51
|
Dong L, Zhang Y, Wang X, Dong YX, Zheng L, Li YJ, Ni JM. In vivo and in vitro anti-inflammatory effects of ethanol fraction from Periploca forrestii Schltr. Chin J Integr Med 2017; 23:528-534. [PMID: 28283936 DOI: 10.1007/s11655-017-2803-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To determine the anti-inflflammatory effects of an ethanol fraction of Periploca forrestii Schltr. (EFPF) and to investigate the potential mechanisms underlying in vivo and in vitro models. METHODS The antiinflflammatory effects of EFPF were evaluated using the xylene-induced mouse ear edema and carrageenan-induced rat paw edema models in vivo. In vitro, RAW264.7 cells were exposed to 0-800 μg/mL EFPF and the cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Then cells were treated with different concentrations of EFPF (100-400 μg/mL) and stimulated with lipopolysaccharide (LPS, 1 μg/mL) for 24 h. The supernatant was analyzed for nitric oxide (NO) using the Griess reagent, and the levels of inflflammatory mediators and cytokines were determined using enzyme-linked immunosorbent assays for prostaglandin E2 (PGE2), tumor necrosis factor α (TNF-α), interleukin (IL) 6, and IL-10. The protein expressions of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), nuclear factor κB (NF-κB), and mitogen-activated protein kinases (MAPKs) including extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK were examined by Western blot. RESULTS Compared with the control group, EFPF signifificantly reduced mouse ear edema and rat paw edema rate (P<0.05 or P<0.01). Compared with the LPS group, EFPF signifificantly inhibited the LPS-stimulated production of NO, PGE2, TNF-α and IL-6 (P<0.05 or P<0.01), and increased the IL-10 production (P<0.05). EFPF also signifificantly inhibited LPS-induced protein expressions of iNOS and COX-2, suppressed the phosphorylation and degradation of inhibitor of NF-κB-α, decreased p65 level, and inhibited the phosphorylation of p38, ERK1/2 and JNK P<0.05 or P<0.01). CONCLUSION EFPF exerted anti-inflflammatory effect by reducing protein expressions of iNOS and COX-2 and the production of the inflflammation factors, including TNF-α, IL-6, NO and PGE2, mainly through inhibition of LPS-mediated stimulation of NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Li Dong
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yun Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xia Wang
- Engineering Research Center for the Development and Application of Ethnic Medicine and Chinese Medicine (Ministry of Education), Guizhou Medical University, Guiyang, 550004, China
| | - Yong-Xi Dong
- Engineering Research Center for the Development and Application of Ethnic Medicine and Chinese Medicine (Ministry of Education), Guizhou Medical University, Guiyang, 550004, China
| | - Lin Zheng
- Engineering Research Center for the Development and Application of Ethnic Medicine and Chinese Medicine (Ministry of Education), Guizhou Medical University, Guiyang, 550004, China
| | - Yong-Jun Li
- Engineering Research Center for the Development and Application of Ethnic Medicine and Chinese Medicine (Ministry of Education), Guizhou Medical University, Guiyang, 550004, China
| | - Jing-Man Ni
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
52
|
Shan M, Lin S, Li S, Du Y, Zhao H, Hong H, Yang M, Yang X, Wu Y, Ren L, Peng J, Sun J, Zhou H, Su B. TIR-Domain-Containing Adapter-Inducing Interferon-β (TRIF) Is Essential for MPTP-Induced Dopaminergic Neuroprotection via Microglial Cell M1/M2 Modulation. Front Cell Neurosci 2017; 11:35. [PMID: 28275337 PMCID: PMC5319955 DOI: 10.3389/fncel.2017.00035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/06/2017] [Indexed: 12/13/2022] Open
Abstract
Dynamic changes of two phenotypes of microglia, M1 and M2, are critically associated with the neurodegeneration of Parkinson's disease. However, the regulation of the M1/M2 paradigm is still unclear. In the MPTP induced neurodegeneration model, we examined the concentration of dopamine (DA) related metabolites and the survival of tyrosine hydroxylase (TH) positive cells in WT and Trif−/− mice. In in vitro experiments, MN9D cells were co-cultured with BV2 cells to mimic the animal experiments. Inhibition of TRIF aggravated TH+ cell loss, and DA-related metabolites decreased. TRIF inhibition was able to interrupt the microglial M1/M2 dynamic transformation. More BV2 cells were activated and migrated across the membrane of transwell plates by siTRIF treatment. Also, TRIF interruption inhibits the transformation of BV2 cells from the M1 to M2 phenotype which played a beneficial role in neuronal degenerative processes, and increased MN9D apoptosis. Moreover, MPP+ treatment decreases the (DAT) dopamine transporter and TH synthesis by MN9D. Taken together, the current results suggest that TRIF plays a key switch function in contributing to the microglial M1/M2 phenotype dynamic transformation. The interruption of TRIF may decrease the survival of MN9D cells as well as DAT and TH protein production. The current study sheds some light on the PD mechanism research by innate inflammation regulation.
