51
|
Shinde SB, Nille OS, Gore AH, Birajdar NB, Kolekar GB, Anbhule PV. Valorization of Waste Tungsten Filament into mpg-C 3N 4-WO 3 Photocatalyst: A Sustainable e-Waste Management and Wastewater Treatment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13543-13557. [PMID: 36282958 DOI: 10.1021/acs.langmuir.2c02171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The waste of tungsten filament materials in the environment is one of the reasons for environmental pollution, and it is very dangerous to animals and plants. To date, not much attention has been given to its utility or recyclability. Herein, the present work reported the synthesis of tungsten trioxide nanoparticles (WO3 NPs) by the utilization of cost-free waste tungsten filament by a simple calcination method. A mesoporous graphitic carbon nitride-tungsten trioxide (mpg-C3N4-WO3) composite designed from the WO3 NPs produced from tungsten filament waste and thiourea as a carbon and nitrogen precursor by a one-step calcination method. The synthesized samples were characterized and confirmed by different characterization techniques. The photocatalytic behavior of the synthesized mpg-C3N4-WO3 composite was assessed, with respect to the effect of initial pH, amount of photocatalyst, dye concentration, and reaction time, as well for the degradation of Methylene Blue (MB) dye under sunlight. The best photocatalytic performance (92%) was achieved using mpg-C3N4-WO3 with experimental condition ([photocatalyst] = 100 mg/L, [MB]0 = 10 mg/L, pH 8, and time = 120 min) under sunlight irradiation with excellent photostability than that of isolated mpg-C3N4 and WO3 NPs. The histotoxicological studies also showed that the photodegraded products of MB were found to be nontoxic and did not structurally changes in the gill architecture as well as brain tissues of freshwater fish Labeo rohita.
Collapse
Affiliation(s)
- Sachin B Shinde
- Medicinal Material Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur-416004, Maharashtra, India
| | - Omkar S Nille
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur-416004, Maharashtra, India
| | - Anil H Gore
- Tarsadia Institute of Chemical Science, Uka Tarsadia University, Bardoli-394350, Gujarat, India
| | - Nagesh B Birajdar
- Department of Zoology, Shivaji University, Kolhapur-416004, Maharashtra, India
| | - Govind B Kolekar
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur-416004, Maharashtra, India
| | - Prashant V Anbhule
- Medicinal Material Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur-416004, Maharashtra, India
| |
Collapse
|
52
|
Tessema A, Wu CM, Motora KG. Highly Efficient Solar Light Driven g-C 3N 4@Cs 0.33WO 3 Heterojunction for the Photodegradation of Colorless Antibiotics. ACS OMEGA 2022; 7:38475-38486. [PMID: 36340061 PMCID: PMC9631413 DOI: 10.1021/acsomega.2c03675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
This study facilitates the synthesis of a graphitic carbon nitride/cesium tungsten oxide (g-C3N4@Cs0.33WO3) heterojunction using a solvothermal method. The photocatalytic activities of the prepared samples were examined for the photodegradation of colorless antibiotics, namely tetracycline, enrofloxacin, and ciprofloxacin, as well as cationic and anionic dyes, such as methyl orange, rhodamine B, neutral red, and methylene blue, under full-spectrum solar light. We have purposely selected different kinds of wastewater pollutants of colorless antibiotics and cationic and anionic organic dyes to investigate the potential application of this heterojunction toward different groups of water pollutants. The results revealed that the g-C3N4@Cs0.33WO3 heterojunction showed an outstanding photocatalytic activity toward all the pollutants with concentrations of 20 ppm each at pH 3 by photocatalytically removing 97% of tetracycline within 3 h, 98% of enrofloxacin within 2 h, 97% of ciprofloxacin within 2.25 h, 98% of methylene blue in 1 h, 99% of rhodamine B within 2 h, 99% of neutral red in 1.25 h, and 95% of methyl orange in 2 h. These findings indicate that the developed photocatalyst possesses excellent photocatalytic properties toward seven different water pollutants that make it a universal photocatalyst. The developed g-C3N4@Cs0.33WO3 oxide heterojunction also presented a photocatalytic performance better than those of reported solar light active photocatalysts for photodegradation of rhodamine B and tetracycline. The efficient photocatalytic performance of the heterojunction can be ascribed to its extended light-absorbing ability, effective charge separation and fast charge transfer properties, and a high surface area. Moreover, an active species detection experiment also confirmed that superoxide radicals, hydroxyl radicals, and holes played significant roles in the photocatalysis of the organic dyes and tetracycline.
