create a realistic 3-dimensional microsurgical simulator that incorporates an adventitial vessel layer for higher fidelity manipulation of vessels. Methods: A microvascular anastomosis simulator was manufactured using metal moulds and inorganic materials. Synthetic tubing was created with a metal cylinder, 1.65 mm in diameter, painted with 2 sequential layers of silicon with a shore hardness of 2A. Silicone was allowed to fully cure in-between layers. Vessel adventitia was created with a 100-micron polyester mesh adhered to the silicone vessel exterior. Once dry, the synthetic tube is removed from the metal cylinder is then clipped to reveal the inner lumen. Both Resident and attending physicians evaluated the model with and without the adventitial layer and completed a questionnaire. Results: Grasping and manipulation of the vessel were scored on Average score 4.5 and 3 out of 5, with adventitia and without, respectively ( P = .00906). Usefulness as a teaching tool was scored on average 4.9 and 4.2, with adventitia and without, respectively ( P = .0232). The analysis included: simulation realism, educational utility, and overall satisfaction. Responses in all domains were favourable, suggesting the utility of this model. Conclusion: We created a realistic, high fidelity microvascular anastomosis simulator that is low cost and easily reproducible. Initial feedback is encouraging regarding realism, educational utility, and overall usefulness. Further validation is required to assess its effectiveness in resident education and skill transfer to the operating room.
Collapse
|
57
|
Three-dimensional Reconstruction of Renal Vascular Tumor Anatomy to facilitate accurate preoperative planning of partial nephrectomy. Biomedicine (Taipei) 2021; 10:36-41. [PMID: 33854933 PMCID: PMC7735978 DOI: 10.37796/2211-8039.1078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/16/2020] [Indexed: 12/24/2022] Open
Abstract
Objectives To evaluate the role of three-dimensional (3D) reconstruction tumors and vessels of the kidneys in aiding the preoperative planning of partial nephrectomy. Materials and methods Patients with renal tumors to be treated with partial nephrectomy were included. Each patient underwent a preoperative computed tomography (CT) survey, and the reconstruction of each patient's 3D arteriography and 3D surface-rendered tumor was performed based on the CT images for preoperative surgical planning. Results A total of 6 patients, three with tumors of the right kidney and three with tumors of the left kidney, were enrolled in the study. The patients' mean age was 49.33 ± 4.03 years (range: 45-57 years), and their mean tumor size was 4.4 ± 1.84 cm (range: 2.2-6.8 cm). Four underwent robot-assisted laparoscopic partial nephrectomies, one underwent a traditional laparoscopic partial nephrectomy, and one underwent a radical nephrectomy through laparotomy. Their average postoperative hospital stay was 6.7 days (range: 3-10 days). No intraoperative or postoperative complications were noted. The renal function was preserved in all the patients, and none of the patients exhibited evidence of local recurrence during more than 6 years of follow-up. Conclusions 3D arteriography fused with 3D surface-rendered tumor image navigation facilitates precise preoperative planning.
Collapse
|
58
|
Overview of In-Hospital 3D Printing and Practical Applications in Hand Surgery. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4650245. [PMID: 33855068 PMCID: PMC8019389 DOI: 10.1155/2021/4650245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 01/03/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022]
Abstract
Three-dimensional (3D) printing is spreading in hand surgery. There is an increasing number of practical applications like the training of junior hand surgeons, patient education, preoperative planning, and 3D printing of customized casts, customized surgical guides, implants, and prostheses. Some high-quality studies highlight the value for surgeons, but there is still a lack of high-level evidence for improved clinical endpoints and hence actual impact on the patient's outcome. This article provides an overview over the latest applications of 3D printing in hand surgery and practical experience of implementing them into daily clinical routine.
Collapse
|
59
|
Huang Y, Zhou YX, Tian H, Wang JW, Liu WG, Li H. Minimum 7-year Follow-up of A Porous Coated Trabecular Titanium Cup Manufactured with Electron Beam Melting Technique in Primary Total Hip Arthroplasty. Orthop Surg 2021; 13:817-824. [PMID: 33728818 PMCID: PMC8126901 DOI: 10.1111/os.12846] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/04/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES To investigate the cup survivorship, patient satisfaction level, clinical function, and radiographic outcomes of patients who underwent total hip arthroplasty (THA) using electron beam melting (EBM)-produced porous coated titanium cups at mid-term follow up. METHODS A total of 32 patients (32 hips) from five hospitals in China who underwent primary THA using EBM-produced trabecular titanium cups between May and December 2012 were retrospectively reviewed. The inclusion criteria were: (i) patients who underwent THA with the use of EBM-produced cups with possible 7-year follow up; and (ii) patients with follow-up information, including the cup survivorship, patient satisfaction level, and clinical outcomes such as Harris hip score. The exclusion criteria were: (i) patients with neuropathic diseases; and (ii) patients who underwent THA due to neoplastic disease. Five (15.6%) patients were lost to follow up before the 7-year follow-up and, thus, were excluded; none of these patients died due to disease associated with the THA or had undergone removal of their cups as of our last evaluation. The mean age and body mass index of the patients were 59.37 (range: 38.00-69.00) years and 24.51 (range: 16.50-34.10) kg/m2 , respectively. Thirteen (48.1%) of the patients were female. RESULTS The average duration of follow-up was 93.48 (range: 89.00-99.00) months. The median Harris hip score improved from 42.00 (interquartile range: 37.00-49.00) to 97.00 (interquartile range: 92.00-97.00) at the latest follow up (P < 0.001). A total of 18 (66.7%) patients rated their satisfaction level as very satisfied, 6 (22.2%) as satisfied, 2 (7.4%) as neutral and 1 (3.7%) as dissatisfied. No intraoperative or postoperative complications were identified. At the latest follow up, all cups were considered to have achieved osteointegration fixation, with three or more of the five signs evident in the most recent X-ray. However, three cups revealed radiolucent lines with a width of less than 1 mm. The median vertical and horizontal distances between the latest postoperative center of rotation relative to the anatomic center of rotation were 2.50 (interquartile range: -3.10, 6.94) mm superiorly and 3.26 (interquartile range: -8.12, 2.38) mm medially, respectively, at the most recent postoperative follow up. Kaplan-Meier survivorship analysis of cups, with the endpoint defined as postoperative radiolucent lines of less than 1 mm in width in at least two zones, reveals that the 8.25-year survival was 96.3% (95% confidence interval: 76.49%-99.47%). CONCLUSION The mid-term follow-up of patients who underwent primary THA using EBM-produced porous coated titanium cups demonstrated favorable patient satisfaction, good clinical function, excellent survivorship, and adequate biological fixation.
Collapse
Affiliation(s)
- Yong Huang
- Department of Orthopaedics, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, Beijing, China
| | - Yi-Xin Zhou
- Department of Orthopaedics, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, Beijing, China
| | - Hua Tian
- Orthopaedic Department, Peking University Third Hospital, Beijing, China
| | - Jun-Wen Wang
- Department of Orthopaedics and Traumatology, Wuhan Fourth Hospital (Puai Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen-Guang Liu
- Department of Joint Surgery and Sports Medicine, The Second Hospital of Shandong University, Jinan, China
| | - Hu Li
- Department of Orthopaedic Surgery, Peking University People's Hospital, Beijing, China
| |
Collapse
|
60
|
Perceptions of porta-celiac vascular models for hepatic surgery and their use in residency training. Surg Radiol Anat 2021; 43:1359-1371. [PMID: 33677685 DOI: 10.1007/s00276-021-02724-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/22/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Primary aspect of hepatic navigation surgery is the identification of source vascular details to preserve healthy liver which has a vascular anatomy quite challenging for the young surgeons. The purpose was to determine whether three-dimensional (3D) vascular pattern models of preoperative computed tomography (CT) images will assist resident-level trainees for hepatic surgery. METHODS This study was based on the perception of residents who were presented with 5 different hepatic source vascular patterns and required to compare their perception level of CT, and 1:1 models in terms of importance of variability, differential of patterns and preoperative planning. RESULTS All residents agree that models provided better understanding of vascular source and improved preplanning. Five stations provided qualitative assessment with results showing the usefulness of porta-celiac models when used as anatomical tools in preplanning (p = 0.04), simulation of interventional procedures (p = 0.02), surgical education (p = 0.01). None of the cases had scored less than 8.5. Responses related to understanding variations were significantly higher in the perception of the 3D model in all cases, furthermore 3D models were more useful for seniors in more complex cases 3 and 5. Some open-ended answers: "The 3D model can completely change the operation plan" One of the major factors for anatomical resection of liver transplantation is the positional relationship between the hepatic arteries and the portal veins. CONCLUSION The plastic-like material presenting the hepatic vascularity enables the visualization of the origin, pattern, shape, and angle of the branches with appropriate spatial perception thus making it well-structured.
Collapse
|
61
|
Grall P, Ferri J, Nicot R. Surgical training 2.0: A systematic approach reviewing the literature focusing on oral maxillofacial surgery - Part I. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2021; 122:411-422. [PMID: 33524605 DOI: 10.1016/j.jormas.2021.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/04/2020] [Accepted: 01/11/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE Many technologies are emerging in the medical field. Having an overview of the technological arsenal available to train new surgeons seems very interesting to guide subsequent surgical training protocols. METHODS This article is a systematic approach reviewing new technologies in surgical training, in particular in oral and maxillofacial surgery. This review explores what new technologies can do compared to traditional methods in the field of surgical education. A structured literature search of PubMed was performed in adherence to PRISMA guidelines. The articles were selected when they fell within predefined inclusion criteria while respecting the key objectives of this systematic review. We looked at medical students and more specifically in surgery and analysed whether exposure to new technologies improved their surgical skills compared to traditional methods. Each technology is reviewed by highlighting its advantages and disadvantages and studying the feasibility of integration into current practice. RESULTS The results are encouraging. Indeed, all of these technologies make it possible to reduce the learning time, the operating times, the operating complications and increase the enthusiasm of the students compared to more conventional methods. The start-up cost, the complexity to develop new models, and the openness of mind necessary for the integration of these technologies are all obstacles to immediate development. The main limitations of this review are that many of the studies have been carried out on small numbers, they are not interested in acquiring knowledge or skills over the long term and obviously there is a publication bias. CONCLUSION Surgical education methods will probably change in the years to come, integrating these new technologies into the curriculum seems essential so as not to remain on the side. This first part therefore reviews, open field camera, telemedicine and 3D printing. This systematic review is registered on PROSPERO.