Collapse
Affiliation(s)
- Minghui Shan
- Development and Regeneration Key Lab of Sichuan Province, Department of Pathology, Department of Anatomy and Histology and Embryology, Chengdu Medical CollegeChengdu, China; Department of Clinical Pathology, Nanyang Central HospitalNangyang, China
| | - Sen Lin
- Development and Regeneration Key Lab of Sichuan Province, Department of Pathology, Department of Anatomy and Histology and Embryology, Chengdu Medical College Chengdu, China
| | - Shurong Li
- Development and Regeneration Key Lab of Sichuan Province, Department of Pathology, Department of Anatomy and Histology and Embryology, Chengdu Medical CollegeChengdu, China; Research Center, Chengdu Medical College Infertility HospitalChengdu, China
| | - Yuchen Du
- Development and Regeneration Key Lab of Sichuan Province, Department of Pathology, Department of Anatomy and Histology and Embryology, Chengdu Medical College Chengdu, China
| | - Haixia Zhao
- Development and Regeneration Key Lab of Sichuan Province, Department of Pathology, Department of Anatomy and Histology and Embryology, Chengdu Medical College Chengdu, China
| | - Huarong Hong
- Development and Regeneration Key Lab of Sichuan Province, Department of Pathology, Department of Anatomy and Histology and Embryology, Chengdu Medical College Chengdu, China
| | - Ming Yang
- Development and Regeneration Key Lab of Sichuan Province, Department of Pathology, Department of Anatomy and Histology and Embryology, Chengdu Medical College Chengdu, China
| | - Xi Yang
- Development and Regeneration Key Lab of Sichuan Province, Department of Pathology, Department of Anatomy and Histology and Embryology, Chengdu Medical College Chengdu, China
| | - Yongmei Wu
- Development and Regeneration Key Lab of Sichuan Province, Department of Pathology, Department of Anatomy and Histology and Embryology, Chengdu Medical College Chengdu, China
| | - Liyi Ren
- Development and Regeneration Key Lab of Sichuan Province, Department of Pathology, Department of Anatomy and Histology and Embryology, Chengdu Medical College Chengdu, China
| | - Jiali Peng
- Development and Regeneration Key Lab of Sichuan Province, Department of Pathology, Department of Anatomy and Histology and Embryology, Chengdu Medical College Chengdu, China
| | - Jing Sun
- Development and Regeneration Key Lab of Sichuan Province, Department of Pathology, Department of Anatomy and Histology and Embryology, Chengdu Medical College Chengdu, China
| | - Hongli Zhou
- Development and Regeneration Key Lab of Sichuan Province, Department of Pathology, Department of Anatomy and Histology and Embryology, Chengdu Medical College Chengdu, China
| | - Bingyin Su
- Development and Regeneration Key Lab of Sichuan Province, Department of Pathology, Department of Anatomy and Histology and Embryology, Chengdu Medical CollegeChengdu, China; Research Center, Chengdu Medical College Infertility HospitalChengdu, China
| |
Collapse
|
53
|
Lee MS, Lee SO, Kim KR, Lee HJ. Sphingosine Kinase-1 Involves the Inhibitory Action of HIF-1α by Chlorogenic Acid in Hypoxic DU145 Cells. Int J Mol Sci 2017; 18:ijms18020325. [PMID: 28165392 PMCID: PMC5343861 DOI: 10.3390/ijms18020325] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/18/2017] [Accepted: 01/22/2017] [Indexed: 12/15/2022] Open
Abstract
