51
|
Messner B, Bernhard D. Bicuspid aortic valve-associated aortopathy: Where do we stand? J Mol Cell Cardiol 2019; 133:76-85. [PMID: 31152748 DOI: 10.1016/j.yjmcc.2019.05.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 01/30/2023]
Abstract
Herein we summarize the current knowledge on the bicuspid aortic valve (BAV)-associated aortopathy regarding clinical presentation and disease sub-classification, genetic background, hemodynamics, histopathology, cells and signaling, animal models, and biomarkers. Despite enormous efforts in research in all of the above areas, important issues remain unknown: (i) what is the ontogenetic basis of BAV development? (ii) how can we explain the diversity of BAV and associated aortopathy phenotypes? (iii) what are the signaling processes in aortopathy pathogenesis and how can we interfere with these processes? Despite undoubtedly great progress that has been made in the understanding of BAV-associated aortopathy, so far researchers have put together a heap of Lego bricks, but at present it is unclear if the bricks are compatible, how they fit together, and which parts are missing to build the true model of the BAV aorta. A joint approach is needed to accelerate research progress.
Collapse
Affiliation(s)
- Barbara Messner
- Cardiac Surgery Research Laboratory, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - David Bernhard
- Center for Medical Research, Medical Faculty, Johannes Kepler University Linz, Linz, Austria.
| |
Collapse
|
52
|
Development of calcific aortic valve disease: Do we know enough for new clinical trials? J Mol Cell Cardiol 2019; 132:189-209. [PMID: 31136747 DOI: 10.1016/j.yjmcc.2019.05.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/11/2019] [Accepted: 05/19/2019] [Indexed: 12/19/2022]
Abstract
Calcific aortic valve disease (CAVD), previously thought to represent a passive degeneration of the valvular extracellular matrix (VECM), is now regarded as an intricate multistage disorder with sequential yet intertangled and interacting underlying processes. Endothelial dysfunction and injury, initiated by disturbed blood flow and metabolic disorders, lead to the deposition of low-density lipoprotein cholesterol in the VECM further provoking macrophage infiltration, oxidative stress, and release of pro-inflammatory cytokines. Such changes in the valvular homeostasis induce differentiation of normally quiescent valvular interstitial cells (VICs) into synthetically active myofibroblasts producing excessive quantities of the VECM and proteins responsible for its remodeling. As a result of constantly ongoing degradation and re-deposition, VECM becomes disorganised and rigid, additionally potentiating myofibroblastic differentiation of VICs and worsening adaptation of the valve to the blood flow. Moreover, disrupted and excessively vascularised VECM is susceptible to the dystrophic calcification caused by calcium and phosphate precipitating on damaged collagen fibers and concurrently accompanied by osteogenic differentiation of VICs. Being combined, passive calcification and biomineralisation synergistically induce ossification of the aortic valve ultimately resulting in its mechanical incompetence requiring surgical replacement. Unfortunately, multiple attempts have failed to find an efficient conservative treatment of CAVD; however, therapeutic regimens and clinical settings have also been far from the optimal. In this review, we focused on interactions and transitions between aforementioned mechanisms demarcating ascending stages of CAVD, suggesting a predisposing condition (bicuspid aortic valve) and drug combination (lipid-lowering drugs combined with angiotensin II antagonists and cytokine inhibitors) for the further testing in both preclinical and clinical trials.
Collapse
|
53
|
Balistreri CR, Forte M, Greco E, Paneni F, Cavarretta E, Frati G, Sciarretta S. An overview of the molecular mechanisms underlying development and progression of bicuspid aortic valve disease. J Mol Cell Cardiol 2019; 132:146-153. [PMID: 31103478 DOI: 10.1016/j.yjmcc.2019.05.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 05/14/2019] [Indexed: 12/31/2022]
Abstract
Bicuspid aortic valve (BAV) is a common congenital heart malformation frequently associated with the development of aortic valve diseases and severe aortopathy, such as aortic dilatation, aneurysm and dissection. To date, different genetic loci have been identified in syndromic and non- syndromic forms of BAV. Among these, genes involved in the regulation of extracellular matrix remodelling, epithelial to mesenchymal transition and nitric oxide metabolism appear to be the main contributors to BAV pathogenesis. However, no- single gene model explains BAV inheritance, suggesting that more factors are simultaneously involved. In this regard, characteristic epigenetic and immunological profiles have been documented to contradistinguish BAV individuals. In this review, we provide a comprehensive overview addressing molecular mechanisms involved in BAV development and progression.
Collapse
Affiliation(s)
- Carmela Rita Balistreri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy.
| | | | - Ernesto Greco
- Department of Cardiovascular, Respiratory, Nephrological, Anesthesiological, and Geriatric Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zürich, Switzerland; University Heart Center, Cardiology, University Hospital Zurich, Switzerland
| | - Elena Cavarretta
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy; Mediterranea Cardiocentro, Naples, Italy
| | - Giacomo Frati
- IRCCS Neuromed, Pozzilli, IS, Italy; Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Sebastiano Sciarretta
- IRCCS Neuromed, Pozzilli, IS, Italy; Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| |
Collapse
|
54
|
Tobin SW, Alibhai FJ, Lee MM, Yeganeh A, Wu J, Li SH, Guo J, Tsang K, Tumiati L, Rocha R, Butany J, Yau TM, Ouzounian M, David TE, Weisel RD, Li RK. Novel mediators of aneurysm progression in bicuspid aortic valve disease. J Mol Cell Cardiol 2019; 132:71-83. [PMID: 31047984 DOI: 10.1016/j.yjmcc.2019.04.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/06/2019] [Accepted: 04/20/2019] [Indexed: 12/28/2022]
Abstract
Bicuspid aortic valve (BAV) disease is a congenital abnormality that is associated with ascending aortic aneurysm yet many of the molecular mechanisms remain unknown. To identify novel molecular mechanisms of aneurysm formation we completed microarray analysis of the proximal (severely dilated) and distal (less dilated) regions of the ascending aorta from five patients with BAV. We identified 180 differentially expressed genes, 40 of which were validated by RT-qPCR. Most genes had roles in inflammation and endothelial cell function including cytokines and growth factors, cell surface receptors and the Activator Protein 1 (AP-1) transcription factor family (FOS, FOSB and JUN) which was chosen for further study. AP-1 was differentially expressed within paired BAV aneurysmal samples (n = 8) but not Marfan patients (n = 5). FOS protein was significantly enriched in BAV aortas compared to normal aortas but unexpectedly, ERK1/2 activity, an upstream regulator of FOS was reduced. ERK1/2 activity was restored when BAV smooth muscle cells were cultured in vitro. An mRNA-miRNA network within paired patient samples identified AP-1 as a central hub of miRNA regulation. FOS knockdown in BAV SMCs increased expression of miR-27a, a stretch responsive miRNA. AP-1 and miR-27a were also dysregulated in a mouse model of aortic constriction. In summary, this study identified a central role for AP-1 signaling in BAV aortic dilatation by using paired mRNA-miRNA patient sample. Upstream analysis of AP-1 regulation showed that the ERK1/2 signaling pathway is dysregulated and thus represents a novel chain of mediators of aortic dilatation in BAV which should be considered in future studies.
Collapse
Affiliation(s)
- Stephanie W Tobin
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute and Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| | - Faisal J Alibhai
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute and Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| | - Myunghyun M Lee
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute and Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada; Department of Surgery, Division of Cardiac Surgery, University of Toronto, Toronto, ON, Canada
| | - Azadeh Yeganeh
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute and Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| | - Jie Wu
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute and Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada; Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Shu-Hong Li
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute and Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| | - Jian Guo
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute and Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| | - Katherine Tsang
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute and Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada; Department of Surgery, Division of Cardiac Surgery, University of Toronto, Toronto, ON, Canada
| | - Laura Tumiati
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute and Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada; Department of Surgery, Division of Cardiac Surgery, University of Toronto, Toronto, ON, Canada
| | - Rodolfo Rocha
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute and Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada; Department of Surgery, Division of Cardiac Surgery, University of Toronto, Toronto, ON, Canada
| | - Jagdish Butany
- Department of Pathology, University Health Network, Toronto, ON, Canada
| | - Terrence M Yau
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute and Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada; Department of Surgery, Division of Cardiac Surgery, University of Toronto, Toronto, ON, Canada
| | - Maral Ouzounian
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute and Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada; Department of Surgery, Division of Cardiac Surgery, University of Toronto, Toronto, ON, Canada
| | - Tirone E David
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute and Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada; Department of Surgery, Division of Cardiac Surgery, University of Toronto, Toronto, ON, Canada
| | - Richard D Weisel
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute and Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada; Department of Surgery, Division of Cardiac Surgery, University of Toronto, Toronto, ON, Canada
| | - Ren-Ke Li
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute and Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada; Department of Surgery, Division of Cardiac Surgery, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
55
|
Aquila I, Frati G, Sciarretta S, Dellegrottaglie S, Torella D, Torella M. New imaging techniques project the cellular and molecular alterations underlying bicuspid aortic valve development. J Mol Cell Cardiol 2019; 129:197-207. [PMID: 30826295 DOI: 10.1016/j.yjmcc.2019.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 12/29/2022]
Abstract
Bicuspid aortic valve (BAV) disease is the most common congenital cardiac malformation associated with an increased lifetime risk and a high rate of surgically-relevant valve deterioration and aortic dilatation. Genomic data revealed that different genes are associated with BAV. A dominant genetic factor for the recent past was the basis to the recommendation for a more extensive aortic intervention. However very recent evidence that hemodynamic stressors and alterations of wall shear stress play an important role independent from the genetic trait led to more conservative treatment recommendations. Therefore, there is a current need to improve the ability to risk stratify BAV patients in order to obtain an early detection of valvulopathy and aortopathy while also to predict valve dysfunction and/or aortic disease development. Imaging studies based on new cutting-edge technologies, such us 4-dimensional (4D) flow magnetic resonance imaging (MRI), two-dimensional (2D) or three-dimensional (3D) speckle-tracking imaging (STI) and computation fluid dynamics, combined with studies demonstrating new gene mutations, specific signal pathways alterations, hemodynamic influences, circulating biomarkers modifications, endothelial progenitor cell impairment and immune/inflammatory response, all detected BAV valvulopathy progression and aortic wall abnormality. Overall, the main purpose of this review article is to merge the evidences of imaging and basic science studies in a coherent hypothesis that underlies and thus projects the development of both BAV during embryogenesis and BAV-associated aortopathy and its complications in the adult life, with the final goal to identifying aneurysm formation/rupture susceptibility to improve diagnosis and management of patients with BAV-related aortopathy.
Collapse
Affiliation(s)
- Iolanda Aquila
- Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro 88100, Italy
| | - Giacomo Frati
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy; IRCCS NEUROMED, Pozzilli, IS, Italy.
| | - Sebastiano Sciarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy; IRCCS NEUROMED, Pozzilli, IS, Italy
| | - Santo Dellegrottaglie
- Division of Cardiology, Ospedale Accreditato Villa dei Fiori, Acerra, Naples 80011, Italy; The Zena and Michael A. Wiener Cardiovascular Institute, Marie-Josee and Henry R. Kravis Center for Cardiovascular Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daniele Torella
- Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro 88100, Italy.
| | - Michele Torella
- Department of Cardiothoracic Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| |
Collapse
|
56
|
Helle E, Córdova-Palomera A, Ojala T, Saha P, Potiny P, Gustafsson S, Ingelsson E, Bamshad M, Nickerson D, Chong JX, Ashley E, Priest JR. Loss of function, missense, and intronic variants in NOTCH1 confer different risks for left ventricular outflow tract obstructive heart defects in two European cohorts. Genet Epidemiol 2019; 43:215-226. [PMID: 30511478 PMCID: PMC6375786 DOI: 10.1002/gepi.22176] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/03/2018] [Accepted: 10/17/2018] [Indexed: 01/08/2023]
Abstract
Loss of function variants in NOTCH1 cause left ventricular outflow tract obstructive defects (LVOTO). However, the risk conferred by rare and noncoding variants in NOTCH1 for LVOTO remains largely uncharacterized. In a cohort of 49 families affected by hypoplastic left heart syndrome, a severe form of LVOTO, we discovered predicted loss of function NOTCH1 variants in 6% of individuals. Rare or low-frequency missense variants were found in 16% of families. To make a quantitative estimate of the genetic risk posed by variants in NOTCH1 for LVOTO, we studied associations of 400 coding and noncoding variants in NOTCH1 in 1,085 cases and 332,788 controls from the UK Biobank. Two rare intronic variants in strong linkage disequilibrium displayed significant association with risk for LVOTO amongst European-ancestry individuals. This result was replicated in an independent analysis of 210 cases and 68,762 controls of non-European and mixed ancestry. In conclusion, carrying rare predicted loss of function variants in NOTCH1 confer significant risk for LVOTO. In addition, the two intronic variants seem to be associated with an increased risk for these defects. Our approach demonstrates the utility of population-based data sets in quantifying the specific risk of individual variants for disease-related phenotypes.