Collapse
Affiliation(s)
- Patrick Grall
- University of Lille, CHU Lille, Department of Oral and Maxillofacial Surgery, F-59000 Lille, France.
| | - Joël Ferri
- University of Lille, CHU Lille, INSERM, Department of Oral and Maxillofacial Surgery, U1008 - Controlled Drug Delivery Systems and Biomaterials, F-59000 Lille, France.
| | - Romain Nicot
- University of Lille, CHU Lille, INSERM, Department of Oral and Maxillofacial Surgery, U1008 - Controlled Drug Delivery Systems and Biomaterials, F-59000 Lille, France.
| |
Collapse
|
62
|
Oberoi G, Eberspächer-Schweda MC, Hatamikia S, Königshofer M, Baumgartner D, Kramer AM, Schaffarich P, Agis H, Moscato F, Unger E. 3D Printed Biomimetic Rabbit Airway Simulation Model for Nasotracheal Intubation Training. Front Vet Sci 2020; 7:587524. [PMID: 33330714 PMCID: PMC7728614 DOI: 10.3389/fvets.2020.587524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/22/2020] [Indexed: 11/29/2022] Open
Abstract
Rabbit inhalation anesthesia by endotracheal intubation involves a higher risk among small animals owing to several anatomical and physiological features, which is pathognomonic to this species of lagomorphs. Rabbit-specific airway devices have been designed to prevent misguided intubation attempts. However, it is believed that expert anesthetic training could be a boon in limiting the aftermaths of this procedure. Our research is aimed to develop a novel biomimetic 3D printed rabbit airway model with representative biomechanical material behavior and radiodensity. Imaging data were collected for two sacrificed rabbit heads using micro-computed tomography (μCT) and micro-magnetic resonance imaging for the first head and cone beam computed tomography (CBCT) for the second head. Imaging-based life-size musculoskeletal airway models were printed using polyjet technology with a combination of hard and soft materials in replicates of three. The models were evaluated quantitatively for dimensional accuracy and radiodensity and qualitatively using digital microscopy and endoscopy for technical, tactic, and visual realism. The results displayed that simulation models printed with polyjet technology have an overall surface representation of 93% for μCT-based images and 97% for CBCT-based images within a range of 0.0-2.5 mm, with μCT showing a more detailed reproduction of the nasotracheal anatomy. Dimensional discrepancies can be caused due to inadequate support material removal and due to the limited reconstruction of microstructures from the imaging on the 3D printed model. The model showed a significant difference in radiodensities in hard and soft tissue regions. Endoscopic evaluation provided good visual and tactile feedback, comparable to the real animal. Overall, the model, being a practical low-cost simulator, comprehensively accelerates the learning curve of veterinary nasotracheal intubation and paves the way for 3D simulation-based image-guided interventional procedures.
Collapse
Affiliation(s)
- Gunpreet Oberoi
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Department of Conservative Dentistry and Periodontology, School of Dentistry, Medical University of Vienna, Vienna, Austria
| | - M. C. Eberspächer-Schweda
- Department/Hospital for Companion Animals and Horses, University of Veterinary Medicine, Vienna, Austria
| | - Sepideh Hatamikia
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Austrian Center for Medical Innovation and Technology, Wiener Neustadt, Austria
| | - Markus Königshofer
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Doris Baumgartner
- Department/Hospital for Companion Animals and Horses, University of Veterinary Medicine, Vienna, Austria
| | | | - Peter Schaffarich
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Hermann Agis
- Department of Conservative Dentistry and Periodontology, School of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Francesco Moscato
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Ewald Unger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
63
|
Tan D, Yao J, Hua X, Li J, Xu Z, Wu Y, Wu W. Application of 3D modeling and printing technology in accurate resection of complicated thoracic tumors. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1342. [PMID: 33313087 PMCID: PMC7723599 DOI: 10.21037/atm-20-1791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Background To explore the application value of three-dimensional (3D) reconstruction and 3D printing in preoperative evaluation of precise resection of complicated thoracic tumors. Methods A retrospective analysis of 34 patients with complicated thoracic tumors who were treated by radical surgery from March 2016 to June 2019 was made. According to whether 3D reconstruction and 3D printing was used, the patients were divided into research group and control group. In the control group, preoperative evaluation was performed according to CT image data, and the operation plan was drawn up; in the research group, preoperative simulation and preoperative operation plan design were carried out according to 3D reconstruction and 3D printing technology. The operation time, change of operation approach, intraoperative blood loss, hospitalization time and postoperative complications were compared between the two groups. We also retrospectively reviewed additional 12 cases of unresectable complicated thoracic tumors. The above 34 patients who were treated by radical surgery were set as the resectable group. Three-dimensional reconstruction was performed for all cases. The tumor size, location, smoothness of tumor-vascular contact surface, close contact with adjacent organs were compared between these two groups. Results The 3D reconstruction and 3D printing model were successfully established. The indexes of operation time, change of incision approach and blood loss in the research group were lower than those in the control group (P<0.05). All the patients were followed up for 6 months, and there was no death, no tumor recurrence and metastasis in the two groups. In the unresectable group, the score of position and smoothness of tumor-vascular contact surface were significantly higher than that in the resectable group. Conclusions 3D reconstruction and 3D printing can effectively help surgeons carry out accurate surgical treatment, reduce the operation time and bleeding, reduce the risk of surgery, and facilitate the postoperative rehabilitation of patients, which has the value of promotion and application.
Collapse
Affiliation(s)
- Deli Tan
- Institute of Digital Medicine, Biomedical Engineering College, Army Medical University (Third Military Medical University), Chongqing, China.,Thoracic Surgery Department, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jie Yao
- Institute of Digital Medicine, Biomedical Engineering College, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xing Hua
- Ultrasound Department, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jingyao Li
- Thoracic Surgery Department, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhou Xu
- Institute of Digital Medicine, Biomedical Engineering College, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yi Wu
- Institute of Digital Medicine, Biomedical Engineering College, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wei Wu
- Thoracic Surgery Department, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
64
|
Arnold J, Sarkar K, Smith D. 3D printed bismuth oxide-polylactic acid composites for radio-mimetic computed tomography spine phantoms. J Biomed Mater Res B Appl Biomater 2020; 109:789-796. [PMID: 33103853 DOI: 10.1002/jbm.b.34744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 09/03/2020] [Accepted: 10/12/2020] [Indexed: 11/08/2022]
Abstract
Polylactic acid (PLA) composite filaments with varying concentrations of bismuth oxide microparticle additives were fabricated for use with commercially available fused filament fabrication (FFF) printing systems for the production of spine phantoms that mimic the radiopacity of bone. Thermal analysis showed that the additives had limited impact on the glass transition temperature and melting point of the filaments, allowing for their use in commercial FFF systems with standard printer settings. The ultimate strength of the printed test specimens was found to reduce slightly when bismuth oxide was added in high concentrations, with a moderate reduction of 12% compared to PLA at the highest concentration of 30 wt%. The modulus of the specimens increased by up to 24% with the addition of the additive. The radiopacity of specimens printed with the composite filaments were measured by X-ray microcomputed tomography (micro-CT) and clinical computed tomography (CT). The CT number was found to increase by approximately 196 HU per wt% of bismuth oxide added to the filaments. A phantom model of a cervical spine deformity was successfully printed by FFF with a composite filament which was calibrated to mimic the radiopacity of cervical and cortical bone. The results indicate that the composite filaments have direct applicability for the production of phantoms used for education and preoperative planning.
Collapse
Affiliation(s)
- John Arnold
- Department of Mechanical Engineering, University of New Orleans, New Orleans, Louisiana, USA
| | - Korak Sarkar
- Ochsner Neurosciences Medical 3D Lab, Ochsner Health, New Orleans, Louisiana, USA
| | - Damon Smith
- Department of Mechanical Engineering, University of New Orleans, New Orleans, Louisiana, USA
| |
Collapse
|
65
|
Ye Z, Dun A, Jiang H, Nie C, Zhao S, Wang T, Zhai J. The role of 3D printed models in the teaching of human anatomy: a systematic review and meta-analysis. BMC MEDICAL EDUCATION 2020; 20:335. [PMID: 32993608 PMCID: PMC7523371 DOI: 10.1186/s12909-020-02242-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 09/10/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Three-dimensional (3D) printing is an emerging technology widely used in medical education. However, its role in the teaching of human anatomy needs further evaluation. METHODS PubMed, Embase, EBSCO, SpringerLink, and Nature databases were searched systematically for studies published from January 2011 to April 2020 in the English language. GRADEprofiler software was used to evaluate the quality of literature. In this study, a meta-analysis of continuous and binary data was conducted. Both descriptive and statistical analyses were used. RESULTS Comparing the post-training tests in neuroanatomy, cardiac anatomy, and abdominal anatomy, the standardized mean difference (SMD) of the 3D group and the conventional group were 1.27, 0.37, and 2.01, respectively (p < 0.05). For 3D vs. cadaver and 3D vs. 2D, the SMD were 0.69 and 1.05, respectively (p < 0.05). For answering time, the SMD of the 3D group vs. conventional group was - 0.61 (P < 0.05). For 3D print usefulness, RR = 2.29(P < 0.05). Five of the six studies showed that satisfaction of the 3D group was higher than that of the conventional group. Two studies showed that accuracy of answering questions in the 3D group was higher than that in the conventional group. CONCLUSIONS Compared with students in the conventional group, those in the 3D printing group had advantages in accuracy and answering time. In the test of anatomical knowledge, the test results of students in the 3D group were not inferior (higher or equal) to those in the conventional group. The post-training test results of the 3D group were higher than those in the cadaver or 2D group. More students in the 3D printing group were satisfied with their learning compared with the conventional group. The results could be influenced by the quality of the randomized controlled trials. In a framework of ethical rigor, the application of the 3D printing model in human anatomy teaching is expected to grow further.