Hypoxia enhances cancer development in a solid tumor. Hypoxia-inducible factor-1 α (HIF-1α) is a transcription factor that is dominantly expressed under hypoxia in solid tumor cells and is a key factor that regulates tumor. HIF-1α regulates several target genes involved in many aspects of cancer progression, including angiogenesis, metastasis, anti-apoptosis and cell proliferation as well as imparts resistance to cancer treatment. In this study, we assessed Crataegus Pinnatifida Bunge var. typical Schneider ethanol extract (CPE) for its anti-cancer effects in hypoxia-induced DU145 human prostate cancer cell line. CPE decreased the abundance of HIF-1α and sphingosine kinase-1 (SPHK-1) in hypoxia-induced prostate cancer DU145 cells. CPE decreased HIF-1α and SPHK-1 as well as SPHK-1 activity. Chlorogenic acid (CA) is one of four major compounds of CPE. Compared to CPE, CA significantly decreased the expression of HIF-1α and SPHK-1 as well as SPHK-1 activity in hypoxia-induced DU145 cells. Furthermore, CA decreased phosphorylation AKT and GSK-3β, which are associated with HIF-1α stabilization and affected SPHK-1 in a concentration-dependent manner. We confirmed the mechanism of CA-induced inhibition of HIF-1α by SPHK-1 signaling pathway using SPHK-1 siRNA and SPHK inhibitor (SKI). CA decreased the secretion and cellular expression of VEGF, thus inhibiting hypoxia-induced angiogenesis. Treatment of DU145cells with SPHK1 siRNA and CA for 48 h decreased cancer cell growth, and the inhibitory action of SPHK siRNA and CA on cell growth was confirmed by decrease in the abundance of Proliferating cell nuclear antigen (PCNA).
Collapse
Affiliation(s)
- Myoung-Sun Lee
- College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| | - Seon-Ok Lee
- College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| | - Kyu-Ri Kim
- Graduate School of East-West Medical Science, Kyung Hee University; 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| | - Hyo-Jeong Lee
- College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| |
Collapse
|
54
|
Antischistosomiasis Liver Fibrosis Effects of Chlorogenic Acid through IL-13/miR-21/Smad7 Signaling Interactions In Vivo and In Vitro. Antimicrob Agents Chemother 2017; 61:AAC.01347-16. [PMID: 27872076 DOI: 10.1128/aac.01347-16] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/17/2016] [Indexed: 12/23/2022] Open
Abstract
This study investigated the antischistosomiasis liver fibrosis effects of chlorogenic acid (CGA) on interleukin 13 (IL-13)/microRNA-21 (miR-21)/Smad7 signaling interactions in the hepatic stellate LX2 cell line and schistosome-infected mice. The transfection was based on the ability of the GV273-miR-21-enhanced green fluorescent protein (EGFP) and GV369-miR-21-EGFP lentiviral system to up- or downregulate the miR-21 gene in LX2 cells. The mRNA expression of miR-21, Smad7, and connective tissue growth factor (CTGF) and the protein expression of Smad7, CTGF, Smad1, phosphor-Smad1 (p-Smad1), Smad2, p-Smad2, Smad2/3, p-Smad2/3, transforming growth factor β (TGF-β) receptor I, and α-smooth muscle actin (α-SMA) was assayed. Pathological manifestation of hepatic tissue was assessed for the degree of liver fibrosis in animals. The results showed that CGA could inhibit the mRNA expression of miR-21, promote Smad7, and inhibit CTGF mRNA expression. Meanwhile, CGA could significantly lower the protein levels of CTGF, p-Smad1, p-Smad2, p-Smad2/3, TGF-β receptor I, and α-SMA and elevate the Smad7 protein level. In vivo, with treatment with CGA, the signaling molecules of IL-13/miR-21/Smad7 interactions were markedly regulated. CGA could also reduce the degree of liver fibrosis in pathological manifestations. In conclusion, CGA could inhibit schistosomiasis-induced hepatic fibrosis through IL-13/miR-21/Smad7 signaling interactions in LX2 cells and schistosome-infected mice and might serve as an antifibrosis agent for treating schistosomiasis liver fibrosis.