Collapse
Affiliation(s)
- Emmi Helle
- Pediatric Research Center, Children's Hospital, University of Helsinki, Helsinki, Finland
- Division of Cardiovascular Medicine, Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA
| | - Aldo Córdova-Palomera
- Department of Pediatrics, Division of Pediatric Cardiology, Stanford University School of Medicine, Stanford, CA
| | - Tiina Ojala
- Pediatric Research Center, Children's Hospital, University of Helsinki, Helsinki, Finland
| | - Priyanka Saha
- Department of Pediatrics, Division of Pediatric Cardiology, Stanford University School of Medicine, Stanford, CA
| | - Praneetha Potiny
- Department of Pediatrics, Division of Pediatric Cardiology, Stanford University School of Medicine, Stanford, CA
| | - Stefan Gustafsson
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Erik Ingelsson
- Division of Cardiovascular Medicine, Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Michael Bamshad
- Department of Pediatrics, University of Washington, Seattle, WA
- Department of Genome Sciences, University of Washington, Seattle, WA
- Division of Genetic Medicine, Seattle Children's Hospital, Seattle, Washington
| | - Deborah Nickerson
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - Jessica X Chong
- Department of Pediatrics, University of Washington, Seattle, WA
| | - Euan Ashley
- Division of Cardiovascular Medicine, Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA
| | - James R Priest
- Division of Cardiovascular Medicine, Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA
- Department of Pediatrics, Division of Pediatric Cardiology, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
57
|
Forte A, Balistreri CR, De Feo M, Della Corte A, Hellstrand P, Persson L, Nilsson BO. Polyamines and microbiota in bicuspid and tricuspid aortic valve aortopathy. J Mol Cell Cardiol 2019; 129:179-187. [PMID: 30825483 DOI: 10.1016/j.yjmcc.2019.02.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 02/25/2019] [Indexed: 02/07/2023]
Abstract
Polyamines are small aliphatic cationic molecules synthesized via a highly regulated pathway and involved in general molecular and cellular phenomena. Both mammalian cells and microorganisms synthesize polyamines, and both sources may contribute to the presence of polyamines in the circulation. The dominant location for microorganisms within the body is the gut. Accordingly, the gut microbiota probably synthesizes most of the polyamines in the circulation in addition to those produced by the mammalian host cells. Polyamines are mandatory for cellular growth and proliferation. Established evidence suggests that the polyamine spermidine prolongs lifespan and improves cardiovascular health in animal models and humans through both local mechanisms, involving improved cardiomyocyte function, and systemic mechanisms, including increased NO bioavailability and reduced systemic inflammation. Higher levels of polyamines have been detected in non-dilated aorta of patients affected by bicuspid aortic valve congenital malformation, an aortopathy associated with an increased risk for thoracic ascending aorta aneurysm. In this review, we discuss metabolism of polyamines and their potential effects on vascular smooth muscle and endothelial cell function in vascular pathology of the thoracic ascending aorta associated with bicuspid or tricuspid aortic valve.
Collapse
Affiliation(s)
- Amalia Forte
- Department of Translational Medical Sciences, Università degli Studi della Campania "L. Vanvitelli", Naples, Italy
| | - Carmela Rita Balistreri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Marisa De Feo
- Department of Translational Medical Sciences, Università degli Studi della Campania "L. Vanvitelli", Naples, Italy
| | - Alessandro Della Corte
- Department of Translational Medical Sciences, Università degli Studi della Campania "L. Vanvitelli", Naples, Italy
| | - Per Hellstrand
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Lo Persson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Bengt-Olof Nilsson
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
| |
Collapse
|
58
|
Naito S, Petersen J, Reichenspurner H, Girdauskas E. The impact of coronary anomalies on the outcome in aortic valve surgery: comparison of bicuspid aortic valve versus tricuspid aortic valve morphotype. Interact Cardiovasc Thorac Surg 2019; 26:617-622. [PMID: 29244161 DOI: 10.1093/icvts/ivx396] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/18/2017] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES The association of anomalous anatomy of coronary arteries and bicuspid aortic valve (BAV) has been sporadically reported. Our aim was to evaluate the prevalence of coronary anomalies between BAV and tricuspid aortic valve (TAV) and to analyse their impact on major adverse cardiac events during and after aortic valve surgery. METHODS A total of 1099 consecutive patients who received preoperative coronary evaluation and elective aortic valve replacement/repair between January 2013 and July 2016 at our institution were involved. Based on surgical inspection at the open-heart surgery, a total of 345 (32%) patients were diagnosed with BAV, whereas the remaining 754 (68%) patients had TAV. Coronary anatomy was evaluated by preoperative coronary angiography (n = 1084) or multislice computed tomography (n = 15). The primary end-point was the prevalence of coronary anomalies in BAV versus TAV cohort. Secondary end-points included postoperative cardiac ischaemia markers, postoperative coronary artery imaging or interventions and hospital mortality. RESULTS A total of 46 (4%) coronary anomalies were detected and were significantly more frequent in the BAV group (7% vs 3%, P = 0.001). Postoperative markers of myocardial injury (creatine kinase/creatine kinase-MB and troponin) were increased and the need for postoperative coronary angiography/percutaneous coronary intervention was significantly higher in patients with coronary anomalies (12% vs 1%, P < 0.001). CONCLUSIONS Our study revealed significantly increased prevalence of coronary anomalies in BAV patients when compared with their tricuspid counterparts. Patients with diagnosed coronary anomalies had more postoperative ischaemic cardiac events that resulted in increased morbidity of this cohort.
Collapse
Affiliation(s)
- Shiho Naito
- Department of Cardiovascular Surgery, University Heart Center Hamburg, Hamburg, Germany
| | - Johannes Petersen
- Department of Cardiovascular Surgery, University Heart Center Hamburg, Hamburg, Germany
| | | | - Evaldas Girdauskas
- Department of Cardiovascular Surgery, University Heart Center Hamburg, Hamburg, Germany
| |
Collapse
|
59
|
Rajaei S, Fatahi Y, Dabbagh A. Meeting Between Rumi and Shams in Notch Signaling; Implications for Pain Management: A Narrative Review. Anesth Pain Med 2019; 9:e85279. [PMID: 30881911 PMCID: PMC6412915 DOI: 10.5812/aapm.85279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/28/2018] [Indexed: 01/03/2023] Open
Abstract
The meeting between Rumi and Shams, in the 13th century, was a turning point in the life of Rumi leading to a revolutionary effect in his thoughts, ideas, and poems. This was an ever-inspiring meeting with many results throughout the centuries. This meeting has created some footprints in cellular and molecular medicine: The discovery of two distinct genes in Drosophila, i.e. Rumi and Shams and their role in controlling Notch signaling, which has a critical role in cell biology. This nomination and the interactions between the two genes has led us to a number of novel studies during the last years. This article reviews the interactions between Rumi and Shams and their effects on Notch signaling in order to find potential novel drugs for pain control through drug development studies in the future.
Collapse
Affiliation(s)
- Samira Rajaei
- Immunology Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Dabbagh
- Cardiac Anesthesiology Department, Anesthesiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Cardiac Anesthesiology Department, Anesthesiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
60
|
Gould RA, Aziz H, Woods CE, Seman-Senderos MA, Sparks E, Preuss C, Wünnemann F, Bedja D, Moats CR, McClymont SA, Rose R, Sobreira N, Ling H, MacCarrick G, Kumar AA, Luyckx I, Cannaerts E, Verstraeten A, Björk HM, Lehsau AC, Jaskula-Ranga V, Lauridsen H, Shah AA, Bennett CL, Ellinor PT, Lin H, Isselbacher EM, Lino Cardenas CL, Butcher JT, Hughes GC, Lindsay ME, Mertens L, Franco-Cereceda A, Verhagen JMA, Wessels M, Mohamed SA, Eriksson P, Mital S, Van Laer L, Loeys BL, Andelfinger G, McCallion AS, Dietz HC. ROBO4 variants predispose individuals to bicuspid aortic valve and thoracic aortic aneurysm. Nat Genet 2019; 51:42-50. [PMID: 30455415 PMCID: PMC6309588 DOI: 10.1038/s41588-018-0265-y] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/26/2018] [Indexed: 12/30/2022]
Abstract
Bicuspid aortic valve (BAV) is a common congenital heart defect (population incidence, 1-2%)1-3 that frequently presents with ascending aortic aneurysm (AscAA)4. BAV/AscAA shows autosomal dominant inheritance with incomplete penetrance and male predominance. Causative gene mutations (for example, NOTCH1, SMAD6) are known for ≤1% of nonsyndromic BAV cases with and without AscAA5-8, impeding mechanistic insight and development of therapeutic strategies. Here, we report the identification of variants in ROBO4 (which encodes a factor known to contribute to endothelial performance) that segregate with disease in two families. Targeted sequencing of ROBO4 showed enrichment for rare variants in BAV/AscAA probands compared with controls. Targeted silencing of ROBO4 or mutant ROBO4 expression in endothelial cell lines results in impaired barrier function and a synthetic repertoire suggestive of endothelial-to-mesenchymal transition. This is consistent with BAV/AscAA-associated findings in patients and in animal models deficient for ROBO4. These data identify a novel endothelial etiology for this common human disease phenotype.
Collapse
Affiliation(s)
- Russell A Gould
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Baltimore, MD, USA
| | - Hamza Aziz
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Baltimore, MD, USA
| | - Courtney E Woods
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Elizabeth Sparks
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christoph Preuss
- Cardiovascular Genetics, Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Centre, Université de Montréal, Montreal, Quebec, Canada
- The Jackson Laboratory, Bar Harbor, ME, USA
| | - Florian Wünnemann
- Cardiovascular Genetics, Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Centre, Université de Montréal, Montreal, Quebec, Canada
| | - Djahida Bedja
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Heart and Vascular Institute, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cassandra R Moats
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Oregon National Primate Research Center, Portland, OR, USA
| | - Sarah A McClymont
- Center for Inherited Disease Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rebecca Rose
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nara Sobreira
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hua Ling
- Center for Inherited Disease Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gretchen MacCarrick
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ajay Anand Kumar
- Center for Medical Genetics, Faculty of Medicine and Health Sciences, Antwerp University Hospital and University of Antwerp, Antwerp, Belgium
| | - Ilse Luyckx
- Center for Medical Genetics, Faculty of Medicine and Health Sciences, Antwerp University Hospital and University of Antwerp, Antwerp, Belgium
| | - Elyssa Cannaerts
- Center for Medical Genetics, Faculty of Medicine and Health Sciences, Antwerp University Hospital and University of Antwerp, Antwerp, Belgium
| | - Aline Verstraeten
- Center for Medical Genetics, Faculty of Medicine and Health Sciences, Antwerp University Hospital and University of Antwerp, Antwerp, Belgium
| | - Hanna M Björk
- Center for Molecular Medicine, Department of Medicine Solna, University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - Ann-Cathrin Lehsau
- Department of Cardiac and Thoracic Vascular Surgery, University Hospital Lübeck, Lübeck, Germany
| | - Vinod Jaskula-Ranga
- Wilmer Eye Institute in the Department of Ophthalmology at the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Henrik Lauridsen
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | | | - Christopher L Bennett
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Baltimore, MD, USA
| | - Patrick T Ellinor
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Institute, Massachussets General Hospital, Charlestown, MA, USA
| | - Honghuang Lin
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Eric M Isselbacher
- Thoracic Aortic Center, Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christian Lacks Lino Cardenas
- Cardiovascular Research Center, Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jonathan T Butcher
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - G Chad Hughes
- Division of Cardiovascular and Thoracic Surgery, Duke University Medical Center, Durham, NC, USA
| | - Mark E Lindsay
- Thoracic Aortic Center and Cardiovascular Genetics Program, Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Luc Mertens
- Division of Cardiology, The Hospital for Sick Children, Labatt Family Heart Centre, Toronto, Ontario, Canada
| | - Anders Franco-Cereceda
- Department of Molecular Medicine and Surgery, University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - Judith M A Verhagen
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marja Wessels
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Salah A Mohamed
- Department of Cardiac and Thoracic Vascular Surgery, University Hospital Lübeck, Lübeck, Germany
| | - Per Eriksson
- Center for Molecular Medicine, Department of Medicine Solna, University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - Seema Mital
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Lut Van Laer
- Center for Medical Genetics, Faculty of Medicine and Health Sciences, Antwerp University Hospital and University of Antwerp, Antwerp, Belgium
| | - Bart L Loeys
- Center for Medical Genetics, Faculty of Medicine and Health Sciences, Antwerp University Hospital and University of Antwerp, Antwerp, Belgium
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Gregor Andelfinger
- The Jackson Laboratory, Bar Harbor, ME, USA
- Department of Pediatrics, Université de Montréal, Montreal, Quebec, Canada
| | - Andrew S McCallion
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Harry C Dietz
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Howard Hughes Medical Institute, Baltimore, MD, USA.