Collapse
Affiliation(s)
- Zhen Ye
- Department of Molecular Biology, Basic Medical College, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, P.R. China
| | - Aishe Dun
- Department of Anatomy, Basic Medical College, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, P.R. China
| | - Hanming Jiang
- Department of Molecular Biology, Basic Medical College, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, P.R. China
| | - Cuifang Nie
- Department of Infectious Disease, Tai'an Central Hospital, Tai'an, Shandong, P.R. China
| | - Shulian Zhao
- Department of Infectious Disease, Tai'an Central Hospital, Tai'an, Shandong, P.R. China
| | - Tao Wang
- Department of Molecular Biology, Basic Medical College, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, P.R. China
| | - Jing Zhai
- Department of Molecular Biology, Basic Medical College, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, P.R. China.
| |
Collapse
|
66
|
Marinescu R, Popescu D, Laptoiu D. A Review on 3D-Printed Templates for Precontouring Fixation Plates in Orthopedic Surgery. J Clin Med 2020; 9:E2908. [PMID: 32916844 PMCID: PMC7565448 DOI: 10.3390/jcm9092908] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/28/2020] [Accepted: 09/07/2020] [Indexed: 12/19/2022] Open
Abstract
This paper is a systematic review of the literature on 3D-printed anatomical replicas used as templates for precontouring the fixation plates in orthopedic surgery. Embase, PubMed, Cochrane, Scopus and Springer databases were consulted for information on design study, fracture anatomical location, number of patients, surgical technique, virtual modeling approach and 3D printing process. The initial search provided a total of 496 records. After removing the duplicates, the title and abstract screening, and applying exclusion criteria and citations searching, 30 papers were declared eligible and included in the final synthesis. Seven studies were identified as focusing on retrospective non-randomized series of clinical cases, while two papers presented randomized case control studies. Two main approaches were highlighted in developing 3D-printed anatomical models for precontouring fixation plates: (a.) medical reconstruction, virtual planning and fracture reduction followed by 3D printing the model; (b.) medical reconstruction followed by 3D printing the model of the mirrored uninjured side. Revised studies reported advantages such as surgical time and blood loss reduction, while the reduction quality is similar with that of the conventional surgery. During the last couple of years there was an increase in the number of studies focused on precontouring orthopedic plates using 3D printing technology. Three-dimensionally-printed templates for plate precontouring were mostly used for acetabular fractures. Knowledge on medical virtual modeling and reconstruction is mandatory.
Collapse
Affiliation(s)
- Rodica Marinescu
- Department of Orthopedics, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania;
| | - Diana Popescu
- Department of Robotics and Production Systems, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Dan Laptoiu
- Department of Orthopedics 2, Colentina Clinical Hospital, 020125 Bucharest, Romania;
| |
Collapse
|
67
|
Geng X, Li Y, Li F, Wang X, Zhang K, Liu Z, Tian H. A new 3D printing porous trabecular titanium metal acetabular cup for primary total hip arthroplasty: a minimum 2-year follow-up of 92 consecutive patients. J Orthop Surg Res 2020; 15:383. [PMID: 32887636 PMCID: PMC7487482 DOI: 10.1186/s13018-020-01913-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023] Open
Abstract
Background Aseptic cup loosening is still one of the main reasons leading to acetabular cup failures. 3D printing porous trabecular titanium metal acetabular cup may provide good initial stability and secondary fixation because of its highly interconnected, porous structure. Few large sample studies have reported the clinical outcomes of electron beam melting (EBM) porous titanium acetabular cup in Chinese population. Methods We retrospectively collected and analyzed the clinical data of a total of 92 consecutive patients between January 2013 and November 2017, with an average follow-up of 48.2 ± 3.6 months. Clinical outcomes included Harris Hip Score (HHS), the Western Ontario and McMaster Universities (WOMAC) Osteoarthritis Index, satisfaction rate, and cup survival rate were evaluated. Radiographic assessments were conducted to evaluate osteointegration. Results HHS scores improved significantly while the WOMAC score decreased significantly at the latest follow-up (p < 0.001). The satisfaction rate (prevalence of satisfied or very satisfied) was 91.3%. No acetabular cup failures occurred. Radiolucent lines appeared in 15 cases (18 hips) and disappeared in 6 months. No cup loosening signs found until the last follow-up. The overall survival rate of implantation is 99.1% (cup survival rate 100%). Conclusion The new EBM-produced 3D ACT™ cup demonstrated us its favorable short- to mid-term clinical outcomes in Chinese THA patients. It can provide high acetabular cup survival rate, great clinical improvements and excellent biological fixation. Further investigations are needed to confirm its long-term outcomes.
Collapse
Affiliation(s)
- Xiao Geng
- Department of Orthopaedics, Peking University Third Hospital, No. 49 North Garden Road, Beijing, 100191, China
| | - Yang Li
- Department of Orthopaedics, Peking University Third Hospital, No. 49 North Garden Road, Beijing, 100191, China
| | - Feng Li
- Department of Orthopaedics, Peking University Third Hospital, No. 49 North Garden Road, Beijing, 100191, China
| | - Xinguang Wang
- Department of Orthopaedics, Peking University Third Hospital, No. 49 North Garden Road, Beijing, 100191, China
| | - Ke Zhang
- Department of Orthopaedics, Peking University Third Hospital, No. 49 North Garden Road, Beijing, 100191, China
| | - Zhongjun Liu
- Department of Orthopaedics, Peking University Third Hospital, No. 49 North Garden Road, Beijing, 100191, China
| | - Hua Tian
- Department of Orthopaedics, Peking University Third Hospital, No. 49 North Garden Road, Beijing, 100191, China.
| |
Collapse
|
68
|
Wagels M, Hutmacher DW. Three‐dimensional printing in a pandemic: panacea or panic? Med J Aust 2020; 213:267-268. [PMID: 32951233 PMCID: PMC7537118 DOI: 10.5694/mja2.50753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Michael Wagels
- The Australian Centre for Complex Integrated Surgical Solutions Princess Alexandra Hospital Brisbane QLD
- The University of Queensland Brisbane QLD
| | - Dietmar W Hutmacher
- ARC Centre in Additive BiomanufacturingQueensland University of TechnologyBrisbaneQLD
| |
Collapse
|
69
|
Arce K, Morris JM, Alexander AE, Ettinger KS. Developing a Point-of-Care Manufacturing Program for Craniomaxillofacial Surgery. Atlas Oral Maxillofac Surg Clin North Am 2020; 28:165-179. [PMID: 32741513 DOI: 10.1016/j.cxom.2020.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Kevin Arce
- Division of Oral and Maxillofacial Surgery, Section of Head and Neck Oncologic Surgery and Reconstruction, Department of Surgery, Mayo Clinic and Mayo College of Medicine, 200 First St. SW, Mail Code: RO_MA_12_03E-OS, Rochester, MN 55905, USA.
| | - Jonathan M Morris
- Division of Neuroradiology, Medical Director of Anatomic Modeling Lab, Department of Radiology, Mayo Clinic and Mayo College of Medicine, 200 First St. SW, Mail Code: RO_MA_02_48WRAD, Rochester, MN 55905, USA
| | - Amy E Alexander
- Anatomic Modeling Lab, Department of Radiology, Mayo Clinic, 200 First St. SW, Mail Code: RO_JO_06_201RAD, Rochester, MN 55905, USA
| | - Kyle S Ettinger
- Division of Oral and Maxillofacial Surgery, Section of Head and Neck Oncologic Surgery and Reconstruction, Department of Surgery, Mayo Clinic and Mayo College of Medicine, 200 First St. SW, Mail Code: RO_MA_12_03E-OS, Rochester, MN 55905, USA
| |
Collapse
|
70
|
Bous RM, Kochenour N, Valiathan M. A novel method for fabricating nasoalveolar molding appliances for infants with cleft lip and palate using 3-dimensional workflow and clear aligners. Am J Orthod Dentofacial Orthop 2020; 158:452-458. [PMID: 32709578 DOI: 10.1016/j.ajodo.2020.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/01/2020] [Accepted: 02/01/2020] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Nasoalveolar molding (NAM) was introduced over 20 years ago as adjunctive therapy for the correction of cleft lip and palate. In the current study, we propose a new approach using a digital workflow and 3-dimensional printing to fabricate clear aligner NAM devices. METHODS A polyvinyl siloxane (PVS) impression of an infant with a unilateral complete cleft lip and palate (UCLP) is acquired and poured, and the stone model is scanned with an intraoral scanner. The stereolithography file is digitized, and the alveolar segments are digitally segmented and moved to the desired final position. The total distance moved is divided into a sequence of 1-1.5 mm increments, creating a series of digital models. The models are 3-dimensionally printed along with button templates to allow free form positioning of the button on each model. A Vacuform machine (Taglus, Mumbai, India) was used to fabricate a 0.040-in aligner for each stage. RESULTS We present 1 case that was treated successfully with this approach. Appointments for the NAM adjustments were primarily to monitor progress and counseling with less time spent adjusting the appliance. The appointment length was reduced by over 30 minutes. Benefits of the aligner are improved fit, more precise increments of activation, reduced chairside time, and potentially minimized number of visits. CONCLUSIONS NAM custom aligners may provide similar benefits to the traditional approach while reducing the burden of care by reducing the number of visits and appointment duration. Further studies with a sample and longitudinal observations are needed to investigate the benefits of the proposed digital approach.