Collapse
|
55
|
Li HR, Liu J, Zhang SL, Luo T, Wu F, Dong JH, Guo YJ, Zhao L. Corilagin ameliorates the extreme inflammatory status in sepsis through TLR4 signaling pathways. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:18. [PMID: 28056977 PMCID: PMC5217594 DOI: 10.1186/s12906-016-1533-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 12/19/2016] [Indexed: 11/18/2022]
Abstract
Background Sepsis is one of the serious disorders in clinical practice. Recent studies found toll-like receptors 4 (TLR4) played an important role in sepsis. In this study, we tried to find the influence of Corilagin on TLR4 signal pathways in vitro and in vivo. Methods The cellular and animal models of sepsis were established by LPS and then interfered with Corilagin. Real-time PCR and western blot were employed to detect the mRNA and protein expressions of TLR4, MyD88, TRIF and TRAF6. ELISA was used to determine the IL-6 and IL-1β levels in supernatant and serum. Results The survival rate was improved in the LPS + Corilagin group, and the mRNA and protein expressions of TLR4, MyD88, TRIF and TRAF6 were significantly decreased than that in the LPS group both in cellular and animal models (P < 0.01). The pro-inflammatory cytokines IL-6 and IL-1β were greatly decreased in the LPS + Corilagin group both in supernatant and serum (P < 0.01). Conclusions Corilagin exerts the anti-inflammatory effects by down-regulating the TLR4 signaling molecules to ameliorate the extreme inflammatory status in sepsis.
Collapse
|
56
|
Mechanism of Corilagin interference with IL-13/STAT6 signaling pathways in hepatic alternative activation macrophages in schistosomiasis-induced liver fibrosis in mouse model. Eur J Pharmacol 2016; 793:119-126. [PMID: 27845069 DOI: 10.1016/j.ejphar.2016.11.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/09/2016] [Accepted: 11/11/2016] [Indexed: 12/15/2022]
Abstract
This study tried to find the mechanism of Corilagin interference with interleukin (IL)-13/signal transducer and activator of transcription (STAT) 6 signaling pathways in IL-13-activated liver alternative activation macrophages in schistosomiasis-induced liver fibrosis in Balb/c mice. As a result, IL-13 in serum and the mRNA expression of IL-13 Receptor α1, IL-4 Receptor α and downstream mediators supressor of cytokine signaling (SOCS) 1, Kruppel-like factor (KLF) 4, peroxisome proliferator-activated receptor (PPAR) δ in the liver tissue were significantly inhibited by Corilagin (P<0.05 or 0.01). The protein expression of IL-13 Receptor α1, IL-4 Receptor α, SOCS1, KLF4, PPARγ, PPARδ and Phospho-STAT6 (P-STAT6) in Corilagin group were also markedly suppressed when compared with the model group (P<0.05 or 0.01). Furthermore, the inhibitory effect was enhanced when the concentration of Corilagin increased (P<0.05). By hematoxylin and eosin (HE) staining, when compared with the model group, the Corilagin group showed smaller granulomas (P<0.05 or 0.01). The area of positive cells and integrated optical density (IOD) of CD68, CD206 and KLF4 was significantly decreased by Corilagin stained by IHC (P<0.05 or 0.01). In conclusion, Corilagin had potential to relieve hepatic fibrosis caused by egg granuloma in Schistosoma japonicum infection by decreasing the expression of molecules associated with IL-13/STAT6 signaling pathway in liver alternative activation macrophages.