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Pediatrics, Division of Pediatric Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
61
|
Lee SP. Understanding the Natural History of Bicuspid Aortic Valve: Are We Close to Understanding It? J Cardiovasc Imaging 2019; 27:119-121. [PMID: 30993946 PMCID: PMC6470074 DOI: 10.4250/jcvi.2019.27.e21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 03/13/2019] [Indexed: 11/22/2022] Open
Affiliation(s)
- Seung-Pyo Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
62
|
Abstract
A bicuspid aortic valve is not only a common congenital heart defect but also an enigmatic condition that can cause a large spectrum of diseases, such as aortic valve stenosis and severe heart failure in newborns whereas aortic dissection in adults. On the contrary, a bicuspid aortic valve can also occur with normal function throughout life and never need treatment. Numerous genetic mechanisms are involved in the abnormal cellular functions that may cause abnormal development of the aortic valve during early foetal life. As several chromosomal disorders are also associated with a bicuspid valve, there does not appear to be an apparent common trigger to the abnormal development of the aortic valve. The clinical care of the bicuspid aortic valve patient has been changed by a significant body of evidence that has improved the understanding of the natural history of the disease, including when to best intervene with valve replacement and when to provide prophylactic aortic root surgery. Moreover, as bicuspid valve disease is also part of various syndromes, we can identify high-risk patients in whom a bicuspid valve is much more unfavourable than in the normal population. This review provides an overview of all aspects of the bicuspid aortic valve condition and gives an updated perspective on issues from pathophysiology to clinical care of bicuspid aortic valve disease and associated aortic disease in asymptomatic, symptomatic, and pregnant patients, as well as our viewpoint on population screening.
Collapse
|
63
|
Portelli SS, Robertson EN, Malecki C, Liddy KA, Hambly BD, Jeremy RW. Epigenetic influences on genetically triggered thoracic aortic aneurysm. Biophys Rev 2018; 10:1241-1256. [PMID: 30267337 PMCID: PMC6233334 DOI: 10.1007/s12551-018-0460-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 09/17/2018] [Indexed: 12/14/2022] Open
Abstract
Genetically triggered thoracic aortic aneurysms (TAAs) account for 30% of all TAAs and can result in early morbidity and mortality in affected individuals. Epigenetic factors are now recognised to influence the phenotype of many genetically triggered conditions and have become an area of interest because of the potential for therapeutic manipulation. Major epigenetic modulators include DNA methylation, histone modification and non-coding RNA. This review examines epigenetic modulators that have been significantly associated with genetically triggered TAAs and their potential utility for translation to clinical practice.
Collapse
Affiliation(s)
- Stefanie S Portelli
- Discipline of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Elizabeth N Robertson
- Discipline of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- Cardiology Department, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Cassandra Malecki
- Discipline of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Kiersten A Liddy
- Discipline of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Brett D Hambly
- Discipline of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Richmond W Jeremy
- Discipline of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- Cardiology Department, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| |
Collapse
|
64
|
Deregulation of Notch1 pathway and circulating endothelial progenitor cell (EPC) number in patients with bicuspid aortic valve with and without ascending aorta aneurysm. Sci Rep 2018; 8:13834. [PMID: 30218064 PMCID: PMC6138685 DOI: 10.1038/s41598-018-32170-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/30/2018] [Indexed: 12/29/2022] Open
Abstract
Bicuspid aortic valve (BAV) is frequently associated with the development of ascending aortic aneurysm, even if the underlying mechanisms remain to be clarified. Here, we investigated if a deregulation of Notch1 signaling pathway and endothelial progenitor cells (EPCs) number is associated with BAV disease and an early ascending aortic aneurysm (AAA) onset. For this purpose, 70 subjects with BAV (M/F 50/20; mean age: 58.8 ± 14.8 years) and 70 subjects with tricuspid aortic valve (TAV) (M/F 35/35; mean age: 69.1 ± 12.8 years) and AAA complicated or not, were included. Interestingly, patients with AAA showed a significant increase in circulating Notch1 levels and EPC number than subjects without AAA. However, circulating Notch1 levels and EPC number were significantly lower in BAV subjects than TAV patients either in the presence or absence of AAA. Finally, Notch pathway was activated to a greater extent in aortic aneurysmatic portions with respect to healthy aortic fragments in both BAV and TAV patients. However, the expression of genes encoding components and ligands of Notch pathway in aortic tissues was significantly lower in BAV than TAV subjects. Our study demonstrates that BAV subjects are characterized by a significant decrease in both tissue and circulating levels of Notch pathway, and in blood EPC number than TAV patients, either in presence or absence of AAA disease.
Collapse
|
65
|
Kostina A, Bjork H, Ignatieva E, Irtyuga O, Uspensky V, Semenova D, Maleki S, Tomilin A, Moiseeva O, Franco-Cereceda A, Gordeev M, Faggian G, Kostareva A, Eriksson P, Malashicheva A. Notch, BMP and WNT/β-catenin network is impaired in endothelial cells of the patients with thoracic aortic aneurysm. ATHEROSCLEROSIS SUPP 2018; 35:e6-e13. [DOI: 10.1016/j.atherosclerosissup.2018.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
66
|
Jiao J, Tian W, Qiu P, Norton EL, Wang MM, Chen YE, Yang B. Induced pluripotent stem cells with NOTCH1 gene mutation show impaired differentiation into smooth muscle and endothelial cells: Implications for bicuspid aortic valve-related aortopathy. J Thorac Cardiovasc Surg 2018; 156:515-522.e1. [PMID: 29653750 PMCID: PMC9809054 DOI: 10.1016/j.jtcvs.2018.02.087] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 01/26/2018] [Accepted: 02/02/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The NOTCH1 gene mutation has been identified in bicuspid aortic valve patients. We developed an in vitro model with human induced pluripotent stem cells (iPSCs) to evaluate the role of NOTCH1 in smooth muscle and endothelial cell (EC) differentiation. METHODS The iPSCs were derived from a patient with a normal tricuspid aortic valve and aorta. The NOTCH1 gene was targeted in iPSCs with the Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9 nuclease (Cas9) system. The NOTCH1-/- (NOTCH1 homozygous knockout) and isogenic control iPSCs (wild type) were differentiated into neural crest stem cells (NCSCs) and into cardiovascular progenitor cells (CVPCs). The NCSCs were differentiated into smooth muscle cells (SMCs). The CVPCs were differentiated into ECs. The differentiations of SMCs and ECs were compared between NOTCH1-/- and wild type cells. RESULTS The expression of NCSC markers (SRY-related HMG-box 10 and transcription factor AP-2 alpha) was significantly lower in NOTCH1-/-NCSCs than in wild type NCSCs. The SMCs derived from NOTCH1-/- NCSCs showed immature morphology with smaller size and decreased expression of all SMC-specific contractile proteins. In NOTCH1-/-CVPCs, the expression of ISL1, NKX2.5, and MYOCD was significantly lower than that in isogenic control CVPCs, indicating impaired differentiation from iPSCs to CVPCs. The NOTCH1-/-ECs derived from CVPCs showed significantly lower expression of cluster of differentiation 105 and cluster of differentiation 31 mRNA and protein, indicating a defective differentiation process. CONCLUSIONS NOTCH1 is critical in SMC and EC differentiation of iPSCs through NCSCs and CVPCs, respectively. NOTCH1 gene mutations might potentially contribute to the development of thoracic aortic aneurysms by affecting SMC differentiation in some patients with bicuspid aortic valve.
Collapse
Affiliation(s)
- Jiao Jiao
- Department of Cardiac Surgery, Michigan Medicine, Ann Arbor, Mich
| | - Weihua Tian
- Department of Cardiac Surgery, Michigan Medicine, Ann Arbor, Mich
| | - Ping Qiu
- Department of Cardiac Surgery, Michigan Medicine, Ann Arbor, Mich
| | | | - Michael M. Wang
- Department of Neurology, Michigan Medicine, Ann Arbor, Mich;,VA Ann Arbor Healthcare System, Ann Arbor, Mich
| | - Y. Eugene Chen
- Department of Cardiac Surgery, Michigan Medicine, Ann Arbor, Mich
| | - Bo Yang
- Department of Cardiac Surgery, Michigan Medicine, Ann Arbor, Mich
| |
Collapse
|
67
|
Aburjania Z, Jang S, Whitt J, Jaskula-Stzul R, Chen H, Rose JB. The Role of Notch3 in Cancer. Oncologist 2018; 23:900-911. [PMID: 29622701 PMCID: PMC6156186 DOI: 10.1634/theoncologist.2017-0677] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/19/2018] [Indexed: 12/15/2022] Open
Abstract
The Notch family is a highly conserved gene group that regulates cell-cell interaction, embryogenesis, and tissue commitment. This review article focuses on the third Notch family subtype, Notch3. Regulation via Notch3 signaling was first implicated in vasculogenesis. However, more recent findings suggest that Notch3 signaling may play an important role in oncogenesis, tumor maintenance, and resistance to chemotherapy. Its role is mainly oncogenic, although in some cancers it appears to be tumor suppressive. Despite the wealth of published literature, it remains relatively underexplored and requires further research to shed more light on its role in cancer development, determine its tissue-specific function, and elaborate novel treatment strategies. Herein we summarize the role of Notch3 in cancer, possible mechanisms of its action, and current cancer treatment strategies targeting Notch3 signaling. IMPLICATIONS FOR PRACTICE The Notch family is a highly conserved gene group that regulates cell-cell interaction, embryogenesis, and tissue commitment. This review summarizes the existing data on the third subtype of the Notch family, Notch3. The role of Notch3 in different types of cancers is discussed, as well as implications of its modification and new strategies to affect Notch3 signaling activity.
Collapse
Affiliation(s)
- Zviadi Aburjania
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Samuel Jang
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jason Whitt
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Renata Jaskula-Stzul
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Herbert Chen
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - J Bart Rose
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
68
|
MiR-145 expression and rare NOTCH1 variants in bicuspid aortic valve-associated aortopathy. PLoS One 2018; 13:e0200205. [PMID: 30059548 PMCID: PMC6066209 DOI: 10.1371/journal.pone.0200205] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 06/21/2018] [Indexed: 01/21/2023] Open
Abstract
MicroRNAs (miRNAs) may serve as elegant tool to improve risk stratification in bicuspid aortic valve (BAV)-associated aortopathy. However, the exact pathogenetic pathway by which miRNAs impact aortopathy progression is unknown. Herewith, we aimed to analyze the association between circulating miRNAs and rare variants of aortopathy-related genes. 63 BAV patients (mean age 47.3±11.3 years, 92% male) with a root dilatation phenotype, who underwent aortic valve+/-proximal aortic surgery at a single institution (mean post-AVR follow-up 10.3±6.9 years) were analyzed. A custom-made HaloPlex HS panel including 20 aortopathy-related genes was used for the genetic testing. miRNAs were extracted from whole blood and miRNA analysis was performed using miRNA-specific assay. Study endpoint was the association between circulating miRNAs and rare genetic variants in the aortopathy gene panel. The study cohort was divided into a subgroup with rare variants vs. a subgroup without rare variants based on the presence of rare variants in the respective genes (i.e., at least one variant present). The genetic analysis yielded n = 6 potentially and likely pathogenic rare variants within the NOTCH1 gene as being the most common finding. Univariate analysis between blood miRNAs and NOTCH1 variants revealed a significantly lower expression of miR-145 in the subgroup of patients with NOTCH1 variants vs. those without NOTCH1 variants (i.e., delta Ct 4.95±0.74 vs. delta Ct 5.57±0.78, p = 0.04). Our preliminary data demonstrate a significant association between blood miR-145 expression and the presence of rare NOTCH1 variants. This association may be indicative of a specific pathogenetic pathway in the development of genetically-triggered bicuspid aortopathy.
Collapse
|
69
|
Giaimo BD, Borggrefe T. Introduction to Molecular Mechanisms in Notch Signal Transduction and Disease Pathogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1066:3-30. [DOI: 10.1007/978-3-319-89512-3_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
70
|
Defective NOTCH signaling drives increased vascular smooth muscle cell apoptosis and contractile differentiation in bicuspid aortic valve aortopathy: A review of the evidence and future directions. Trends Cardiovasc Med 2018; 29:61-68. [PMID: 30621852 DOI: 10.1016/j.tcm.2018.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/01/2018] [Accepted: 06/08/2018] [Indexed: 12/23/2022]
Abstract
Bicuspid aortic valve (BAV) disease remains the most common congenital cardiac disease and is associated with an increased risk of potentially fatal aortopathy including aortic aneurysm and dissection. Mutations in the NOTCH1 gene are one of only a few genetic anomalies identified in BAV disease; however evidence for defective NOTCH signaling, and its involvement in the characteristic histological changes of VSMC apoptosis and differentiation in ascending aortae of BAV patients is lacking. This review scrutinizes the evidence for the interactions of NOTCH signaling, cellular differentiation and apoptosis in the context of aortic VSMCs and provides focus for future research efforts in the diagnosis of BAV aortopathy and prevention of catastrophic complications through NOTCH signaling manipulation.