Collapse
Affiliation(s)
- Rany M Bous
- Mt Sinai-Dr Edward Reiter Fellowship Program, Craniofacial and Special Care Orthodontics, Department of Orthodontics, School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio.
| | - Nicholas Kochenour
- James A. Lehman Jr. MD, Craniofacial Center, Akron Children's Hospital, Akron, Ohio
| | - Manish Valiathan
- Mt Sinai-Dr Edward Reiter Fellowship Program, Craniofacial and Special Care Orthodontics, Department of Orthodontics, School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
71
|
Jovic TH, Combellack EJ, Jessop ZM, Whitaker IS. Using 3D Printing Technology to Teach Cartilage Framework Carving for Ear Reconstruction. Front Surg 2020; 7:44. [PMID: 32766275 PMCID: PMC7380086 DOI: 10.3389/fsurg.2020.00044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 06/10/2020] [Indexed: 01/21/2023] Open
Abstract
Objective: The aim of this study was to determine the validity of using a carvable 3D printed rib model in combination with a 3D printed auricular framework to facilitate the teaching, training and planning of auricular reconstruction. Design: 3D printed costal cartilages from ribs 6-9 were produced using a FormLabs Form3 Printer and used to make negative molds. 2:1 silicone-cornstarch mixture was added to each mold to make 12 simulated 6-9th costal cartilages suitable for carving. 3D printed auricular frameworks were produced in polylactic acid using an Ultimaker 3 3D printer to demonstrate the component parts and constructed framework of an auricular reconstruction. Participants: Twelve plastic surgery trainees attended a workshop in which they each attempted auricular reconstruction using the carvable models and 3D printed plastic models as a guide. All candidates completed a pre- and post-training questionnaire to assess confidence and comprehension of auricular reconstruction, and the suitability of the models for facilitating this teaching. Results: Only 42% of trainees (n = 5) had observed an ear reconstruction in theater prior to the training course. Statistically significant improvements in the appreciation of the different components that make an auricular framework (p < 0.0001) and confidence in carving and handling costal cartilage (p < 0.0001) were noted following completion of the training. Highly significant improvements in comprehension of the approach to ear reconstruction (p = 0.006) and locating the subunits of a reconstructed ear from costal cartilage (p = 0.003) were also noted. 100% of participants felt the 3D printed teaching aids directly enhanced their learning. Conclusions: Ear reconstruction is a complex, time consuming multi-stage operation demanding significant amounts of experience, planning and an appreciation of the 3D chondrocutaneous structure. In this study we have demonstrated the value of 3D printing in producing a suitable simulated costal cartilage model and as an adjunct to comprehending and planning a framework for auricular reconstruction.
Collapse
Affiliation(s)
- Thomas H Jovic
- Reconstructive Surgery and Regenerative Medicine Research Group, Swansea University, Swansea, United Kingdom.,Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, United Kingdom
| | - Emman J Combellack
- Reconstructive Surgery and Regenerative Medicine Research Group, Swansea University, Swansea, United Kingdom.,Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, United Kingdom
| | - Zita M Jessop
- Reconstructive Surgery and Regenerative Medicine Research Group, Swansea University, Swansea, United Kingdom.,Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, United Kingdom
| | - Iain S Whitaker
- Reconstructive Surgery and Regenerative Medicine Research Group, Swansea University, Swansea, United Kingdom.,Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, United Kingdom
| |
Collapse
|
72
|
Fleming C, Sadaghiani MS, Stellon MA, Javan R. Effectiveness of Three-Dimensionally Printed Models in Anatomy Education for Medical Students and Resident Physicians: Systematic Review and Meta-Analysis. J Am Coll Radiol 2020; 17:1220-1229. [PMID: 32603662 DOI: 10.1016/j.jacr.2020.05.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Despite a surge in the use of three-dimensional printing (3DP) in medical education, a comprehensive evaluation of randomized trials in its effectiveness is lacking. Radiologic studies play an integral role in affording educators the ability to create customized realistic anatomic models. This systematic review and meta-analysis sought to assess the effect of 3DP versus traditional 2-D methods for anatomy education. METHODS PubMed, Scopus, Cochrane Library, ERIC, and IEEE Xplore were queried to identify randomized controlled trials that quantitatively investigated anatomy education via postintervention assessments of medical students or resident physicians who were exposed to 3DP versus traditional methods. Criteria for the meta-analysis required that studies additionally included a pre-intervention assessment. RESULTS A total of 804 articles were reviewed, identifying 8 and 7 studies for systematic reviews of medical students and resident physicians, respectively, of which 4 and 7 were included in the meta-analyses. 3DP models were associated with higher anatomy examination scores for medical students (P < .0001), but for resident physicians were statistically not significant (P = .53). DISCUSSION The 3DP models are shown to positively impact medical students especially given their limited fund of knowledge in anatomy. It is postulated that the lack of a statistically significant result for the resident physicians was multifactorial, in part because of the small test group sizes introducing noise and nonrepresentative samples, as well as relative simplicity of the 3DP models used with resident physicians, which were below their level of training. More trials are required to evaluate the usefulness of highly customized 3DP models.
Collapse
Affiliation(s)
- Cullen Fleming
- George Washington University School of Medicine and Health Sciences, Washington, DC
| | | | - Michael A Stellon
- George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Ramin Javan
- George Washington University Hospital, Department of Radiology, Washington, DC.
| |
Collapse
|
73
|
Schlund M, Levaillant JM, Nicot R. Three-Dimensional Printing of Prenatal Ultrasonographic Diagnosis of Cleft Lip and Palate: Presenting the Needed "Know-How" and Discussing Its Use in Parental Education. Cleft Palate Craniofac J 2020; 57:1041-1044. [PMID: 32462933 DOI: 10.1177/1055665620926348] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Parental prenatal counseling is of paramount significance since parents often experience an emotional crisis with feelings of disappointment and helplessness. Three-dimensional (3D) printed model of the unborn child's face presenting with cleft lip and palate, based on ultrasonographic information, could be used to provide visual 3D information, further enhancing the prospective parent's comprehension of their unborn child's pathology and morphology, helping them to be psychologically prepared and improving the communication with the caretaking team. Prospective parents appreciate if prenatal counseling is available with the most detailed information as well as additional resources. The technique necessary to create 3D models after ultrasonographic information is explained, and the related costs are evaluated. The use of such models in parental education is then discussed.
Collapse
Affiliation(s)
- Matthias Schlund
- Univ. Lille, CHU Lille, INSERM, Oral and Maxillofacial Surgery Department, U1008-Controlled Drug Delivery Systems and Biomaterial, Lille, France
| | - Jean-Marc Levaillant
- Center for Woman and Fetal Imaging, Lille, France.,Hôpital Privé Armand Brillard, Groupe Ramsay Générale de Santé, Nogent-sur-Marne, France
| | - Romain Nicot
- Univ. Lille, CHU Lille, INSERM, Oral and Maxillofacial Surgery Department, U1008-Controlled Drug Delivery Systems and Biomaterial, Lille, France.,Center for Woman and Fetal Imaging, Lille, France
| |
Collapse
|
74
|
3D printed temporal bone as a tool for otologic surgery simulation. Am J Otolaryngol 2020; 41:102273. [PMID: 32209234 DOI: 10.1016/j.amjoto.2019.08.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/30/2019] [Accepted: 08/02/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE In this face validity study, we discuss the fabrication and utility of an affordable, computed tomography (CT)-based, anatomy-accurate, 3-dimensional (3D) printed temporal bone models for junior otolaryngology resident training. MATERIALS AND METHODS After IRB exemption, patient CT scans were anonymized and downloaded as Digital Imaging and Communications in Medicine (DICOM) files to prepare for conversion. These files were converted to stereolithography format for 3D printing. Important soft tissue structures were identified and labeled to be printed in a separate color than bone. Models were printed using a desktop 3D printer (Ultimaker 3 Extended, Ultimaker BV, Netherlands) and polylactic acid (PLA) filament. 10 junior residents with no previous drilling experience participated in the study. Each resident was asked to drill a simple mastoidectomy on both a cadaveric and 3D printed temporal bone. Following their experience, they were asked to complete a Likert questionnaire. RESULTS The final result was an anatomically accurate (XYZ accuracy = 12.5, 12.5, 5 μm) 3D model of a temporal bone that was deemed to be appropriate in tactile feedback using the surgical drill. The total cost of the material required to fabricate the model was approximately $1.50. Participants found the 3D models overall to be similar to cadaveric temporal bones, particularly in overall value and safety. CONCLUSIONS 3D printed temporal bone models can be used as an affordable and inexhaustible alternative, or supplement, to traditional cadaveric surgical simulation.
Collapse
|
75
|
Sejor E, Debs T, Petrucciani N, Brige P, Chopinet S, Seux M, Piche M, Myx-Staccini A, Ben Amor I, Frey S, Prate F, Zenerino A, Gugenheim J. Feasibility and Efficiency of Sutureless End Enterostomy by Means of a 3D-Printed Device in a Porcine Model. Surg Innov 2020; 27:203-210. [PMID: 31941417 DOI: 10.1177/1553350619895631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective. The aim of this study is to present a 3-dimensional (3D)-printed device to simply perform abdominal enterostomy and colostomy. Summary Background Data. Enterostomy and colostomy are frequently performed during abdominal surgery. 3D-printed devices may permit the creation of enterostomy easily. Methods. The device was designed by means of a CAD (computer-aided design) software, Rhinoceros 6 by MC Neel, and manufactured using 3D printers, Factory 2.0 by Omni 3D and Raise 3D N2 Dual Plus by Raise 3D. Colostomy was scheduled on a human cadaver and on 6 Pietrain pigs to test the device and the surgical technique. Results. The test on the cadaver showed that the application of the device was easy. Test on porcine models confirmed that the application of the device was also easy on the living model. The average duration of the surgical procedure was 32 minutes (25-40 minutes). For the female pigs, return to full oral diet and recovery of a normal bowel function was observed at postoperative day 2. The device fell by itself on average on the third day. Until day 10, when euthanasia was practiced, the stoma mucosa had a good coloration indicating a perfect viability of tissues. No complications were observed. Conclusions. This is the first study that describes the use of a 3D-printed device in abdominal surgery. End-type colostomy using a 3D-printed device can be safely and easily performed in an experimental porcine model, without postoperative complications. Further studies are needed to evaluate its utility in the clinical setting.