Collapse
|
57
|
Ding Y, Xiong XL, Zhou LS, Yan SQ, Qin H, Li HR, Zhang LL, Chen P, Yao C, Jiang ZX, Zhao L. Preliminary study on Emodin alleviating alpha-naphthylisothiocyanate-induced intrahepatic cholestasis by regulation of liver farnesoid X receptor pathway. Int J Immunopathol Pharmacol 2016; 29:805-811. [PMID: 27707957 DOI: 10.1177/0394632016672218] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/05/2016] [Indexed: 12/15/2022] Open
Abstract
The aim of this study is to investigate Emodin on alleviating intrahepatic cholestasis by regulation of liver farnesoid X receptor (FXR) pathway. Cell and animal models of intrahepatic cholestatis were established. Biochemical tests and histomorphology were performed. The messenger RNA (mRNA) and protein expression of FXR, small heterodimer partner (SHP), uridine diphosphate glucuronosyltransferase 2 family polypeptide B4 (UGT2B4), and bile salt export pump (BSEP) was detected. As a result, compared with the model group, the serum levels of biochemical test were significantly lower in the Emodin group (P <0.01). The histopathological changes were remitted significantly by Emodin treatment. In the model group, the mRNA and protein expression of FXR, SHP, UGT2B4, and BSEP was significantly lower than in the normal group in cell models (P <0.05). With Emodin intervention, the expression of FXR, SHP, UGT2B4, and BSEP was notably increased (P <0.05). In conclusion, Emodin plays a protective role in intrahepatic cholestasis by promoting FXR signal pathways.
Collapse
Affiliation(s)
- Yan Ding
- Department of Infectious Diseases and Immunology, Wuhan Medical & Healthcare Center for Women and Children, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xiao-Li Xiong
- Department of Integrated Chinese and Western Medicine, Wuhan Medical & Healthcare Center for Women and Children, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Li-Shan Zhou
- Department of Integrated Chinese and Western Medicine, Wuhan Medical & Healthcare Center for Women and Children, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Su-Qi Yan
- Department of Integrated Chinese and Western Medicine, Wuhan Medical & Healthcare Center for Women and Children, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Huan Qin
- Department of Clinical Laboratory, Wuhan Medical & Healthcare Center for Women and Children, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Hua-Rong Li
- Department of Integrated Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Ling-Ling Zhang
- Department of Integrated Chinese and Western Medicine, Wuhan Medical & Healthcare Center for Women and Children, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Peng Chen
- Department of Respiration, Wuhan Medical & Healthcare Center for Women and Children, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Cong Yao
- Department of Health, Wuhan Medical & Healthcare Center for Women and Children, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Zhi-Xia Jiang
- Department of Integrated Chinese and Western Medicine, Wuhan Medical & Healthcare Center for Women and Children, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Lei Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| |
Collapse
|
58
|
Zhou Y, Zeng YP, Zhou Q, Guan JX, Lu ZN. The effect of cyclin-dependent kinases inhibitor treatment on experimental herpes simplex encephalitis mice. Neurosci Lett 2016; 627:71-6. [DOI: 10.1016/j.neulet.2016.05.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 10/21/2022]
|
59
|
Yang F, Wang Y, Xue J, Ma Q, Zhang J, Chen YF, Shang ZZ, Li QQ, Zhang SL, Zhao L. Effect of Corilagin on the miR-21/smad7/ERK signaling pathway in a schistosomiasis-induced hepatic fibrosis mouse model. Parasitol Int 2016; 65:308-15. [DOI: 10.1016/j.parint.2016.03.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/28/2016] [Accepted: 03/01/2016] [Indexed: 12/28/2022]
|
60
|
Elmann A, Beit-Yannai E, Telerman A, Ofir R, Mordechay S, Erlank H, Borochov-Neori H. Pulicaria incisa infusion attenuates inflammatory responses of brain microglial cells. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
61
|
Corilagin ameliorates schistosomiasis hepatic fibrosis through regulating IL-13 associated signal pathway in vitro and in vivo. Parasitology 2016; 143:1629-38. [DOI: 10.1017/s0031182016001128] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
SUMMARYInterleukin (IL)-13-associated signal pathway plays an important role in schistosomiasis hepatic fibrosis. In this study we tried to investigate the effects of corilagin to ameliorate schistosomiasis hepatic fibrosis through regulating IL-13-associated signal pathway in vitro and in vivo. Cellular model was set up with hepatic stellate cells-T6 cells stimulated by rIL-13 and male Balb/c mice were infected with Schistosoma japonicum cercariaeas as animal model. Liver histological changes were observed with haematoxylin and eosin staining. Masson staining was employed to observe the change of egg granulomas. Expression of Col (collagen) and Col III were examined with Immunohistochemistry. Western bolt was employed to detect the JAK-1 and IL13Rα1 proteins. The mRNA expression of Col I, Col III, IL-13, JAK-1 and IL13Rα1 were tested by quantitative polymerase chain reaction. As a result, less inflammatory changes were found in all corilagin groups compared with model group and praziquantel group. The mRNA levels of Col I, Col III, IL-13, JAK-1 and IL13Rα1 were significantly decreased after corilagin intervention (P < 0·01). JAK-1 and IL-13Rα1 protein levels were also greatly decreased in the corilagin groups (P < 0·01). In conclusion, corilagin could ameliorate schistosomiasis hepatic fibrosis by down-regulating the expression of IL-13 and signal molecules in IL-13 pathway.