Collapse
|
71
|
Meester J, Verstraeten A, Alaerts M, Schepers D, Van Laer L, Loeys B. Overlapping but distinct roles for NOTCH receptors in human cardiovascular disease. Clin Genet 2018; 95:85-94. [DOI: 10.1111/cge.13382] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 02/06/2023]
Affiliation(s)
- J.A.N. Meester
- Centre of Medical GeneticsUniversity of Antwerp and Antwerp University Hospital Antwerp Belgium
| | - A. Verstraeten
- Centre of Medical GeneticsUniversity of Antwerp and Antwerp University Hospital Antwerp Belgium
| | - M. Alaerts
- Centre of Medical GeneticsUniversity of Antwerp and Antwerp University Hospital Antwerp Belgium
| | - D. Schepers
- Centre of Medical GeneticsUniversity of Antwerp and Antwerp University Hospital Antwerp Belgium
| | - L. Van Laer
- Centre of Medical GeneticsUniversity of Antwerp and Antwerp University Hospital Antwerp Belgium
| | - B.L. Loeys
- Centre of Medical GeneticsUniversity of Antwerp and Antwerp University Hospital Antwerp Belgium
- Department of GeneticsRadboud University Medical Center Nijmegen The Netherlands
| |
Collapse
|
72
|
Abstract
PURPOSE OF REVIEW The incidence of aortic dilation and acute complications (rupture and dissection) is higher in patients with a bicuspid aortic valve (BAV), the most frequent congenital heart defect.The present review focuses on the current knowledge in the genetics of BAV, emphasizing the clinical implications for early detection and personalized care. RECENT FINDINGS BAV is a highly heritable trait, but the genetic causes remain largely elusive. NOTCH1 is the only proven candidate gene to be associated with both familial and sporadic BAV. Other genes have been reported to be associated with BAV, but some of these associations may result from coexisting disease.The application of modern high-throughput technologies (next generation sequencing, genome-wide copy number and genome-wide methylation arrays) have begun to dissect the genetic heterogeneity underlying BAV as well as the diverse molecular pathways involved in the progression of BAV aortopathy. SUMMARY The clinical variability seen in BAV aortopathy, in terms of phenotype and natural/clinical history, suggests complex interactions between primary genetic defects, other modifier genes, epigenetic factors (DNA methylation or histone modifications, microRNA) and environmental factors (disturbed flow). Integrated, more comprehensive studies are needed for elucidating these connections to develop more individualized and accurate risk assessment methods.
Collapse
|
73
|
Zhao J, Mommersteeg MTM. Slit-Robo signalling in heart development. Cardiovasc Res 2018; 114:794-804. [PMID: 29538649 PMCID: PMC5909645 DOI: 10.1093/cvr/cvy061] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 01/16/2018] [Accepted: 03/09/2018] [Indexed: 02/06/2023] Open
Abstract
The Slit ligands and their Robo receptors are well-known for their roles during axon guidance in the central nervous system but are still relatively unknown in the cardiac field. However, data from different animal models suggest a broad involvement of the pathway in many aspects of heart development, from cardiac cell migration and alignment, lumen formation, chamber formation, to the formation of the ventricular septum, semilunar and atrioventricular valves, caval veins, and pericardium. Absence of one or more of the genes in the pathway results in defects ranging from bicuspid aortic valves to ventricular septal defects and abnormal venous connections to the heart. Congenital heart defects are the most common congenital malformations found in life new-born babies and progress in methods for large scale human genetic testing has significantly enhanced the identification of new causative genes involved in human congenital heart disease. Recently, loss of function variants in ROBO1 have also been linked to ventricular septal defects and tetralogy of Fallot in patients. Here, we will give an overview of the role of the Slit-Robo signalling pathway in Drosophila, zebrafish, and mouse heart development. The extent of these data warrant further attention on the SLIT-ROBO signalling pathway as a candidate for an array of human congenital heart defects.
Collapse
Affiliation(s)
- Juanjuan Zhao
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Burdon Sanderson Cardiac Science Centre, University of Oxford, South Parks Road, Oxford OX1 3PT, UK
| | - Mathilda T M Mommersteeg
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Burdon Sanderson Cardiac Science Centre, University of Oxford, South Parks Road, Oxford OX1 3PT, UK
| |
Collapse
|
74
|
Sophocleous F, Milano EG, Pontecorboli G, Chivasso P, Caputo M, Rajakaruna C, Bucciarelli-Ducci C, Emanueli C, Biglino G. Enlightening the Association between Bicuspid Aortic Valve and Aortopathy. J Cardiovasc Dev Dis 2018; 5:E21. [PMID: 29671812 PMCID: PMC6023468 DOI: 10.3390/jcdd5020021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/16/2018] [Accepted: 04/16/2018] [Indexed: 12/11/2022] Open
Abstract
Bicuspid aortic valve (BAV) patients have an increased incidence of developing aortic dilation. Despite its importance, the pathogenesis of aortopathy in BAV is still largely undetermined. Nowadays, intense focus falls both on BAV morphology and progression of valvular dysfunction and on the development of aortic dilation. However, less is known about the relationship between aortic valve morphology and aortic dilation. A better understanding of the molecular pathways involved in the homeostasis of the aortic wall, including the extracellular matrix, the plasticity of the vascular smooth cells, TGFβ signaling, and epigenetic dysregulation, is key to enlighten the mechanisms underpinning BAV-aortopathy development and progression. To date, there are two main theories on this subject, i.e., the genetic and the hemodynamic theory, with an ongoing debate over the pathogenesis of BAV-aortopathy. Furthermore, the lack of early detection biomarkers leads to challenges in the management of patients affected by BAV-aortopathy. Here, we critically review the current knowledge on the driving mechanisms of BAV-aortopathy together with the current clinical management and lack of available biomarkers allowing for early detection and better treatment optimization.
Collapse
Affiliation(s)
- Froso Sophocleous
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol BS2 89HW, UK.
| | - Elena Giulia Milano
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol BS2 89HW, UK.
- Department of Medicine, Division of Cardiology, University of Verona, 37100 Verona, Italy.
| | - Giulia Pontecorboli
- Structural Interventional Cardiology Division, Department of Experimental and Clinical Medicine, University of Florence, 50100 Florence, Italy.
| | - Pierpaolo Chivasso
- Cardiac Surgery, University Hospitals Bristol, NHS Foundation Trust, Bristol BS2 8HW, UK.
| | - Massimo Caputo
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol BS2 89HW, UK.
- Cardiac Surgery, University Hospitals Bristol, NHS Foundation Trust, Bristol BS2 8HW, UK.
| | - Cha Rajakaruna
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol BS2 89HW, UK.
- Cardiac Surgery, University Hospitals Bristol, NHS Foundation Trust, Bristol BS2 8HW, UK.
| | - Chiara Bucciarelli-Ducci
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol BS2 89HW, UK.
- Cardiac Surgery, University Hospitals Bristol, NHS Foundation Trust, Bristol BS2 8HW, UK.
| | - Costanza Emanueli
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol BS2 89HW, UK.
- Cardiac Surgery, University Hospitals Bristol, NHS Foundation Trust, Bristol BS2 8HW, UK.
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK.
| | - Giovanni Biglino
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol BS2 89HW, UK.
- Cardiorespiratory Unit, Great Ormond Street Hospital for Children, NHS Foundation Trust, London WC1N 3JH, UK.
| |
Collapse
|
75
|
Brownstein AJ, Ziganshin BA, Elefteriades JA. Human aortic aneurysm genomic dictionary: is it possible? Indian J Thorac Cardiovasc Surg 2018; 35:57-66. [PMID: 33061067 DOI: 10.1007/s12055-018-0659-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/13/2018] [Accepted: 02/16/2018] [Indexed: 12/27/2022] Open
Abstract
Thoracic aortic aneurysm (TAA), a typically silent but frequently lethal disease, is strongly influenced by underlying genetics. Approximately 30 genes have been associated with syndromic and non-syndromic familial thoracic aortic aneurysm and dissection (TAAD) to date. An estimated 30% of patients with non-syndromic familial TAAD, which is typically inherited in an autosomal dominant manner, have a mutation in one of these genes. The underlying genetic mutation helps predict patients' clinical presentation, risk of aortic dissection at small aortic sizes (< 5.0 cm), and risk of other cardiovascular disease. As a result, a TAAD genomic dictionary based on these genes is necessary to provide optimal patient care, but is not on its own sufficient as this disease is typically inherited with reduced penetrance and has widely variable expressivity. Next-generation sequencing has been and will continue to be critical for identifying novel genes and variants associated with TAAD as well as genotype-phenotype correlations that will allow for management to be targeted to not only the underlying gene harboring the pathogenic variant but also the specific mutation identified. The aortic dictionary, to which a clinician can turn to obtain information on clinical consequences of a specific genetic variants, is not only possible, but has been substantially written already. As additional entries to the dictionary are made, truly personalized, genetically based, aneurysm care can be delivered.
Collapse
Affiliation(s)
- Adam Joseph Brownstein
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, 789 Howard Avenue, Clinic Building-CB317, New Haven, CT 06519 USA
| | - Bulat Ayratovich Ziganshin
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, 789 Howard Avenue, Clinic Building-CB317, New Haven, CT 06519 USA
| | - John Alex Elefteriades
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, 789 Howard Avenue, Clinic Building-CB317, New Haven, CT 06519 USA
| |
Collapse
|
76
|
A Typical Immune T/B Subset Profile Characterizes Bicuspid Aortic Valve: In an Old Status? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5879281. [PMID: 29854087 PMCID: PMC5944278 DOI: 10.1155/2018/5879281] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/11/2017] [Accepted: 02/05/2018] [Indexed: 12/26/2022]
Abstract
Bicuspid valve disease is associated with the development of thoracic aortic aneurysm. The molecular mechanisms underlying this association still need to be clarified. Here, we evaluated the circulating levels of T and B lymphocyte subsets associated with the development of vascular diseases in patients with bicuspid aortic valve or tricuspid aortic valve with and without thoracic aortic aneurysm. We unveiled that the circulating levels of the MAIT, CD4+IL−17A+, and NKT T cell subsets were significantly reduced in bicuspid valve disease cases, when compared to tricuspid aortic valve cases in either the presence or the absence of thoracic aortic aneurysm. Among patients with tricuspid aortic valve, these cells were higher in those also affected by thoracic aortic aneurysm. Similar data were obtained by examining CD19+ B cells, naïve B cells (IgD+CD27−), memory unswitched B cells (IgD+CD27+), memory switched B cells (IgD−CD27+), and double-negative B cells (DN) (IgD−CD27−). These cells resulted to be lower in subjects with bicuspid valve disease with respect to patients with tricuspid aortic valve. In whole, our data indicate that patients with bicuspid valve disease show a quantitative reduction of T and B lymphocyte cell subsets. Future studies are encouraged to understand the molecular mechanisms underlying this observation and its pathophysiological significance.
Collapse
|
77
|
Balsam LB. The genetics of bicuspid aortic valve disease: Shall we take it down a NOTCH? J Thorac Cardiovasc Surg 2018; 156:523-524. [PMID: 29572020 DOI: 10.1016/j.jtcvs.2018.02.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 02/23/2018] [Indexed: 10/17/2022]
Affiliation(s)
- Leora B Balsam
- Division of Cardiac Surgery, UMass Memorial Medical Center, Worcester, Mass.
| |
Collapse
|
78
|
Maredia AK, Greenway SC, Verma S, Fedak PWM. Bicuspid aortic valve-associated aortopathy: update on biomarkers. Curr Opin Cardiol 2018; 33:134-139. [PMID: 29095713 DOI: 10.1097/hco.0000000000000481] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE OF REVIEW Bicuspid aortic valve (BAV)-associated aortopathy is common and its progression for individual patients is difficult to predict. The present review aims to identify recent developments using biomarkers for the determination of risk and progression of disease in patients with BAV aortopathy. RECENT FINDINGS Novel rare genetic variants and epigenetic methylation signatures affecting non-cytosine phosphate guanine (non-CpG) and CpG sites, nicotinamide phosphoribosyltransferase and Sod expression may lead to improved prediction of the aortopathy phenotype. Circulating transforming growth factor β-1/endoglin and miRNA signatures are found to be indicative of aortic dilation. Aortic miRNA, sphingomyelin and oxidative stress levels are linked to aortopathy progression and aortic dilation. Further evidence is shown that the pattern of cusp fusion in BAV may influence the location and extent of aortopathy. SUMMARY The clinical phenotypic variability seen in BAV patients suggests complex interactions between genetic variants, epigenetic regulation modifications and the variable effect of valve-mediated hemodynamic flow disturbances on the aorta and its secreted markers. Emerging biomarkers may serve along with advanced noninvasive imaging modalities to precisely identify risk of aortic complications and identify those patients who are in need of surgical intervention.