Collapse
Affiliation(s)
| | | | - Niccolo Petrucciani
- Department of Digestive Surgery, Henri Mondor University Hospital, Creteil, France
| | | | - Sophie Chopinet
- Aix-Marseille University, Marseille, France
- Hôpital de la Timone, Marseille, France
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Kemp S, Coles‐Black J, Walker MJ, Wallace G, Chuen J, Mukherjee P. Ethical and regulatory considerations for surgeons as consumers and creators of three‐dimensional printed medical devices. ANZ J Surg 2020; 90:1477-1481. [DOI: 10.1111/ans.15871] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Sharon Kemp
- Institute of Academic SurgeryRoyal Prince Alfred Hospital Sydney New South Wales Australia
| | - Jasamine Coles‐Black
- 3D Medical Printing LaboratoryAustin Health Melbourne Victoria Australia
- The University of Melbourne Melbourne Victoria Australia
| | - Mary J. Walker
- Department of Religion and PhilosophyHong Kong Baptist University Kowloon Hong Kong
- Department of PhilosophyMonash University Melbourne Victoria Australia
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research InstituteThe University of Wollongong Wollongong New South Wales Australia
| | - Gordon Wallace
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research InstituteThe University of Wollongong Wollongong New South Wales Australia
| | - Jason Chuen
- 3D Medical Printing LaboratoryAustin Health Melbourne Victoria Australia
- The University of Melbourne Melbourne Victoria Australia
| | - Payal Mukherjee
- Institute of Academic SurgeryRoyal Prince Alfred Hospital Sydney New South Wales Australia
- Department of Otolaryngology‐Head and Neck SurgeryThe University of Sydney Sydney New South Wales Australia
| |
Collapse
|
77
|
Montgomery SJ, Kooner SS, Ludwig TE, Schneider PS. Impact of 3D Printed Calcaneal Models on Fracture Understanding and Confidence in Orthopedic Surgery Residents. JOURNAL OF SURGICAL EDUCATION 2020; 77:472-478. [PMID: 32033916 DOI: 10.1016/j.jsurg.2019.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/23/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To determine if three-dimensionally printed (3Dp) fracture models can improve orthopedic trainee education. DESIGN A prospective comparison study of orthopedic trainees and attending surgeons was performed, where a range of calcaneal fractures were used for creating anonymized 3Dp models. Study participants rotated through workstations viewing computed tomography images and either a digital 3D volume rendering or 3Dp model of the fractured calcaneus. Diagnosis, time for evaluation, confidence of fracture understanding, perceived model accuracy, and proposed treatment were compared using a standardized questionnaire. PARTICIPANTS Sixteen resident trainees and 5 attending surgeons participated in this study. Attending surgeons were required to have fellowship training in trauma or foot and ankle surgery and manage calcaneal fractures as part of their current practice. RESULTS Junior residents had the slowest time of assessment (mean = 121 ± 54 seconds) and lowest percentage of correct diagnoses (69%), although these findings did not reach significance compared to the other residency years. Residents displayed higher levels of confidence in fracture understanding with increasing residency year of training (p < 0.0001), and this confidence was greater for cases that included a 3Dp model (p < 0.03). Perceived accuracy of cases with 3Dp models was significantly higher than cases without 3Dp models (7.0 vs 5.5 p < 0.001). CONCLUSIONS This study found that 3Dp models increase the perceived accuracy of fracture assessment, though no statistically significant improvement in diagnostic accuracy was observed. The 3Dp models did improve trainee confidence, although this effect diminished with increasing residency year. In orthopedic residency training programs, 3Dp models of complex fractures can be a valuable educational tool, especially for junior trainees.
Collapse
|
78
|
Guo XY, He ZQ, Duan H, Lin FH, Zhang GH, Zhang XH, Chen ZH, Sai K, Jiang XB, Wang ZN, Xie T, Chen ZP, Mou YG. The utility of 3-dimensional-printed models for skull base meningioma surgery. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:370. [PMID: 32355814 PMCID: PMC7186736 DOI: 10.21037/atm.2020.02.28] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Skull base meningioma surgery is often difficult and complicated to perform. Therefore, this study aims to investigate the effectiveness of 3-dimensional (3D)-printed models of skull base meningioma in the representation of anatomical structures, the simulation of surgical plans, and patient education on surgical outcomes. Methods A retrospective study of 35 patients (3D group: 19 patients and non-3D group: 16 patients) with skull base meningioma was conducted. Mimics software was used to create 3D reconstructions (with the skull, blood vessels, nerves, and tumors set to different colors), and 3D solid models were printed to determine the surgical protocols and communication pathways with the patient. Results The 3D-printed model can visually display the relationship of different structures, including the skull, blood vessels, cranial nerves, and tumors. The surgeon should select the proper surgical approaches before surgery through the model and pay attention to protecting the important structures during the operation. According to the models, the surgeon should cut off the blood supply to the tumor to reduce intraoperative bleeding. For patients with skull base bone destruction, the skull base repair should be prepared in advance. Patients and their families should have a thorough understanding of the disease through the model, and there should be effective communication between doctors and patients. Conclusions The 3D-printed model of a skull base meningioma can present the structures in a detailed manner and facilitate in helping the surgeon to develop a surgical plan. At the same time, it helps patients and their families to understand the condition and the surgical plan, which is conducive to better patient education.
Collapse
Affiliation(s)
- Xiao-Yu Guo
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510000, China
| | - Zhen-Qiang He
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510000, China
| | - Hao Duan
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510000, China
| | - Fu-Hua Lin
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510000, China
| | - Guan-Hua Zhang
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510000, China
| | - Xiang-Heng Zhang
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510000, China
| | - Zheng-He Chen
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510000, China
| | - Ke Sai
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510000, China
| | - Xiao-Bing Jiang
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510000, China
| | - Zhen-Ning Wang
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510000, China
| | - Tian Xie
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510000, China
| | - Zhong-Ping Chen
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510000, China
| | - Yong-Gao Mou
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510000, China
| |
Collapse
|
79
|
[3D printing in orthopedic and trauma surgery education and training : Possibilities and fields of application]. Unfallchirurg 2019; 122:444-451. [PMID: 31053925 DOI: 10.1007/s00113-019-0650-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The 3D printing technology enables precise fracture models to be generated from volumetric digital imaging and communications in medicine (DICOM) computed tomography (CT) data. Apart from patient treatment, in the future this technology could potentially play a significant role in education and training in the field of orthopedic and trauma surgery. Preliminary results show that the understanding and classification of fractures can be improved when teaching medical students. The use of life-size and haptic models of real fractures for education is particularly interesting. Even experienced surgeons show an improved classification and treatment planning with the help of 3D printed models when compared to plain CT data. Especially for complex articular fractures, such as those of the acetabulum and tibial plateau, initial evidence shows patient benefits in terms of reduced surgery time and blood loss with the help of 3D models. The use of 3D printing on-site at the hospital is of particular interest in orthopedic and trauma surgery as it promises to provide products within a short time. The low investment and running costs and the increasing availability of convenient software solutions will spur increasing dissemination of this technology in the coming years.
Collapse
|
80
|
Bohl MA, Mauria R, Zhou JJ, Mooney MA, DiDomenico JD, McBryan S, Cavallo C, Nakaji P, Chang SW, Uribe JS, Turner JD, Kakarla UK. The Barrow Biomimetic Spine: Face, Content, and Construct Validity of a 3D-Printed Spine Model for Freehand and Minimally Invasive Pedicle Screw Insertion. Global Spine J 2019; 9:635-641. [PMID: 31448198 PMCID: PMC6693063 DOI: 10.1177/2192568218824080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
STUDY DESIGN Description and evaluation of a novel surgical training platform. OBJECTIVES The purpose of this study was to investigate the face, content, and construct validity of 5 novel surgical training models that simulate freehand and percutaneous (minimally invasive surgery [MIS]) pedicle screw placement. METHODS Five spine models were developed by residents: 3 for freehand pedicle screw training (models A-C) and 2 for MIS pedicle screw training (models D and E). Attending spine surgeons evaluated each model and, using a 20-point Likert-type scale, answered survey questions on model face, content, and construct validity. Scores were statistically evaluated and compared using means, standard deviations, and analysis of variance between models and between surgeons. RESULTS Among the freehand models, model C demonstrated the highest overall validity, with mean face (15.67 ± 5.49), content (19.17 ± 0.59), and construct (18.83 ± 0.24) validity all measuring higher than the other freehand models. For the MIS models, model D had the highest validity scores (face, content, and construct validity of 11.67 ± 3.77, 18.17 ± 2.04, and 17.00 ± 3.46, respectively). The 3 freehand models differed significantly in content validity scores (P = .002) as did the 2 MIS models (P < .001). The testing surgeons' overall validity scores were significantly different for models A (P = .005) and E (P < .001). CONCLUSIONS A 3-dimensional-printed spine model with incorporated bone bleeding and silicone rubber soft tissue was scored as having very high content and construct validity for simulating freehand pedicle screw insertion. These data has informed the further development of several surgical training models that hold great potential as educational adjuncts in surgical training programs.