Collapse
|
62
|
Kwon SH, Ma SX, Hwang JY, Ko YH, Seo JY, Lee BR, Lee SY, Jang CG. The Anti-Inflammatory Activity of Eucommia ulmoides Oliv. Bark. Involves NF-κB Suppression and Nrf2-Dependent HO-1 Induction in BV-2 Microglial Cells. Biomol Ther (Seoul) 2016; 24:268-82. [PMID: 27068259 PMCID: PMC4859790 DOI: 10.4062/biomolther.2015.150] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/11/2015] [Accepted: 12/02/2015] [Indexed: 11/05/2022] Open
Abstract
In the present study, we investigated the anti-inflammatory properties of Eucommia ulmoides Oliv. Bark. (EUE) in lipopolysaccharide (LPS)-stimulated microglial BV-2 cells and found that EUE inhibited LPS-mediated up-regulation of pro-inflammatory response factors. In addition, EUE inhibited the elevated production of pro-inflammatory cytokines, mediators, and reactive oxygen species (ROS) in LPS-stimulated BV-2 microglial cells. Subsequent mechanistic studies revealed that EUE suppressed LPS-induced phosphorylation of mitogen-activated protein kinases (MAPKs), phosphoinositide-3-kinase (PI3K)/Akt, glycogen synthase kinase-3β (GSK-3β), and their downstream transcription factor, nuclear factor-kappa B (NF-κB). EUE also blocked the nuclear translocation of NF-κB and inhibited its binding to DNA. We next demonstrated that EUE induced the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and upregulated heme oxygenase-1 (HO-1) expression. We determined that the significant up-regulation of HO-1 expression by EUE was a consequence of Nrf2 nuclear translocation; furthermore, EUE increased the DNA binding of Nrf2. In contrast, zinc protoporphyrin (ZnPP), a specific HO-1 inhibitor, blocked the ability of EUE to inhibit NO and PGE2 production, indicating the vital role of HO-1. Overall, our results indicate that EUE inhibits pro-inflammatory responses by modulating MAPKs, PI3K/Akt, and GSK-3β, consequently suppressing NF-κB activation and inducing Nrf2-dependent HO-1 activation.
Collapse
Affiliation(s)
- Seung-Hwan Kwon
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Shi-Xun Ma
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ji-Young Hwang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yong-Hyun Ko
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ji-Yeon Seo
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Bo-Ram Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seok-Yong Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
63
|
Tenório JA, do Monte DS, da Silva TM, da Silva TG, Ramos CS. Solanum paniculatum root extract reduces diarrhea in rats. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2016. [DOI: 10.1016/j.bjp.2016.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
64
|
Lou L, Zhou J, Liu Y, Wei YI, Zhao J, Deng J, Dong B, Zhu L, Wu A, Yang Y, Chai L. Chlorogenic acid induces apoptosis to inhibit inflammatory proliferation of IL-6-induced fibroblast-like synoviocytes through modulating the activation of JAK/STAT and NF-κB signaling pathways. Exp Ther Med 2016; 11:2054-2060. [PMID: 27168850 DOI: 10.3892/etm.2016.3136] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 02/11/2016] [Indexed: 01/13/2023] Open
Abstract
Chlorogenic acid (CGA) is the primary constituent of Caulis Lonicerae, a Chinese herb used for the treatment of rheumatoid arthritis (RA). The present study aimed to investigate whether CGA was able to inhibit the proliferation of the fibroblast-like synoviocyte cell line (RSC-364), stimulated by interleukin (IL)-6, through inducing apoptosis. Following incubation with IL-6 or IL-6 and CGA, the cellular proliferation of RSC-364 cells was detected by MTT assay. The ratio of apoptosed cells were detected by flow cytometry. Western blot analysis was performed to observe protein expression levels of key molecules involved in the Janus-activated kinase/signal transducer and activator of transcription 3 (JAK/STAT) signaling pathway [phosphorylated (p)-STAT3, JAK1 and gp130] and the nuclear factor κB (NF-κB) signaling pathway [phosphorylated (p)-inhibitor of κB kinase subunit α/β and NF-κB p50). It was revealed that CGA was able to inhibit the inflammatory proliferation of RSC-364 cells mediated by IL-6 through inducing apoptosis. CGA was also able to suppress the expression levels of key molecules in the JAK/STAT and NF-κB signaling pathways, and inhibit the activation of these signaling pathways in the inflammatory response through IL-6-mediated signaling, thereby resulting in the inhibition of the inflammatory proliferation of synoviocytes. The present results indicated that CGA may have potential as a novel therapeutic agent for inhibiting inflammatory hyperplasia of the synovium through inducing synoviocyte apoptosis in patients with RA.