Collapse
Affiliation(s)
- Ashna K Maredia
- Department of Pediatrics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta
| | - Steven C Greenway
- Department of Pediatrics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta
| | - Subodh Verma
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute of St. Michael's Hospital
- Departments of Surgery, Pharmacology and Toxicology, University of Toronto, Toronto, Ontario
| | - Paul W M Fedak
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
79
|
Tortora G, Wischmeijer A, Berretta P, Alfonsi J, Di Marco L, Barbieri A, Marconi C, Isidori F, Rossi C, Leone O, Di Bartolomeo R, Seri M, Pacini D. Search for genetic factors in bicuspid aortic valve disease: ACTA2 mutations do not play a major role. Interact Cardiovasc Thorac Surg 2018; 25:813-817. [PMID: 29049801 DOI: 10.1093/icvts/ivx242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 06/25/2017] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVES Mutations in ACTA2 have been reported as a cause of familiar thoracic aortic aneurysm (TAA) with associated bicuspid aortic valve (BAV) in some individuals. Our aim is to investigate the role of ACTA2 mutations in BAV associated with TAA in 20 patients. METHODS We recruited 20 patients who underwent surgery for BAV and TAA; clinical genetic evaluation and ACTA2 mutation analysis were performed on each patient, along with next-generation sequencing analysis of BAV-related genes. Available first-degree relatives were enrolled and evaluated with echocardiography and clinical genetic examination. RESULTS No mutations were found in ACTA2 or in BAV-related genes in our probands nor any common clinical signs possibly related to their heart disease. One-third of probands did not have any cardiovascular risk factor. Surgery was required at a young age (mean age 47.2 years) and at relatively small ascending aortic diameters (mean size 49.7 mm). In 77 first-degree relatives, 1 new diagnosis of TAA requiring surgery was made and 8 previous BAV/TAA diagnoses (9/77 = 11.7%) were confirmed. The phenotype BAV ± TAA segregated in 25% of our families. CONCLUSIONS Although based on a small cohort, our results seemed to justify the conclusion that ACTA2 did not play a significant role in the pathogenesis of BAV aortopathy. The underlying genetic factors of this condition remain elusive and both large association studies and exome or genome sequencing could represent promising tools to unravel its pathogenesis. Aortic resection of TAA at elective surgery in these patients should be recommended as well as echocardiography in their first-degree relatives.
Collapse
Affiliation(s)
- Giada Tortora
- Medical Genetics Unit, S.Orsola-Malpighi Policlinic Hospital and University of Bologna, Bologna, Italy.,Department of Molecular and Clinical Sciences, Marche Polytechnic University, Ancona, Italy
| | - Anita Wischmeijer
- Medical Genetics Unit, S.Orsola-Malpighi Policlinic Hospital and University of Bologna, Bologna, Italy.,Genetic Counseling Service, Department of Pediatrics, Regional Hospital of Bolzano, Bolzano, Italy
| | - Paolo Berretta
- Department of Cardiac Surgery, S.Orsola-Malpighi Policlinic Hospital and University of Bologna, Bologna, Italy
| | - Jacopo Alfonsi
- Department of Cardiac Surgery, S.Orsola-Malpighi Policlinic Hospital and University of Bologna, Bologna, Italy
| | - Luca Di Marco
- Department of Cardiac Surgery, S.Orsola-Malpighi Policlinic Hospital and University of Bologna, Bologna, Italy
| | - Andrea Barbieri
- Department of Cardiology, Policlinic Hospital Modena and Reggio Emilia University, Modena, Italy
| | - Caterina Marconi
- Medical Genetics Unit, S.Orsola-Malpighi Policlinic Hospital and University of Bologna, Bologna, Italy
| | - Federica Isidori
- Medical Genetics Unit, S.Orsola-Malpighi Policlinic Hospital and University of Bologna, Bologna, Italy
| | - Cesare Rossi
- Medical Genetics Unit, S.Orsola-Malpighi Policlinic Hospital and University of Bologna, Bologna, Italy
| | - Ornella Leone
- Department of Pathology, S. Orsola-Malpighi Policlinic Hospital and University of Bologna, Bologna, Italy
| | - Roberto Di Bartolomeo
- Department of Cardiac Surgery, S.Orsola-Malpighi Policlinic Hospital and University of Bologna, Bologna, Italy
| | - Marco Seri
- Medical Genetics Unit, S.Orsola-Malpighi Policlinic Hospital and University of Bologna, Bologna, Italy
| | - Davide Pacini
- Department of Cardiac Surgery, S.Orsola-Malpighi Policlinic Hospital and University of Bologna, Bologna, Italy
| |
Collapse
|
80
|
Lin X, Liu X, Wang L, Jiang J, Sun Y, Zhu Q, Chen Z, He Y, Hu P, Xu Q, Gao F, Lin Y, Jaiswal S, Xiang M, Wang J. Targeted next-generation sequencing identified ADAMTS5 as novel genetic substrate in patients with bicuspid aortic valve. Int J Cardiol 2017; 252:150-155. [PMID: 29162281 DOI: 10.1016/j.ijcard.2017.11.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 09/18/2017] [Accepted: 11/10/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND Bicuspid Aortic Valve (BAV) is the most common congenital heart disease, affecting >1% of the general population. Up to date, three genes, NOTCH1, GATA5 and SMAD6, have been linked to the isolated form of BAV. However, potential genetic determinants remain largely unknown in most BAV patients. MATERIAL AND METHODS Targeted next-generation sequencing of 7 BAV candidate genes (NOTCH1, GATA5, SMAD6, NOS3, ADAMTS5, Alk2 and SMAD2) was performed in 32 BAV patients. Additional 35 BAV patients and 238 tricuspid aortic valve (TAV) patients, consisting of 107 patients from the transcatheter aortic valve implantation (TAVI) registry and 131 patients from the coronary artery disease (CAD) registry, were selected for further genotyping. RESULTS We found 2 rare non-synonymous variants in 2/7 genes in 3 BAV patients: one was NOTCH1:c.4297G>A and the other one was ADMTS5:c.935C>A that shared by two patients. NOTCH1:c.4297G>A has not been reported previously. ADMTS5:c.935C>A was predicted to be pathogenic by all applied algorithms. Alignment of protein sequences from all available species revealed that ADMTS5:p.Arg312Leu, produced by ADMTS5:c.935C>A, is located in a highly conserved region. The minor allele frequency of ADMTS5:c.935C>A in BAV patients was significantly higher than the matched population in TAV group (0.015 vs. 0, P=0.048). CONCLUSION Our results suggested that ADMTS5:c.935C>A are potentially associated with BAV. Further studies, such as large sample case-control replication test and functional research, are needed to explore the role of this rare variant in the development of BAV.
Collapse
Affiliation(s)
- Xiaoping Lin
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Xianbao Liu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Lihan Wang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Jubo Jiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yinghao Sun
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Qifeng Zhu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Zexin Chen
- Department of Clinical Epidemiology & Biostatistics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yuxin He
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Po Hu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Qiyuan Xu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Feng Gao
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yan Lin
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Sanjay Jaiswal
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Meixiang Xiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Provincial Key Lab of Cardiovascular Research, Hangzhou, Zhejiang 310009, China
| | - Jian'an Wang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Provincial Key Lab of Cardiovascular Research, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
81
|
Koenig SN, LaHaye S, Feller JD, Rowland P, Hor KN, Trask AJ, Janssen PM, Radtke F, Lilly B, Garg V. Notch1 haploinsufficiency causes ascending aortic aneurysms in mice. JCI Insight 2017; 2:91353. [PMID: 29093270 DOI: 10.1172/jci.insight.91353] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 09/29/2017] [Indexed: 12/20/2022] Open
Abstract
An ascending aortic aneurysm (AscAA) is a life-threatening disease whose molecular basis is poorly understood. Mutations in NOTCH1 have been linked to bicuspid aortic valve (BAV), which is associated with AscAA. Here, we describe a potentially novel role for Notch1 in AscAA. We found that Notch1 haploinsufficiency exacerbated the aneurysmal aortic root dilation seen in the Marfan syndrome mouse model and that heterozygous deletion of Notch1 in the second heart field (SHF) lineage recapitulated this exacerbated phenotype. Additionally, Notch1+/- mice in a predominantly 129S6 background develop aortic root dilation, indicating that loss of Notch1 is sufficient to cause AscAA. RNA sequencing analysis of the Notch1.129S6+/- aortic root demonstrated gene expression changes consistent with AscAA. These findings are the first to our knowledge to demonstrate an SHF lineage-specific role for Notch1 in AscAA and suggest that genes linked to the development of BAV may also contribute to the associated aortopathy.
Collapse
Affiliation(s)
- Sara N Koenig
- Center for Cardiovascular Research and.,The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA.,Dorothy M. Davis Heart and Lung Research Institute
| | - Stephanie LaHaye
- Center for Cardiovascular Research and.,The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Molecular Genetics
| | - James D Feller
- Center for Cardiovascular Research and.,The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Patrick Rowland
- Center for Cardiovascular Research and.,The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Kan N Hor
- The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, and
| | - Aaron J Trask
- Center for Cardiovascular Research and.,The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, and
| | - Paul Ml Janssen
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA
| | - Freddy Radtke
- Ecole Polytechnique Fédérale de Lausanne, Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland
| | - Brenda Lilly
- Center for Cardiovascular Research and.,The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Molecular Genetics
| | - Vidu Garg
- Center for Cardiovascular Research and.,The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA.,Dorothy M. Davis Heart and Lung Research Institute.,Department of Molecular Genetics.,Department of Pediatrics, and
| |
Collapse
|
82
|
Siebel C, Lendahl U. Notch Signaling in Development, Tissue Homeostasis, and Disease. Physiol Rev 2017; 97:1235-1294. [PMID: 28794168 DOI: 10.1152/physrev.00005.2017] [Citation(s) in RCA: 674] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/19/2017] [Accepted: 05/26/2017] [Indexed: 02/07/2023] Open
Abstract
Notch signaling is an evolutionarily highly conserved signaling mechanism, but in contrast to signaling pathways such as Wnt, Sonic Hedgehog, and BMP/TGF-β, Notch signaling occurs via cell-cell communication, where transmembrane ligands on one cell activate transmembrane receptors on a juxtaposed cell. Originally discovered through mutations in Drosophila more than 100 yr ago, and with the first Notch gene cloned more than 30 yr ago, we are still gaining new insights into the broad effects of Notch signaling in organisms across the metazoan spectrum and its requirement for normal development of most organs in the body. In this review, we provide an overview of the Notch signaling mechanism at the molecular level and discuss how the pathway, which is architecturally quite simple, is able to engage in the control of cell fates in a broad variety of cell types. We discuss the current understanding of how Notch signaling can become derailed, either by direct mutations or by aberrant regulation, and the expanding spectrum of diseases and cancers that is a consequence of Notch dysregulation. Finally, we explore the emerging field of Notch in the control of tissue homeostasis, with examples from skin, liver, lung, intestine, and the vasculature.
Collapse
Affiliation(s)
- Chris Siebel
- Department of Discovery Oncology, Genentech Inc., DNA Way, South San Francisco, California; and Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Urban Lendahl
- Department of Discovery Oncology, Genentech Inc., DNA Way, South San Francisco, California; and Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
83
|
Mašek J, Andersson ER. The developmental biology of genetic Notch disorders. Development 2017; 144:1743-1763. [PMID: 28512196 DOI: 10.1242/dev.148007] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Notch signaling regulates a vast array of crucial developmental processes. It is therefore not surprising that mutations in genes encoding Notch receptors or ligands lead to a variety of congenital disorders in humans. For example, loss of function of Notch results in Adams-Oliver syndrome, Alagille syndrome, spondylocostal dysostosis and congenital heart disorders, while Notch gain of function results in Hajdu-Cheney syndrome, serpentine fibula polycystic kidney syndrome, infantile myofibromatosis and lateral meningocele syndrome. Furthermore, structure-abrogating mutations in NOTCH3 result in CADASIL. Here, we discuss these human congenital disorders in the context of known roles for Notch signaling during development. Drawing on recent analyses by the exome aggregation consortium (EXAC) and on recent studies of Notch signaling in model organisms, we further highlight additional Notch receptors or ligands that are likely to be involved in human genetic diseases.