Collapse
Affiliation(s)
| | - Rohit Mauria
- Creighton University School of Medicine, Omaha, NE, USA
| | | | | | | | | | | | | | | | | | | | - U. Kumar Kakarla
- Barrow Neurological Institute, Phoenix, AZ, USA,U. Kumar Kakarla, MD, c/o Neuroscience Publications,
Department of Neurosurgery, Barrow Neurological Institute, St Joseph’s Hospital and
Medical Center, 350 West Thomas Road, Phoenix, AZ 85013, USA.
| |
Collapse
|
81
|
Nicot R, Druelle C, Schlund M, Roland-Billecart T, Gwénaël R, Ferri J, Gosset D. Use of 3D printed models in student education of craniofacial traumas. Dent Traumatol 2019; 35:296-299. [PMID: 31050391 DOI: 10.1111/edt.12479] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/27/2019] [Accepted: 04/29/2019] [Indexed: 12/12/2022]
Abstract
A low-cost 3D printed model has been introduced into the oral and maxillofacial surgery teaching program of undergraduate students to improve education and mechanical comprehension of craniofacial trauma. Steps of the 3D printed haptic model building process are listed. 3D printed models of facial fractures were obtained from Data Imaging and Communications in Medicine (DICOM) data. Computed Aided Design and Manufacturing (CAD-CAM) freeware was used to create new fractures on the standard tessellation language (STL) file. 3D printed haptic model appears to be an efficient low-cost support for craniofacial trauma education of undergraduate students.
Collapse
Affiliation(s)
- Romain Nicot
- Department of Oral and Maxillofacial Surgery, INSERM U 1008, Controlled Drug Delivery Systems and Biomaterials, CHU Lille, Univ. Lille, Lille, France
| | - Charles Druelle
- Department of Oral and Maxillofacial Surgery, CHU Lille, Univ. Lille, Lille, France
| | - Matthias Schlund
- Department of Oral and Maxillofacial Surgery, INSERM U 1008, Controlled Drug Delivery Systems and Biomaterials, CHU Lille, Univ. Lille, Lille, France
| | | | - Raoul Gwénaël
- Department of Oral and Maxillofacial Surgery, INSERM U 1008, Controlled Drug Delivery Systems and Biomaterials, CHU Lille, Univ. Lille, Lille, France
| | - Joël Ferri
- Department of Oral and Maxillofacial Surgery, INSERM U 1008, Controlled Drug Delivery Systems and Biomaterials, CHU Lille, Univ. Lille, Lille, France
| | | |
Collapse
|
82
|
Zabaleta J, Aguinagalde B, López I, Laguna SM, Mendoza M, Galardi A, Matey L, Larrañaga A, Baqueriza G, Izeta A. Creation of a multidisciplinary and multicenter study group for the use of 3D printing in general thoracic surgery: lessons learned in our first year experience. MEDICAL DEVICES-EVIDENCE AND RESEARCH 2019; 12:143-149. [PMID: 31118837 PMCID: PMC6506011 DOI: 10.2147/mder.s203610] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 02/28/2019] [Indexed: 12/26/2022] Open
Abstract
Introduction: In recent years, the use of 3D printing in medicine has grown exponentially, but the use of 3D technology has not been equally adopted by the different medical specialties. Published 3D printing activity in general thoracic surgery is scarce and has been mostly limited to case reports. The aim of this report was to reflect on the results and lessons learned from a newly created multidisciplinary and multicenter 3D unit of the Spanish Society of Thoracic Surgery (SECT). Methods: This is a pilot study to determine the feasibility and usefulness of printing 3D models for patients with thoracic malignancy or airway complications, based on real data. We designed a point-of-care 3D printing workflow involving thoracic surgeons, radiologists with experience in intrathoracic pathology, and engineers with experience in additive manufacturing. Results: In the first year of operation we generated 26 three-dimensional models out of 27 cases received (96.3%). In 9 cases a virtual model was sufficient for optimal patient handling, while in 17 cases a 3D model was printed. Per pathology, cases were classified as airway stenosis after lung transplantation (7 cases, 25.9%), tracheal pathology (7 cases, 25.9%), chest tumors (6 cases, 22.2%) carcinoid tumors (4 cases, 14.8%), mediastinal tumors (2 cases, 7.4%) and Pancoast tumors (one case, 3.7%). Conclusion: A multidisciplinary 3D laboratory is feasible in a hospital setting, and working as a multicenter group increases the number of cases and diversity of pathologies thus providing further opportunity to study the benefits of the 3D printing technology in general thoracic surgery.
Collapse
Affiliation(s)
- Jon Zabaleta
- Thoracic surgery service, Donostia University Hospital, IIS Biodonostia, San Sebastian, Spain
| | - Borja Aguinagalde
- Thoracic surgery service, Donostia University Hospital, IIS Biodonostia, San Sebastian, Spain
| | - Iker López
- Thoracic surgery service, Donostia University Hospital, IIS Biodonostia, San Sebastian, Spain
| | - Stephany M Laguna
- Thoracic surgery service, Donostia University Hospital, IIS Biodonostia, San Sebastian, Spain
| | - Mikel Mendoza
- Radiology service, Donostia Universitary Hospital, San Sebastian, Spain
| | - Ainhoa Galardi
- Radiology service, Donostia Universitary Hospital, San Sebastian, Spain
| | - Luis Matey
- Additive Manufacturing, Ceit-IK4, San Sebastian, Spain.,School of Engineering, Tecnun-University of Navarra, Pamplona, Spain
| | - Andrea Larrañaga
- School of Engineering, Tecnun-University of Navarra, Pamplona, Spain
| | - Gorka Baqueriza
- Additive Manufacturing, Tknika-Basque Centre of Research and Applied Innovation in Vocational Education and Training
| | - Ander Izeta
- Tissue Engineering Group, IIS Biodonostia, San Sebastian, Spain
| |
Collapse
|
83
|
Zhang X, Xu Z, Tan L, Li Y, Liu L, Chen N, Zhang S, Lamers WH, Wu C, Wu Y. Application of three-dimensional reconstruction and printing as an elective course for undergraduate medical students: an exploratory trial. Surg Radiol Anat 2019; 41:1193-1204. [PMID: 31030233 DOI: 10.1007/s00276-019-02248-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Medical three-dimensional (3D) digital reconstruction and printing have become common tools in medicine, but few undergraduate medical students understand its whole process and teaching and clinical application. Therefore, we designed an elective course of 3D reconstruction and printing for students and studied its significance and practicability. METHODS Thirty undergraduate medical students in their second-year of study volunteered to participate in the course. The course started with three lessons on the theory of 3D digital reconstruction and printing in medicine. The students were then randomly divided into ten groups. Each group randomly selected its own original data set, which could contain a series of 2D images including sectional anatomical images, histological images, CT and MRI. Amira software was used to segment the structures of interest, to 3D reconstruct them and to smooth and simplify the models. These models were 3D printed and post-processed. Finally, the 3D digital and printed models were scored, and the students produced brief reports of their work and knowledge acquisition and filled out an anonymous questionnaire about their study perceptions. RESULTS All the students finished this course. The average score of the 30 students was 83.1 ± 2.7. This course stimulated the students' learning interest and satisfied them. It was helpful for undergraduate students to understand anatomical structures and their spatial relationship more deeply. Students understood the whole process of 3D reconstruction and printing and its teaching and clinical applications through this course. CONCLUSION It is significant and necessary to develop this course for undergraduate medical students.
Collapse
Affiliation(s)
- Xiaoqin Zhang
- Institute of Digital Medicine, School of Biomedical Engineering and Medical Imaging, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Zhou Xu
- Institute of Digital Medicine, School of Biomedical Engineering and Medical Imaging, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Liwen Tan
- Institute of Digital Medicine, School of Biomedical Engineering and Medical Imaging, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Ying Li
- Institute of Digital Medicine, School of Biomedical Engineering and Medical Imaging, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Li Liu
- Institute of Digital Medicine, School of Biomedical Engineering and Medical Imaging, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Na Chen
- Institute of Digital Medicine, School of Biomedical Engineering and Medical Imaging, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Shaoxiang Zhang
- Institute of Digital Medicine, School of Biomedical Engineering and Medical Imaging, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Wouter H Lamers
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Chunling Wu
- Institute of Digital Medicine, School of Biomedical Engineering and Medical Imaging, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yi Wu
- Institute of Digital Medicine, School of Biomedical Engineering and Medical Imaging, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
84
|
Papazarkadas X, Spartalis E, Patsouras D, Ioannidis A, Schizas D, Georgiou K, Dimitroulis D, Nikiteas N. The Role of 3D Printing in Colorectal Surgery: Current Evidence and Future Perspectives. In Vivo 2019; 33:297-302. [PMID: 30804106 PMCID: PMC6506312 DOI: 10.21873/invivo.11475] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 12/09/2018] [Accepted: 12/12/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Three-dimensional (3D) printing is an emerging and evolving technology with a variety of possible applications in surgery. The purpose of this study was to examine its potential applications in the field of colorectal surgery, as a tool in pre-operative planning and peri-operative navigation, as well as in training. Its cost-efficiency was also examined. MATERIALS AND METHODS A literature review was conducted on articles specifically presenting various applications of 3D printing in the field of colorectal surgery. PubMed was the primary database researched. RESULTS A total of seven studies were found to meet the inclusion criteria. The majority of the articles employed 3D printing technology to produce patient-specific anatomic replicas to enhance pre-operative planning, providing satisfactory results. One study used 3D printing technology as a therapy tool, stating superior results over traditional methods. CONCLUSION 3D printing is a novel technology with a broad spectrum of possible applications in colorectal surgery. Anatomic replicas specific to the anatomy of a patient with acceptable dimensional correlations can be produced using the currently available technology. Surgical and patient training can also be enhanced. Depending on the technology used, costs greatly vary and can thus hinder popularization of this technology in surgery.