Collapse
Affiliation(s)
- Lixia Lou
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Jingwei Zhou
- Department of Renal Endocrinology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Yujun Liu
- Department of Rheumatology, Putuo District Center Hospital, Shanghai 200000, P.R. China
| | - Y I Wei
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Jiuli Zhao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Jiagang Deng
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi 530001, P.R. China
| | - Bin Dong
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Lingqun Zhu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Aiming Wu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Yingxi Yang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Limin Chai
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| |
Collapse
|
65
|
Enhanced oral bioavailability and in vivo antioxidant activity of chlorogenic acid via liposomal formulation. Int J Pharm 2016; 501:342-9. [DOI: 10.1016/j.ijpharm.2016.01.081] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/30/2016] [Accepted: 01/31/2016] [Indexed: 02/02/2023]
|
66
|
Infiltration Pattern of Blood Monocytes into the Central Nervous System during Experimental Herpes Simplex Virus Encephalitis. PLoS One 2015; 10:e0145773. [PMID: 26700486 PMCID: PMC4689369 DOI: 10.1371/journal.pone.0145773] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/08/2015] [Indexed: 12/14/2022] Open
Abstract
The kinetics and distribution of infiltrating blood monocytes into the central nervous system and their involvement in the cerebral immune response together with resident macrophages, namely microglia, were evaluated in experimental herpes simplex virus 1 (HSV-1) encephalitis (HSE). To distinguish microglia from blood monocyte-derived macrophages, chimeras were generated by conditioning C57BL/6 recipient mice with chemotherapy regimen followed by transplantation of bone morrow-derived cells that expressed the green fluorescent protein. Mice were infected intranasally with a sub-lethal dose of HSV-1 (1.2x106 plaque forming units). Brains were harvested prior to and on days 4, 6, 8 and 10 post-infection for flow cytometry and immunohistochemistry analysis. The amounts of neutrophils (P<0.05) and «Ly6Chi» inflammatory monocytes (P<0.001) significantly increased in the CNS compared to non-infected controls on day 6 post-infection, which corresponded to more severe clinical signs of HSE. Levels decreased on day 8 for both leukocytes subpopulations (P<0.05 for inflammatory monocytes compared to non-infected controls) to reach baseline levels on day 10 following infection. The percentage of «Ly6Clow» patrolling monocytes significantly increased (P<0.01) at a later time point (day 8), which correlated with the resolution phase of HSE. Histological analysis demonstrated that blood leukocytes colonized mostly the olfactory bulb and the brainstem, which corresponded to regions where HSV-1 particles were detected. Furthermore, infiltrating cells from the monocytic lineage could differentiate into activated local tissue macrophages that express the microglia marker, ionized calcium-binding adaptor molecule 1. The lack of albumin detection in the brain parenchyma of infected mice showed that the infiltration of blood leukocytes was not necessarily related to a breakdown of the blood-brain barrier but could be the result of a functional recruitment. Thus, our findings suggest that blood monocyte-derived macrophages infiltrate the central nervous system and may contribute, with resident microglia, to the innate immune response seen during experimental HSE.
Collapse
|