Collapse
Affiliation(s)
- Jan Mašek
- Karolinska Institutet, Huddinge 14183, Sweden
| | | |
Collapse
|
84
|
Yassine NM, Shahram JT, Body SC. Pathogenic Mechanisms of Bicuspid Aortic Valve Aortopathy. Front Physiol 2017; 8:687. [PMID: 28993736 PMCID: PMC5622294 DOI: 10.3389/fphys.2017.00687] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/28/2017] [Indexed: 01/06/2023] Open
Abstract
Bicuspid aortic valve (BAV) is the most common congenital valvular defect and is associated with ascending aortic dilation (AAD) in a quarter of patients. AAD has been ascribed both to the hemodynamic consequences of normally functioning and abnormal BAV morphology, and to the effect of rare and common genetic variation upon function of the ascending aortic media. AAD manifests in two overall and sometimes overlapping phenotypes: that of aortic root aneurysm, similar to the AAD of Marfan syndrome; and that of tubular AAD, similar to the AAD seen with tricuspid aortic valves (TAVs). These aortic phenotypes appear to be independent of BAV phenotype, have different embryologic origins and have unique etiologic factors, notably, regarding the role of hemodynamic changes inherent to the BAV phenotype. Further, in contrast to Marfan syndrome, the AAD seen with BAV is infrequently present as a strongly inherited syndromic phenotype; rather, it appears to be a less-penetrant, milder phenotype. Both reduced levels of normally functioning transcriptional proteins and structurally abnormal proteins have been observed in aneurysmal aortic media. We provide evidence that aortic root AAD has a stronger genetic etiology, sometimes related to identified common non-coding fibrillin-1 (FBN1) variants and other aortic wall protein variants in patients with BAV. In patients with BAV having tubular AAD, we propose a stronger hemodynamic influence, but with pathology still based on a functional deficit of the aortic media, of genetic or epigenetic etiology. Although it is an attractive hypothesis to ascribe common mechanisms to BAV and AAD, thus far the genetic etiologies of AAD have not been associated to the genetic etiologies of BAV, notably, not including BAV variants in NOTCH1 and GATA4.
Collapse
Affiliation(s)
- Noor M Yassine
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's HospitalBoston, MA, United States
| | - Jasmine T Shahram
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's HospitalBoston, MA, United States
| | - Simon C Body
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's HospitalBoston, MA, United States
| |
Collapse
|
85
|
Stock S, Mohamed SA, Sievers HH. Bicuspid aortic valve related aortopathy. Gen Thorac Cardiovasc Surg 2017; 67:93-101. [DOI: 10.1007/s11748-017-0821-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/22/2017] [Indexed: 11/28/2022]
|
86
|
Giusti B, Sticchi E, De Cario R, Magi A, Nistri S, Pepe G. Genetic Bases of Bicuspid Aortic Valve: The Contribution of Traditional and High-Throughput Sequencing Approaches on Research and Diagnosis. Front Physiol 2017; 8:612. [PMID: 28883797 PMCID: PMC5573733 DOI: 10.3389/fphys.2017.00612] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/09/2017] [Indexed: 12/20/2022] Open
Abstract
Bicuspid aortic valve (BAV) is a common (0.5-2.0% of general population) congenital heart defect with increased prevalence of aortic dilatation and dissection. BAV has an autosomal dominant inheritance with reduced penetrance and variable expressivity. BAV has been described as an isolated trait or associated with syndromic conditions [e.g., Marfan Marfan syndrome or Loeys-Dietz syndrome (MFS, LDS)]. Identification of a syndromic condition in a BAV patient is clinically relevant to personalize aortic surgery indication. A 4-fold increase in BAV prevalence in a large cohort of unrelated MFS patients with respect to general population was reported, as well as in LDS patients (8-fold). It is also known that BAV is more frequent in patients with thoracic aortic aneurysm (TAA) related to mutations in ACTA2, FBN1, and TGFBR2 genes. Moreover, in 8 patients with BAV and thoracic aortic dilation, not fulfilling the clinical criteria for MFS, FBN1 mutations in 2/8 patients were identified suggesting that FBN1 or other genes involved in syndromic conditions correlated to aortopathy could be involved in BAV. Beyond loci associated to syndromic disorders, studies in humans and animal models evidenced/suggested the role of further genes in non-syndromic BAV. The transcriptional regulator NOTCH1 has been associated with the development and acceleration of calcium deposition. Genome wide marker-based linkage analysis demonstrated a linkage of BAV to loci on chromosomes 18, 5, and 13q. Recently, a role for GATA4/5 in aortic valve morphogenesis and endocardial cell differentiation has been reported. BAV has also been associated with a reduced UFD1L gene expression or involvement of a locus containing AXIN1/PDIA2. Much remains to be understood about the genetics of BAV. In the last years, high-throughput sequencing technologies, allowing the analysis of large number of genes or entire exomes or genomes, progressively became available. The latter issue together with the development of "BigData" analysis methods improving their interpretation and integration with clinical data represents a promising opportunity to increase the disease knowledge and diagnosis in monogenic and multifactorial complex traits. This review summarized the main knowledge on the BAV genetic bases, the role of genetic diagnosis in BAV patient managements and the crucial challenges for the comprehension of genetics of BAV in research and diagnosis.
Collapse
Affiliation(s)
- Betti Giusti
- Department of Experimental and Clinical Medicine, Section of Critical Medical Care and Medical Specialities, University of FlorenceFlorence, Italy.,Marfan Syndrome and Related Disorders Regional (Tuscany) Referral Center, Careggi HospitalFlorence, Italy.,Advanced Molecular Genetics Laboratory, Atherothrombotic Diseases Center, Careggi HospitalFlorence, Italy.,Center of Excellence for the Study at Molecular and Clinical Level of Chronic, Degenerative and Neoplastic Diseases to Develop Novel Therapies (DENOTHE), University of FlorenceFlorence, Italy
| | - Elena Sticchi
- Department of Experimental and Clinical Medicine, Section of Critical Medical Care and Medical Specialities, University of FlorenceFlorence, Italy.,Marfan Syndrome and Related Disorders Regional (Tuscany) Referral Center, Careggi HospitalFlorence, Italy.,Advanced Molecular Genetics Laboratory, Atherothrombotic Diseases Center, Careggi HospitalFlorence, Italy.,Center of Excellence for the Study at Molecular and Clinical Level of Chronic, Degenerative and Neoplastic Diseases to Develop Novel Therapies (DENOTHE), University of FlorenceFlorence, Italy
| | - Rosina De Cario
- Department of Experimental and Clinical Medicine, Section of Critical Medical Care and Medical Specialities, University of FlorenceFlorence, Italy.,Marfan Syndrome and Related Disorders Regional (Tuscany) Referral Center, Careggi HospitalFlorence, Italy
| | - Alberto Magi
- Department of Experimental and Clinical Medicine, Section of Critical Medical Care and Medical Specialities, University of FlorenceFlorence, Italy.,Advanced Molecular Genetics Laboratory, Atherothrombotic Diseases Center, Careggi HospitalFlorence, Italy
| | - Stefano Nistri
- Center of Excellence for the Study at Molecular and Clinical Level of Chronic, Degenerative and Neoplastic Diseases to Develop Novel Therapies (DENOTHE), University of FlorenceFlorence, Italy.,Cardiology Service, Centro Medico Strumentale Riabilitativo (CMSR) Veneto MedicaAltavilla Vicentina, Italy
| | - Guglielmina Pepe
- Department of Experimental and Clinical Medicine, Section of Critical Medical Care and Medical Specialities, University of FlorenceFlorence, Italy.,Marfan Syndrome and Related Disorders Regional (Tuscany) Referral Center, Careggi HospitalFlorence, Italy.,Center of Excellence for the Study at Molecular and Clinical Level of Chronic, Degenerative and Neoplastic Diseases to Develop Novel Therapies (DENOTHE), University of FlorenceFlorence, Italy
| |
Collapse
|
87
|
Ignatieva E, Kostina D, Irtyuga O, Uspensky V, Golovkin A, Gavriliuk N, Moiseeva O, Kostareva A, Malashicheva A. Mechanisms of Smooth Muscle Cell Differentiation Are Distinctly Altered in Thoracic Aortic Aneurysms Associated with Bicuspid or Tricuspid Aortic Valves. Front Physiol 2017; 8:536. [PMID: 28790933 PMCID: PMC5524772 DOI: 10.3389/fphys.2017.00536] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/10/2017] [Indexed: 12/30/2022] Open
Abstract
Cellular and molecular mechanisms of thoracic aortic aneurysm are not clear and therapeutic approaches are mostly absent. Thoracic aortic aneurysm is associated with defective differentiation of smooth muscle cells (SMC) of aortic wall. Bicuspid aortic valve (BAV) comparing to tricuspid aortic valve (TAV) significantly predisposes to a risk of thoracic aortic aneurysms. It has been suggested recently that BAV-associated aortopathies represent a separate pathology comparing to TAV-associated dilations. The only proven candidate gene that has been associated with BAV remains NOTCH1. In this study we tested the hypothesis that Notch-dependent and related TGF-β and BMP differentiation pathways are differently altered in aortic SMC of BAV- vs. TAV-associated aortic aneurysms. SMC were isolated from aortic tissues of the patients with BAV- or TAV-associated aortic aneurysms and from healthy donors used as controls. Gene expression was verified by qPCR and Western blotting. For TGF-β induced differentiation SMC were treated with the medium containing TGF-β1. To induce proosteogenic signaling we cultured SMC in the presence of specific osteogenic factors. Notch-dependent differentiation was induced via lentiviral transduction of SMC with activated Notch1 domain. MYOCD expression, a master gene of SMC differentiation, was down regulated in SMC of both BAV and TAV patients. Discriminant analysis of gene expression patterns included a set of contractile genes specific for SMC, Notch-related genes and proosteogenic genes and revealed that control cells form a separate cluster from both BAV and TAV group, while BAV- and TAV-derived SMC are partially distinct with some overlapping. In differentiation experiments TGF-β caused similar patterns of target gene expression for BAV- and TAV derived cells while the induction was higher in the diseased cells than in control ones. Osteogenic induction caused significant change in RUNX2 expression exclusively in BAV group. Notch activation induced significant ACTA2 expression also exclusively in BAV group. We show that Notch acts synergistically with proosteogenic factors to induce ACTA2 transcription and osteogenic differentiation. In conclusion we have found differences in responsiveness of SMC to Notch and to proosteogenic induction between BAV- and TAV-associated aortic aneurysms.
Collapse
Affiliation(s)
- Elena Ignatieva
- Laboratory of Molecular Cardiology, Almazov Federal Medical Research CentreSaint Petersburg, Russia
| | - Daria Kostina
- Laboratory of Molecular Cardiology, Almazov Federal Medical Research CentreSaint Petersburg, Russia.,Department of Medical Physics, Peter the Great Saint-Petersburg Polytechnic UniversitySaint Petersburg, Russia
| | - Olga Irtyuga
- Laboratory of Molecular Cardiology, Almazov Federal Medical Research CentreSaint Petersburg, Russia
| | - Vladimir Uspensky
- Laboratory of Molecular Cardiology, Almazov Federal Medical Research CentreSaint Petersburg, Russia
| | - Alexey Golovkin
- Laboratory of Molecular Cardiology, Almazov Federal Medical Research CentreSaint Petersburg, Russia
| | - Natalia Gavriliuk
- Laboratory of Molecular Cardiology, Almazov Federal Medical Research CentreSaint Petersburg, Russia
| | - Olga Moiseeva
- Laboratory of Molecular Cardiology, Almazov Federal Medical Research CentreSaint Petersburg, Russia
| | - Anna Kostareva
- Laboratory of Molecular Cardiology, Almazov Federal Medical Research CentreSaint Petersburg, Russia.,Laboratory of Bioinformatics and Genomics, Institute of Translational Medicine, ITMO UniversitySaint Petersburg, Russia
| | - Anna Malashicheva
- Laboratory of Molecular Cardiology, Almazov Federal Medical Research CentreSaint Petersburg, Russia.,Laboratory of Bioinformatics and Genomics, Institute of Translational Medicine, ITMO UniversitySaint Petersburg, Russia.,Faculty of Biology, Saint-Petersburg State UniversitySaint Petersburg, Russia
| |
Collapse
|
88
|
Kloesel B, DiNardo JA, Body SC. Cardiac Embryology and Molecular Mechanisms of Congenital Heart Disease: A Primer for Anesthesiologists. Anesth Analg 2017; 123:551-69. [PMID: 27541719 DOI: 10.1213/ane.0000000000001451] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Congenital heart disease is diagnosed in 0.4% to 5% of live births and presents unique challenges to the pediatric anesthesiologist. Furthermore, advances in surgical management have led to improved survival of those patients, and many adult anesthesiologists now frequently take care of adolescents and adults who have previously undergone surgery to correct or palliate congenital heart lesions. Knowledge of abnormal heart development on the molecular and genetic level extends and improves the anesthesiologist's understanding of congenital heart disease. In this article, we aim to review current knowledge pertaining to genetic alterations and their cellular effects that are involved in the formation of congenital heart defects. Given that congenital heart disease can currently only occasionally be traced to a single genetic mutation, we highlight some of the difficulties that researchers face when trying to identify specific steps in the pathogenetic development of heart lesions.