Collapse
Affiliation(s)
- Xenofon Papazarkadas
- Laboratory of Experimental Surgery and Surgical Research, University of Athens Medical School, Athens, Greece
- Hellenic Minimally Invasive and Robotic Surgery (MIRS) Study Group, Athens, Greece
| | - Eleftherios Spartalis
- Laboratory of Experimental Surgery and Surgical Research, University of Athens Medical School, Athens, Greece
- Hellenic Minimally Invasive and Robotic Surgery (MIRS) Study Group, Athens, Greece
| | - Dimitrios Patsouras
- Laboratory of Experimental Surgery and Surgical Research, University of Athens Medical School, Athens, Greece
- Hellenic Minimally Invasive and Robotic Surgery (MIRS) Study Group, Athens, Greece
| | - Argyrios Ioannidis
- Laboratory of Experimental Surgery and Surgical Research, University of Athens Medical School, Athens, Greece
| | - Dimitrios Schizas
- Hellenic Minimally Invasive and Robotic Surgery (MIRS) Study Group, Athens, Greece
- First Department of Surgery, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Konstantinos Georgiou
- Laboratory of Experimental Surgery and Surgical Research, University of Athens Medical School, Athens, Greece
| | - Dimitrios Dimitroulis
- Hellenic Minimally Invasive and Robotic Surgery (MIRS) Study Group, Athens, Greece
- Second Department of Propaedeutic Surgery, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Nikolaos Nikiteas
- Laboratory of Experimental Surgery and Surgical Research, University of Athens Medical School, Athens, Greece
- Hellenic Minimally Invasive and Robotic Surgery (MIRS) Study Group, Athens, Greece
- Second Department of Propaedeutic Surgery, National and Kapodistrian University of Athens Medical School, Athens, Greece
| |
Collapse
|
85
|
Bohl MA, Zhou JJ, Mooney MA, Repp GJ, Cavallo C, Nakaji P, Chang SW, Turner JD, Kakarla UK. The Barrow Biomimetic Spine: effect of a 3-dimensional-printed spinal osteotomy model on performance of spinal osteotomies by medical students and interns. JOURNAL OF SPINE SURGERY 2019; 5:58-65. [PMID: 31032439 DOI: 10.21037/jss.2019.01.05] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background The Schwab osteotomy grading scale-a unified osteotomy classification system created in 2014 by Schwab et al.-is one of many concepts in spine surgery that require detailed knowledge of 3-dimensional (3D) anatomy. 3D-printed spine models have demonstrated increasing utility in spine surgery as they more quickly communicate information on complex 3D anatomical relationships than planar imaging or 2-dimensional images. The purpose of this study was to evaluate the utility of a custom, 3D-printed spine model to help surgical trainees understand and perform the Schwab osteotomy grading scale. Methods Eight participants were randomized into 2 groups: group 1 received written instructional materials about the Schwab osteotomy grading scale, whereas group 2 received both written materials and a 3D-printed model of the spine with osteotomy regions demarcated. All participants were administered written and practical examinations. Results The group randomized to receive the 3D-printed model performed significantly better on both the written assessment (mean score, 7.75±0.50 vs. 5.75±0.50, P=0.023) and the practical examination (mean score, 1.75±0.32 vs. 1.08±0.09, P=0.025) than the group that received only written instructions. Conclusions Our results support the conclusion that this 3D-printed spine model is an effective adjunct to help early surgical trainees understand the Schwab osteotomy grading scale. Participants who received the model in addition to the source manuscript demonstrated improved theoretical knowledge and better performance on practical tests of complex spinal osteotomies. Similar models are likely to have utility in surgical training programs and as patient education models.
Collapse
Affiliation(s)
- Michael A Bohl
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - James J Zhou
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Michael A Mooney
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Garrett J Repp
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Claudio Cavallo
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Peter Nakaji
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Steve W Chang
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Jay D Turner
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - U Kumar Kakarla
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| |
Collapse
|
86
|
Vertebral Reconstruction with Customized 3-Dimensional-Printed Spine Implant Replacing Large Vertebral Defect with 3-Year Follow-up. World Neurosurg 2019; 126:90-95. [PMID: 30797911 DOI: 10.1016/j.wneu.2019.02.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 02/12/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Destruction of the spine is a huge complication of infectious spondylitis and surgical intervention is required. However, vertebral defect is a major problem after surgical intervention and numerous methods have been researched to solve this problem. There are known methods that use variously designed, patient-customized 3-dimensional (3D)-printed implants in various medical fields. The use of 3D-printed implants has also been attempted in treating defects in the spine. We present a case of failure of expandable titanium cage fusion after infection, treated using a 3D-printed implant. CASE DESCRIPTION The patient had undergone reconstruction surgery with expandable titanium cage due to infectious spondylitis and needed reoperation owing to recurrence of infections and failure of bone fusion. The problem we faced in this operation was a large vertebral defect, for which we used a 3D-printed implant. After 3 years of follow-up, the implant and bone fusion were intact and infection or mechanical complications were not seen. CONCLUSIONS A 3D-printed implant could be an acceptable and alternative treatment option for replacing a large vertebral defect.
Collapse
|
87
|
David JA, Rifkin WJ, Saadeh PB, Sinno S. Assessing the Value of a Multimedia-Based Aesthetic Curriculum in Plastic Surgery Residency: A Single-Center Pilot Study. Aesthet Surg J 2018; 38:NP216-NP224. [PMID: 29733345 DOI: 10.1093/asj/sjy110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Although global demand for cosmetic surgery continues to rise, plastic surgery residents feel that current models of aesthetic training are inadequate in preparing them for future practice. Digital learning resources offer promising educational possibilities, yet there are no formal studies investigating the integration of these technologies into the aesthetic curriculum. OBJECTIVES Here, we review the current state of aesthetic training for plastic surgery residents and present a pilot study investigating the value of a dedicated multimedia-based aesthetic curriculum at a single, large academic program. METHODS Twenty plastic surgery residents participated in an 8-week curriculum consisting of weekly multimedia-based modules covering a specific aesthetic topic. Participants completed pre- and post-intervention surveys at 0 and 10 weeks, respectively. Surveys evaluated resident perspectives of the current state of aesthetic training, confidence in performing surgical and non-surgical aesthetic procedures, perceived efficacy of multimedia interventions for learning, and preferences for inclusion of such approaches in future curricula. RESULTS 16.7% of participants planned on entering an aesthetic fellowship following residency. The mean number of months of dedicated cosmetic surgery rotations was 1.65 months. Resident confidence level in performing a particular aesthetic procedure significantly increased in 6/14 modules. More than 90% of residents were interested in incorporating the modules into residency. CONCLUSIONS Technology-based aesthetic training is critical for producing the finest future practitioners and leaders of this specialty. Here, we show that plastic surgery residents can benefit from a multimedia-based aesthetic curriculum, even if they do not plan on pursuing a career devoted to cosmetic surgery.
Collapse
Affiliation(s)
- Joshua A David
- Chief of Plastic Surgery Service, Bellevue Hospital Center New York University Langone Health, New York, NY
- Director of the Plastic Surgery Residency Program, New York University Langone Health, New York, NY Hansjörg Wyss Department of Plastic and Reconstructive Surgery, New York University Langone Health, New York, NY
| | - William J Rifkin
- Chief of Plastic Surgery Service, Bellevue Hospital Center New York University Langone Health, New York, NY
- Director of the Plastic Surgery Residency Program, New York University Langone Health, New York, NY Hansjörg Wyss Department of Plastic and Reconstructive Surgery, New York University Langone Health, New York, NY
| | - Pierre B Saadeh
- Chief of Plastic Surgery Service, Bellevue Hospital Center New York University Langone Health, New York, NY
- Director of the Plastic Surgery Residency Program, New York University Langone Health, New York, NY Hansjörg Wyss Department of Plastic and Reconstructive Surgery, New York University Langone Health, New York, NY
| | - Sammy Sinno
- Plastic surgeon in private practice in Chicago, IL
| |
Collapse
|
88
|
Bertolo R, Autorino R, Fiori C, Amparore D, Checcucci E, Mottrie A, Porter J, Haber GP, Derweesh I, Porpiglia F. Expanding the Indications of Robotic Partial Nephrectomy for Highly Complex Renal Tumors: Urologists' Perception of the Impact of Hyperaccuracy Three-Dimensional Reconstruction. J Laparoendosc Adv Surg Tech A 2018; 29:233-239. [PMID: 30394820 DOI: 10.1089/lap.2018.0486] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES To assess the role of three-dimensional (3D) reconstruction in aiding preoperative planning for highly complex renal tumors amenable to robotic partial nephrectomy (RPN). MATERIALS AND METHODS Computed tomography (CT) scans and respective 3D reconstructions of 20 highly complex renal tumors were displayed to the attendees/urologists of the 6th Techno-Urology Meeting ( www.technourologymeeting.com ). These 20 cases had already undergone RPN performed by a single experienced surgeon. The attendees were asked to watch the videos of the CT scans first, and then the respective 3D reconstructions of 5 of the 20 cases who were randomly selected. A purpose-built questionnaire collected responders' surgical experience and surgical indication (RPN versus nephrectomy) after viewing the CT scan and the respective 3D reconstructions. RESULTS Twenty expert urologists, 27 young urologists, and 61 residents (total = 108) participated in the study. Five hundred forty-two views of the cases were obtained. Based on CT scans, RPN was indicated in 256 cases (47.2%). After viewing the respective 3D reconstructions, in 148 cases the responders changed their idea: indication to RPN raised in 404 cases (74.5%) (P < .001). The opinions changed regardless of the surgical experience. CONCLUSIONS The findings of this study are encouraging, and they might represent a significant step toward the validation of the use of 3D reconstruction for surgical planning in patients undergoing robotic kidney surgery. The use of this technology might translate into a larger adoption of nephron-sparing approach. Further investigation in this area is warranted to corroborate these findings.