Collapse
Affiliation(s)
- Benjamin Kloesel
- From the Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | | | | |
Collapse
|
89
|
Gillis E, Kumar AA, Luyckx I, Preuss C, Cannaerts E, van de Beek G, Wieschendorf B, Alaerts M, Bolar N, Vandeweyer G, Meester J, Wünnemann F, Gould RA, Zhurayev R, Zerbino D, Mohamed SA, Mital S, Mertens L, Björck HM, Franco-Cereceda A, McCallion AS, Van Laer L, Verhagen JMA, van de Laar IMBH, Wessels MW, Messas E, Goudot G, Nemcikova M, Krebsova A, Kempers M, Salemink S, Duijnhouwer T, Jeunemaitre X, Albuisson J, Eriksson P, Andelfinger G, Dietz HC, Verstraeten A, Loeys BL. Candidate Gene Resequencing in a Large Bicuspid Aortic Valve-Associated Thoracic Aortic Aneurysm Cohort: SMAD6 as an Important Contributor. Front Physiol 2017; 8:400. [PMID: 28659821 PMCID: PMC5469151 DOI: 10.3389/fphys.2017.00400] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/26/2017] [Indexed: 12/30/2022] Open
Abstract
Bicuspid aortic valve (BAV) is the most common congenital heart defect. Although many BAV patients remain asymptomatic, at least 20% develop thoracic aortic aneurysm (TAA). Historically, BAV-related TAA was considered as a hemodynamic consequence of the valve defect. Multiple lines of evidence currently suggest that genetic determinants contribute to the pathogenesis of both BAV and TAA in affected individuals. Despite high heritability, only very few genes have been linked to BAV or BAV/TAA, such as NOTCH1, SMAD6, and MAT2A. Moreover, they only explain a minority of patients. Other candidate genes have been suggested based on the presence of BAV in knockout mouse models (e.g., GATA5, NOS3) or in syndromic (e.g., TGFBR1/2, TGFB2/3) or non-syndromic (e.g., ACTA2) TAA forms. We hypothesized that rare genetic variants in these genes may be enriched in patients presenting with both BAV and TAA. We performed targeted resequencing of 22 candidate genes using Haloplex target enrichment in a strictly defined BAV/TAA cohort (n = 441; BAV in addition to an aortic root or ascendens diameter ≥ 4.0 cm in adults, or a Z-score ≥ 3 in children) and in a collection of healthy controls with normal echocardiographic evaluation (n = 183). After additional burden analysis against the Exome Aggregation Consortium database, the strongest candidate susceptibility gene was SMAD6 (p = 0.002), with 2.5% (n = 11) of BAV/TAA patients harboring causal variants, including two nonsense, one in-frame deletion and two frameshift mutations. All six missense mutations were located in the functionally important MH1 and MH2 domains. In conclusion, we report a significant contribution of SMAD6 mutations to the etiology of the BAV/TAA phenotype.
Collapse
Affiliation(s)
- Elisabeth Gillis
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium
| | - Ajay A Kumar
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium
| | - Ilse Luyckx
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium
| | - Christoph Preuss
- Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Université de MontrealMontreal, QC, Canada
| | - Elyssa Cannaerts
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium
| | - Gerarda van de Beek
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium
| | - Björn Wieschendorf
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium.,Department of Cardiac and Thoracic Vascular Surgery, University Hospital Schleswig-HolsteinLübeck, Germany
| | - Maaike Alaerts
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium
| | - Nikhita Bolar
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium
| | - Geert Vandeweyer
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium
| | - Josephina Meester
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium
| | - Florian Wünnemann
- Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Université de MontrealMontreal, QC, Canada
| | - Russell A Gould
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of MedicineBaltimore, MD, United States
| | - Rustam Zhurayev
- Department of Clinical pathology, Lviv National Medical University after Danylo HalytskyLviv, Ukraine
| | - Dmytro Zerbino
- Department of Clinical pathology, Lviv National Medical University after Danylo HalytskyLviv, Ukraine
| | - Salah A Mohamed
- Department of Cardiac and Thoracic Vascular Surgery, University Hospital Schleswig-HolsteinLübeck, Germany
| | - Seema Mital
- Cardiovascular Research, SickKids University HospitalToronto, ON, Canada
| | - Luc Mertens
- Cardiovascular Research, SickKids University HospitalToronto, ON, Canada
| | - Hanna M Björck
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska InstituteStockholm, Sweden
| | - Anders Franco-Cereceda
- Cardiothoracic Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska InstituteStockholm, Sweden
| | - Andrew S McCallion
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of MedicineBaltimore, MD, United States
| | - Lut Van Laer
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium
| | - Judith M A Verhagen
- Department of Clinical Genetics, Erasmus University Medical CenterRotterdam, Netherlands
| | | | - Marja W Wessels
- Department of Clinical Genetics, Erasmus University Medical CenterRotterdam, Netherlands
| | - Emmanuel Messas
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou; Université Paris Descartes, Paris Sorbonne Cité; Institut National de la Santé et de la Recherche Médicale, UMRSParis, France
| | - Guillaume Goudot
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou; Université Paris Descartes, Paris Sorbonne Cité; Institut National de la Santé et de la Recherche Médicale, UMRSParis, France
| | - Michaela Nemcikova
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine-Charles University and Motol University HospitalPrague, Czechia
| | - Alice Krebsova
- Institute of Clinical and Experimental MedicinePrague, Czechia
| | - Marlies Kempers
- Department of Human Genetics, Radboud University Medical CentreNijmegen, Netherlands
| | - Simone Salemink
- Department of Human Genetics, Radboud University Medical CentreNijmegen, Netherlands
| | - Toon Duijnhouwer
- Department of Human Genetics, Radboud University Medical CentreNijmegen, Netherlands
| | - Xavier Jeunemaitre
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou; Université Paris Descartes, Paris Sorbonne Cité; Institut National de la Santé et de la Recherche Médicale, UMRSParis, France
| | - Juliette Albuisson
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou; Université Paris Descartes, Paris Sorbonne Cité; Institut National de la Santé et de la Recherche Médicale, UMRSParis, France
| | - Per Eriksson
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska InstituteStockholm, Sweden
| | - Gregor Andelfinger
- Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Université de MontrealMontreal, QC, Canada
| | - Harry C Dietz
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of MedicineBaltimore, MD, United States.,Howard Hughes Medical InstituteBaltimore, MD, United States
| | - Aline Verstraeten
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium
| | - Bart L Loeys
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium.,Department of Human Genetics, Radboud University Medical CentreNijmegen, Netherlands
| | | |
Collapse
|
90
|
Sachdeva J, Mahajan A, Cheng J, Baeten JT, Lilly B, Kuivaniemi H, Hans CP. Smooth muscle cell-specific Notch1 haploinsufficiency restricts the progression of abdominal aortic aneurysm by modulating CTGF expression. PLoS One 2017; 12:e0178538. [PMID: 28562688 PMCID: PMC5451061 DOI: 10.1371/journal.pone.0178538] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 05/15/2017] [Indexed: 02/06/2023] Open
Abstract
Aims Infiltration of macrophages and apoptosis of vascular smooth muscle cells (VSMCs) promote the development of abdominal aortic aneurysm (AAA). Previously, we demonstrated that global Notch1 deficiency prevents the formation of AAA in a mouse model. Herein, we sought to explore the cell-specific roles of Notch1 in AAA development. Methods and results Cell-specific Notch1 haploinsufficient mice, generated on Apoe-/- background using Cre-lox technology, were infused with angiotensin II (1000 ng/min/kg) for 28 days. Notch1 haploinsufficiency in myeloid cells (n = 9) prevented the formation of AAA attributed to decreased inflammation. Haploinsufficiency of Notch1 in SMCs (n = 14) per se did not prevent AAA formation, but histoarchitectural traits of AAA including elastin degradation and aortic remodeling, were minimal in SMC-Notch1+/-;Apoe-/- mice compared to Apoe-/- mice (n = 33). Increased immunostaining of the contractile SMC-phenotype markers and concomitant decreased expression of synthetic SMC-phenotype markers were observed in the aortae of SMC-Notch1+/-;Apoe-/- mice. Expression of connective tissue growth factor (CTGF), a matrix-associated protein that modulates the synthetic VSMC phenotype, increased in the abdominal aorta of Apoe-/- mice and in the adventitial region of the abdominal aorta in human AAA. Notch1 haploinsufficiency decreased the expression of Ctgf in the aorta and in vitro cell culture system. In vitro studies on SMCs using the Notch1 intracellular domain (NICD) plasmid, dominant negative mastermind-like (dnMAML), or specific siRNA suggest that Notch1, not Notch3, directly modulates the expression of CTGF. Conclusions Our data suggest that lack of Notch1 in SMCs limits dilation of the abdominal aorta by maintaining contractile SMC-phenotype and preventing matrix-remodeling.
Collapse
MESH Headings
- Animals
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Cells, Cultured
- Coculture Techniques
- Connective Tissue Growth Factor/metabolism
- Haploinsufficiency
- Matrix Metalloproteinases/biosynthesis
- Mice
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/metabolism
- Receptor, Notch1/metabolism
Collapse
Affiliation(s)
| | - Advitiya Mahajan
- Cardiology, Medical Pharmacology & Physiology and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
| | - Jeeyun Cheng
- Center for Cardiovascular Research and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Jeremy T. Baeten
- Center for Cardiovascular Research and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Brenda Lilly
- Center for Cardiovascular Research and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Helena Kuivaniemi
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Chetan P. Hans
- Ohio State University, Columbus, Ohio, United States of America
- Cardiology, Medical Pharmacology & Physiology and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
- Center for Cardiovascular Research and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
91
|
Girdauskas E, Geist L, Disha K, Kazakbaev I, Groß T, Schulz S, Ungelenk M, Kuntze T, Reichenspurner H, Kurth I. Genetic abnormalities in bicuspid aortic valve root phenotype: preliminary results†. Eur J Cardiothorac Surg 2017; 52:156-162. [DOI: 10.1093/ejcts/ezx065] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/11/2017] [Indexed: 11/14/2022] Open
|
92
|
Theodoris CV, Mourkioti F, Huang Y, Ranade SS, Liu L, Blau HM, Srivastava D. Long telomeres protect against age-dependent cardiac disease caused by NOTCH1 haploinsufficiency. J Clin Invest 2017; 127:1683-1688. [PMID: 28346225 DOI: 10.1172/jci90338] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/31/2017] [Indexed: 01/04/2023] Open
Abstract
Diseases caused by gene haploinsufficiency in humans commonly lack a phenotype in mice that are heterozygous for the orthologous factor, impeding the study of complex phenotypes and critically limiting the discovery of therapeutics. Laboratory mice have longer telomeres relative to humans, potentially protecting against age-related disease caused by haploinsufficiency. Here, we demonstrate that telomere shortening in NOTCH1-haploinsufficient mice is sufficient to elicit age-dependent cardiovascular disease involving premature calcification of the aortic valve, a phenotype that closely mimics human disease caused by NOTCH1 haploinsufficiency. Furthermore, progressive telomere shortening correlated with severity of disease, causing cardiac valve and septal disease in the neonate that was similar to the range of valve disease observed within human families. Genes that were dysregulated due to NOTCH1 haploinsufficiency in mice with shortened telomeres were concordant with proosteoblast and proinflammatory gene network alterations in human NOTCH1 heterozygous endothelial cells. These dysregulated genes were enriched for telomere-contacting promoters, suggesting a potential mechanism for telomere-dependent regulation of homeostatic gene expression. These findings reveal a critical role for telomere length in a mouse model of age-dependent human disease and provide an in vivo model in which to test therapeutic candidates targeting the progression of aortic valve disease.
Collapse
|
93
|
Shen YH, LeMaire SA. Molecular pathogenesis of genetic and sporadic aortic aneurysms and dissections. Curr Probl Surg 2017; 54:95-155. [PMID: 28521856 DOI: 10.1067/j.cpsurg.2017.01.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 01/16/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Ying H Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX.
| | - Scott A LeMaire
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX.
| |
Collapse
|
94
|
Brownstein AJ, Ziganshin BA, Kuivaniemi H, Body SC, Bale AE, Elefteriades JA. Genes Associated with Thoracic Aortic Aneurysm and Dissection: An Update and Clinical Implications. AORTA : OFFICIAL JOURNAL OF THE AORTIC INSTITUTE AT YALE-NEW HAVEN HOSPITAL 2017; 5:11-20. [PMID: 28868310 DOI: 10.12945/j.aorta.2017.17.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 01/06/2017] [Indexed: 01/16/2023]
Abstract
Thoracic aortic aneurysm (TAA) is a lethal disease, with a natural history of enlarging progressively until dissection or rupture occurs. Since the discovery almost 20 years ago that ascending TAAs are highly familial, our understanding of the genetics of thoracic aortic aneurysm and dissection (TAAD) has increased exponentially. At least 29 genes have been shown to be associated with the development of TAAD, the majority of which encode proteins involved in the extracellular matrix, smooth muscle cell contraction or metabolism, or the transforming growth factor-β signaling pathway. Almost one-quarter of TAAD patients have a mutation in one of these genes. In this review, we provide a summary of TAAD-associated genes, associated clinical features of the vasculature, and implications for surgical treatment of TAAD. With the widespread use of next-generation sequencing and development of novel functional assays, the future of the genetics of TAAD is bright, as both novel TAAD genes and variants within the genes will continue to be identified.