Collapse
Affiliation(s)
| | | | - Cristian Fiori
- 3 Department of Urology, San Luigi Gonzaga Hospital , Orbassano, Turin, Italy
| | - Daniele Amparore
- 3 Department of Urology, San Luigi Gonzaga Hospital , Orbassano, Turin, Italy
| | - Enrico Checcucci
- 3 Department of Urology, San Luigi Gonzaga Hospital , Orbassano, Turin, Italy
| | | | | | | | - Ithaar Derweesh
- 6 Department of Urology, UCSD Health System , La Jolla, California
| | - Francesco Porpiglia
- 3 Department of Urology, San Luigi Gonzaga Hospital , Orbassano, Turin, Italy
| |
Collapse
|
89
|
Gauger VT, Rooney D, Kovatch KJ, Richey L, Powell A, Berhe H, Zopf DA. A multidisciplinary international collaborative implementing low cost, high fidelity 3D printed airway models to enhance Ethiopian anesthesia resident emergency cricothyroidotomy skills. Int J Pediatr Otorhinolaryngol 2018; 114:124-128. [PMID: 30262349 PMCID: PMC6170009 DOI: 10.1016/j.ijporl.2018.08.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 08/30/2018] [Accepted: 08/30/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Similar to other sub-Saharan countries, Ethiopia suffers from a severe shortage of adequately trained health professionals. Academic partnerships can support sustainable training programs and build capacity for low-resource settings. 3D modeling and simulation-based training provide necessary tools, especially for rarely-encountered clinical situations, such as needle cricothyroidotomy. METHODS Departments of Anesthesiology, Otolaryngology, and Learning Health Sciences collaborated to develop a low-cost, high-fidelity simulator and Cricothryoidotomy Skills Maintenance Program (CSMP). Twelve anesthesia residents at St. Paul's Hospital Medical Millennium College in Addis Ababa, Ethiopia participated in CSMP. The program consisted of a didactic session with presentation and demonstration and an immersive CICO scenario. Program evaluation was performed using pre/post-training knowledge and 2 procedural performance assessments-the CSMP Global Rating Scale and the Checklist. With consent, performances were videotaped and rated independently by 3 University of Michigan faculty. RESULTS Improvements were identified in all areas, including residents' knowledge, measured by mean summed test scores (Mpre = 3.31,Mpost = 4.46,p = 0.003), time to perform cricothyroidotomy (Mpre = 96.64,Mpost = 72.82,p = 0.12), residents' performance quality, measured by overall mean Global ratings, (Mpre = 0.20; Mpost = 0.70) with improvements identified at the item-level, p = 0.001 with moderate-large effect sizes, and residents' ability to complete tasks, measured by mean Checklist ratings (Mpre = 0.51,Mpost = 0.90, with item-level improvements observed, p ≤ 0.01, with small-large effect sizes. Residents' self-reported confidence also improved (Mpre = 1.69, Mpost = 3.08,p = 0.001). CONCLUSION Our work shows that cricothyroidotomy skills taught to anesthesia residents at SPHMMC with a 3D printed laryngotracheal model improves knowledge, skills, and confidence. The creation of a low-cost, high-fidelity simulator and a CSMP has the potential to impact patient care and safety world-wide.
Collapse
Affiliation(s)
- Virginia T Gauger
- Department of Anesthesiology, Michigan Medicine, Ann Arbor, MI, 48109, USA.
| | - Deborah Rooney
- Department of Learning Health Sciences, Michigan Medicine, Ann Arbor, MI, 48109, USA
| | - Kevin J Kovatch
- Department of Otolaryngology Head & Neck Surgery, Michigan Medicine, Ann Arbor, MI, 48109, USA
| | - Lauren Richey
- Department of Anesthesiology, Michigan Medicine, Ann Arbor, MI, 48109, USA
| | | | | | - David A Zopf
- Department of Otolaryngology Head & Neck Surgery, Michigan Medicine, Ann Arbor, MI, 48109, USA
| |
Collapse
|
90
|
Wu AM, Wang K, Wang JS, Chen CH, Yang XD, Ni WF, Hu YZ. The addition of 3D printed models to enhance the teaching and learning of bone spatial anatomy and fractures for undergraduate students: a randomized controlled study. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:403. [PMID: 30498730 DOI: 10.21037/atm.2018.09.59] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background Whether or not the addition of 3D (three-dimension) printed models can enhance the teaching and learning environment for undergraduate students in regard to bone spatial anatomy is still unknown. In this study, we investigated the use of 3D printed models versus radiographic images as a technique for the education of medical students about bone spatial anatomy and fractures. Methods The computed tomography (CT) data from four patients, each with a different fracture type (one spinal fracture, one pelvic fracture, one upper limb fracture, and one lower limb fracture), were obtained, and 3D models of the fractures were printed. A total of 90 medical students were enrolled in the study and randomly divided into two groups as follows: a traditional radiographic image group (presented by PowerPoint) and a 3D printed model group (combined PowerPoint and 3D models). Each student answered 5 questions about one type of fracture and completed a visual analog scale of satisfaction (0-10 points). Results No significant differences were found in the upper limb or lower limb test scores between the 3D printed model group and the traditional radiographic image group; however, the scores on the pelvis and spine test for the traditional radiographic image group were significantly lower than the scores for the 3D printed model group (P=0.000). No significant differences were found in the test-taking times for the upper limb or lower limb (P=0.603 and P=0.746, respectively) between the two groups; however, the test-taking times for the pelvis and spine in the traditional radiographic image group were significantly longer than those of the 3D printed model group (P=0.000 and P=0.002, respectively). Conclusions The 3D printed model may improve medical students' understanding of bone spatial anatomy and fractures in some anatomically complex sites.
Collapse
Affiliation(s)
- Ai-Min Wu
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine Wenzhou Medical University, Wenzhou 325000, China
| | - Kai Wang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine Wenzhou Medical University, Wenzhou 325000, China
| | - Jian-Shun Wang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine Wenzhou Medical University, Wenzhou 325000, China
| | - Chun-Hui Chen
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine Wenzhou Medical University, Wenzhou 325000, China
| | - Xin-Dong Yang
- Department of Anatomy, Wenzhou Medical University, Wenzhou 325000, China
| | - Wen-Fei Ni
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine Wenzhou Medical University, Wenzhou 325000, China
| | - Yue-Zheng Hu
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
91
|
White SC, Sedler J, Jones TW, Seckeler M. Utility of three-dimensional models in resident education on simple and complex intracardiac congenital heart defects. CONGENIT HEART DIS 2018; 13:1045-1049. [PMID: 30230245 DOI: 10.1111/chd.12673] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/02/2018] [Accepted: 08/17/2018] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Applications of three-dimensional (3D) printed models in medicine include preprocedure planning, patient education, and clinical training. Reproducing complex anatomy as a 3D printed model can be useful for understanding congenital heart defects (CHD). We hypothesized that using 3D printed models during didactic sessions with resident physicians will improve trainees' understanding of CHD. DESIGN AND INTERVENTION We performed a prospective, randomized educational intervention for teaching pediatric and pediatric/emergency medicine residents about simple (ventricular septal defect [VSD]) and moderately complex (tetralogy of Fallot [ToF]) CHD. Residents were divided into two groups: intervention and control. Each group completed a subjective survey about their comfort with the anatomy, evaluation, and treatment of VSD and ToF and took an objective test on VSD and ToF. They separately received the same 20 min lecture, including projected two-dimensional digital images of VSD and ToF; the intervention group was given 3D printed models created using the same imaging data. After the lecture, the groups repeated the survey and test questions. RESULTS Twenty-six residents participated in the VSD session, 34 in the ToF. There were no differences in demographics between control and intervention groups. All residents had higher subjective comfort with VSD and ToF after the lectures. There was no difference in baseline test scores for VSD or ToF groups. The control group scored higher on the VSD postlecture test. The intervention group scored higher on the ToF postlecture test. CONCLUSION Incorporation of 3D printed models into lectures about CHD imparts a greater acute level of understanding, both subjective and objective, for pediatric and combined pediatric/emergency medicine residents. There does not seem to be an added benefit for understanding ventricular septal defects, but there is for tetralogy of Fallot, likely due to increased complexity of the lesion and difficulty visualizing spatial relationships in CHD with multiple components.
Collapse
Affiliation(s)
- Shelby C White
- Department of Pediatrics (Cardiology), University of Arizona, Tucson, Arizona
| | | | - Trahern W Jones
- Department of Pediatrics, University of Arizona, Tucson, Arizona
| | - Michael Seckeler
- Department of Pediatrics (Cardiology), University of Arizona, Tucson, Arizona
| |
Collapse
|
92
|
The clinical use of 3D printing in surgery. Updates Surg 2018; 70:381-388. [DOI: 10.1007/s13304-018-0586-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/16/2018] [Indexed: 01/17/2023]
|
93
|
Weinberg L, Pyo MH, Spanger M, Barnett SA. Personalised 3D-printed model of a chest-wall chondrosarcoma to enhance patient understanding of complex cardiothoracic surgery. BMJ Case Rep 2018; 2018:bcr-2018-224464. [PMID: 29804079 DOI: 10.1136/bcr-2018-224464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Laurence Weinberg
- Austin Hospital, Heidelberg, Victoria, Australia.,Department of Surgery, Austin Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Moon Hae Pyo
- Department of Anaesthesia, Austin Health, Heidelberg, Victoria, Australia
| | | | | |
Collapse
|
94
|
Lin QS, Lin YX, Wu XY, Yao PS, Chen P, Kang DZ. Utility of 3-Dimensional–Printed Models in Enhancing the Learning Curve of Surgery of Tuberculum Sellae Meningioma. World Neurosurg 2018; 113:e222-e231. [DOI: 10.1016/j.wneu.2018.01.215] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 11/24/2022]
|