Collapse
Affiliation(s)
- Adam J Brownstein
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Bulat A Ziganshin
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Helena Kuivaniemi
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, and Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Simon C Body
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Allen E Bale
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - John A Elefteriades
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
95
|
NOTCH1 Mutations in Aortic Stenosis: Association with Osteoprotegerin/RANK/RANKL. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6917907. [PMID: 28246602 PMCID: PMC5299165 DOI: 10.1155/2017/6917907] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/25/2016] [Indexed: 11/29/2022]
Abstract
Background. The NOTCH pathway is known to be important in the pathogenesis of calcific aortic valve disease, possibly through regulators of osteoprotegerin (OPG), receptor activator of nuclear factor κB (RANK), and its ligand (RANKL) system. The purpose of the present study was to search for possible associations between NOTCH1 gene mutations and circulating levels of OPG and soluble RANKL (sRANKL) in patients with aortic stenosis (AS). Methods. The study was performed on 61 patients with AS including 31 with bicuspid and 30 with tricuspid aortic valves. We applied a strategy of targeted mutation screening for 10 out of 34 exons of the NOTCH1 gene by direct sequencing. Serum OPG and sRANKL levels were assessed. Results. In total, 6 genetic variants of the NOTCH1 gene including two new mutations were identified in the study group. In an age- and arterial hypertension-adjusted multivariable regression analysis, the serum OPG levels and the OPG/sRANKL ratio were correlated with NOTCH1 missense variants. All studied missense variants in NOTCH1 gene were found in Ca(2+)-binding EGF motif of the NOTCH extracellular domain bound to Delta-like 4. Conclusion. Our results suggest that the OPG/RANKL/RANK system might be directly influenced by genetic variants of NOTCH1 in aortic valve calcification.
Collapse
|
96
|
Abstract
Thoracic aortic aneurysm is a potentially life-threatening condition in that it places patients at risk for aortic dissection or rupture. However, our modern understanding of the pathogenesis of thoracic aortic aneurysm is quite limited. A genetic predisposition to thoracic aortic aneurysm has been established, and gene discovery in affected families has identified several major categories of gene alterations. The first involves mutations in genes encoding various components of the transforming growth factor beta (TGF-β) signaling cascade (FBN1, TGFBR1, TGFBR2, TGFB2, TGFB3, SMAD2, SMAD3 and SKI), and these conditions are known collectively as the TGF-β vasculopathies. The second set of genes encode components of the smooth muscle contractile apparatus (ACTA2, MYH11, MYLK, and PRKG1), a group called the smooth muscle contraction vasculopathies. Mechanistic hypotheses based on these discoveries have shaped rational therapies, some of which are under clinical evaluation. This review discusses published data on genes involved in thoracic aortic aneurysm and attempts to explain divergent hypotheses of aneurysm origin.
Collapse
Affiliation(s)
- Eric M Isselbacher
- From Thoracic Aortic Center (E.M.I., C.L.L.C., M.E.L.), Cardiovascular Genetics Program (M.E.L.), Cardiovascular Research Center (C.L.L.C., M.E.L.), and Cardiology Division (E.M.I., C.L.L.C., M.E.L.), Department of Medicine, and Pediatric Cardiology Division, Department of Pediatrics (M.E.L.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Christian Lacks Lino Cardenas
- From Thoracic Aortic Center (E.M.I., C.L.L.C., M.E.L.), Cardiovascular Genetics Program (M.E.L.), Cardiovascular Research Center (C.L.L.C., M.E.L.), and Cardiology Division (E.M.I., C.L.L.C., M.E.L.), Department of Medicine, and Pediatric Cardiology Division, Department of Pediatrics (M.E.L.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Mark E Lindsay
- From Thoracic Aortic Center (E.M.I., C.L.L.C., M.E.L.), Cardiovascular Genetics Program (M.E.L.), Cardiovascular Research Center (C.L.L.C., M.E.L.), and Cardiology Division (E.M.I., C.L.L.C., M.E.L.), Department of Medicine, and Pediatric Cardiology Division, Department of Pediatrics (M.E.L.), Massachusetts General Hospital, Harvard Medical School, Boston.
| |
Collapse
|
97
|
Bolar N, Verstraeten A, Van Laer L, Loeys B. Molecular Insights into Bicuspid Aortic Valve Development and the associated aortopathy. AIMS MOLECULAR SCIENCE 2017. [DOI: 10.3934/molsci.2017.4.478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
98
|
Gago-Díaz M, Brion M, Gallego P, Calvo F, Robledo-Carmona J, Saura D, Sánchez V, Bermejo J, Sevilla T, Newton-Cheh C, Carracedo Á, Muehlschlegel JD, García-Dorado D, Body SC, Evangelista A. The genetic component of bicuspid aortic valve and aortic dilation. An exome-wide association study. J Mol Cell Cardiol 2016; 102:3-9. [PMID: 27894865 DOI: 10.1016/j.yjmcc.2016.11.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/21/2016] [Accepted: 11/24/2016] [Indexed: 01/18/2023]
Abstract
BACKGROUND Bicuspid aortic valve is the most common cardiovascular congenital malformation affecting 2% of the general population. The incidence of life-threatening complications, the high heritability, and familial clustering rates support the interest in identifying risk or protective genetic factors. The main objective of the present study was to identify population-based genetic variation associated with bicuspid aortic valve and concomitant ascending aortic dilation. MATERIALS AND METHODS A cross-sectional exome-wide association study was conducted in 565 Spanish cases and 484 controls. Single-marker and gene-based association analyses enriched for low frequency and rare genetic variants were performed on this discovery stage cohort and for the subsets of cases with and without ascending aortic dilation. Discovery-stage association signals and additional markers indirectly associated with bicuspid aortic valve, were genotyped in a replication cohort that comprised 895 Caucasian cases and 1483 controls. RESULTS Although none of the association signals were consistent across series, the involvement of HMCN2 in calcium metabolism and valve degeneration caused by calcium deposit, and a nominal but not genome-wide significant association, supported it as an interesting gene for follow-up studies on the genetic susceptibility to bicuspid aortic valve. CONCLUSIONS The absence of a genome-wide significant association signal shows this valvular malformation may be more genetically complex than previously believed. Exhaustive phenotypic characterization, even larger datasets, and collaborative efforts are needed to detect the combination of rare variants conferring risk which, along with specific environmental factors, could be causing the development of this disease.
Collapse
Affiliation(s)
- Marina Gago-Díaz
- Xenética de Enfermidades Cardiovasculares e Oftalmolóxicas, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain; Grupo de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela - Universidade de Santiago de Compostela - Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain
| | - María Brion
- Xenética de Enfermidades Cardiovasculares e Oftalmolóxicas, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain; Grupo de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela - Universidade de Santiago de Compostela - Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain.
| | - Pastora Gallego
- Servicio de Cardiología, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | - Francisco Calvo
- Servicio de Cardioloxía, Complexo Hospitalario Universitario de Vigo, Vigo, Spain
| | - Juan Robledo-Carmona
- Servicio de Cardiología, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Daniel Saura
- Servicio de Cardiología, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Violeta Sánchez
- Servicio de Cardiología, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Javier Bermejo
- Servicio de Cardiología, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Teresa Sevilla
- Servicio de Cardiología, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Christopher Newton-Cheh
- Cardiovascular Research Center and Center for Human Genetic Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States; The Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States
| | - Ángel Carracedo
- Grupo de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela - Universidade de Santiago de Compostela - Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain; Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - J Daniel Muehlschlegel
- The Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States; Anesthesia and Pain Management, Brigham and Women's Hospital, Boston, MA, United States
| | - David García-Dorado
- Servei de Cardiologia, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Simon C Body
- The Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States; Anesthesia and Pain Management, Brigham and Women's Hospital, Boston, MA, United States
| | - Artur Evangelista
- Servei de Cardiologia, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| |
Collapse
|
99
|
Preuss C, Capredon M, Wünnemann F, Chetaille P, Prince A, Godard B, Leclerc S, Sobreira N, Ling H, Awadalla P, Thibeault M, Khairy P, Samuels ME, Andelfinger G. Family Based Whole Exome Sequencing Reveals the Multifaceted Role of Notch Signaling in Congenital Heart Disease. PLoS Genet 2016; 12:e1006335. [PMID: 27760138 PMCID: PMC5070860 DOI: 10.1371/journal.pgen.1006335] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 08/31/2016] [Indexed: 11/23/2022] Open
Abstract
Left-ventricular outflow tract obstructions (LVOTO) encompass a wide spectrum of phenotypically heterogeneous heart malformations which frequently cluster in families. We performed family based whole-exome and targeted re-sequencing on 182 individuals from 51 families with multiple affected members. Central to our approach is the family unit which serves as a reference to identify causal genotype-phenotype correlations. Screening a multitude of 10 overlapping phenotypes revealed disease associated and co-segregating variants in 12 families. These rare or novel protein altering mutations cluster predominantly in genes (NOTCH1, ARHGAP31, MAML1, SMARCA4, JARID2, JAG1) along the Notch signaling cascade. This is in line with a significant enrichment (Wilcoxon, p< 0.05) of variants with a higher pathogenicity in the Notch signaling pathway in patients compared to controls. The significant enrichment of novel protein truncating and missense mutations in NOTCH1 highlights the allelic and phenotypic heterogeneity in our pediatric cohort. We identified novel co-segregating pathogenic mutations in NOTCH1 associated with left and right-sided cardiac malformations in three independent families with a total of 15 affected individuals. In summary, our results suggest that a small but highly pathogenic fraction of family specific mutations along the Notch cascade are a common cause of LVOTO. Left-ventricular outflow tract obstructions comprise a group of developmental heart disorders that are genetically and phenotypically heterogeneous, with no single gene accounting for the majority of cases. In order to identify mutations contributing to disease, we selected patients from 51 families with a history of congenital cardiac malformations. We interrogated the entire coding sequences of 106 patients and identified a small but highly pathogenic fraction of mutations that are likely to contribute to disease in 12 families (23.5%). Furthermore, we present a strategy for identifying candidate mutations based on familial segregation in a genetically heterogeneous disorder.
Collapse
Affiliation(s)
- Christoph Preuss
- Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Université de Montréal, Montreal, Québec, Canada
| | - Melanie Capredon
- Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Université de Montréal, Montreal, Québec, Canada
| | - Florian Wünnemann
- Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Université de Montréal, Montreal, Québec, Canada
- Faculty of Biology, University of Muenster, Muenster, Germany
| | - Philippe Chetaille
- Department of Pediatrics, Centre Mère Enfants Soleil, Centre Hospitalier de l'Université (CHU) de Québec, Quebec City, Québec, Canada
| | - Andrea Prince
- Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Université de Montréal, Montreal, Québec, Canada
| | - Beatrice Godard
- Omics-Ethics Research Group, Research Institute of Public Health, Université de Montréal, Montréal Québec, Canada
| | - Severine Leclerc
- Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Université de Montréal, Montreal, Québec, Canada
| | - Nara Sobreira
- McKusick Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Hua Ling
- McKusick Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Philip Awadalla
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Maryse Thibeault
- Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Université de Montréal, Montreal, Québec, Canada
| | - Paul Khairy
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | | | - Mark E. Samuels
- Centre de Recherche CHU Sainte Justine, Université de Montreal, Montréal, Québec, Canada
- Department of Medicine, Université de Montreal, Montréal, Québec, Canada
| | - Gregor Andelfinger
- Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Université de Montréal, Montreal, Québec, Canada
- * E-mail:
| |
Collapse
|
100
|
Abstract
SIGNIFICANCE Currently, calcific aortic valve disease (CAVD) is only treatable through surgical intervention because the specific mechanisms leading to the disease remain unclear. In this review, we explore the forces and structure of the valve, as well as the mechanosensors and downstream signaling in the valve endothelium known to contribute to inflammation and valve dysfunction. RECENT ADVANCES While the valvular structure enables adaptation to dynamic hemodynamic forces, these are impaired during CAVD, resulting in pathological systemic changes. Mechanosensing mechanisms-proteins, sugars, and membrane structures-at the surface of the valve endothelial cell relay mechanical signals to the nucleus. As a result, a large number of mechanosensitive genes are transcribed to alter cellular phenotype and, ultimately, induce inflammation and CAVD. Transforming growth factor-β signaling and Wnt/β-catenin have been widely studied in this context. Importantly, NADPH oxidase and reactive oxygen species/reactive nitrogen species signaling has increasingly been recognized to play a key role in the cellular response to mechanical stimuli. In addition, a number of valvular microRNAs are mechanosensitive and may regulate the progression of CAVD. CRITICAL ISSUES While numerous pathways have been described in the pathology of CAVD, no treatment options are available to avoid surgery for advanced stenosis and calcification of the aortic valve. More work must be focused on this issue to lead to successful therapies for the disease. FUTURE DIRECTIONS Ultimately, a more complete understanding of the mechanisms within the aortic valve endothelium will lead us to future therapies important for treatment of CAVD without the risks involved with valve replacement or repair. Antioxid. Redox Signal. 25, 401-414.
Collapse
Affiliation(s)
- Joan Fernández Esmerats
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology , Atlanta, Georgia
| | - Jack Heath
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology , Atlanta, Georgia
| | - Hanjoong Jo
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology , Atlanta, Georgia
| |
Collapse
|