Collapse
|
53
|
Mohamed HEA, Hilal‐Alnaqbi A, Dagher S, Akhozheya B, Maaza M. Green synthesis of CdWO
4
Nanorods with Enhanced Photocatalytic Activity Utilizing Hyphaene Thebaica Fruit. ChemistrySelect 2022. [DOI: 10.1002/slct.202201442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hamza Elsayed Ahmed Mohamed
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology College of Graduate Studies University of South Africa Pretoria South Africa
- Nanosciences African Network (NANOAFNET) iThemba LABS-National Research Foundation of South Africa, SomersetWest Western Cape 7129 South Africa
| | | | - Sawsan Dagher
- Department of Electromechanical Engineering Abu Dhabi Polytechnic Abu Dhabi, UAE
| | - Boshra Akhozheya
- Department of Building & Architectural Engineering Polytechnic University of Milan Milan Italy
| | - Malik Maaza
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology College of Graduate Studies University of South Africa Pretoria South Africa
- Nanosciences African Network (NANOAFNET) iThemba LABS-National Research Foundation of South Africa, SomersetWest Western Cape 7129 South Africa
| |
Collapse
|
54
|
Sharmin F, Basith MA. Simple Low Temperature Technique to Synthesize Sillenite Bismuth Ferrite with Promising Photocatalytic Performance. ACS OMEGA 2022; 7:34901-34911. [PMID: 36211068 PMCID: PMC9535739 DOI: 10.1021/acsomega.2c03457] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Sillenite-type members of the bismuth ferrite family have demonstrated outstanding potential as novel photocatalysts in environmental remediation such as organic pollutant degradation. This investigation has developed a low temperature one-step hydrothermal technique to fabricate sillenite bismuth ferrite Bi25FeO40 (S-BFO) via co-substitution of 10% Gd and 10% Cr in Bi and Fe sites of BiFeO3, respectively, by tuning hydrothermal reaction temperatures. Rietveld refined X-ray diffraction patterns of the as-synthesized powder materials revealed the formation of S-BFO at a reaction temperature of 120-160 °C. A further increase in the reaction temperature destroyed the desired sillenite structure. With the increase in the reaction temperature from 120 to 160 °C, the morphology of S-BFO gradually changed from irregular shape to spherical powder nanomaterials. The high-resolution TEM imaging demonstrated the polycrystalline nature of the S-BFO(160) nanopowders synthesized at 160 °C. The as-synthesized samples exhibited considerably high absorbance in the visible region of the solar spectrum, with the lowest band gap of 1.76 eV for the sample S-BFO(160). Interestingly, S-BFO(160) exhibited the highest photocatalytic performance under solar irradiation, toward the degradation of rhodamine B and methylene blue dyes owing to homogeneous phase distribution, regular powder-like morphology, lowest band gap, and quenching of electron-hole pair recombination. The photodegradation of a colorless organic pollutant (ciprofloxacin) was also examined to ensure that the degradation is photocatalytic and not dye-sensitized. In summary, Gd and Cr co-doping have proven to be a compelling energy-saving and low-cost approach for the formulation of sillenite-phase bismuth ferrite with promising photocatalytic activity.
Collapse
|
55
|
Enhanced boron modified graphitic carbon nitride for the selective photocatalytic production of benzaldehyde. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
56
|
Li Y, Wang X, Xia Y, Gao L. A Novel Visible-Light-Driven Photo-Fenton System Composed of Fe-Doped CdIn 2S 4/g-C 3N 4 Heterojunction and H 2O 2 to Remove Methyl Orange. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuzhen Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, 79 Yingze Street, Taiyuan, Wanbailin District 030024, China
| | - Xiaojin Wang
- College of Environmental Science and Engineering, Taiyuan University of Technology, 79 Yingze Street, Taiyuan, Wanbailin District 030024, China
| | - Yunsheng Xia
- Department of Chemistry, Bohai University, Jinzhou 121013, China
| | - Lizhen Gao
- College of Environmental Science and Engineering, Taiyuan University of Technology, 79 Yingze Street, Taiyuan, Wanbailin District 030024, China
- School of Mechanical Engineering, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| |
Collapse
|
57
|
Rostami M, Badiei A, Ganjali MR, Rahimi-Nasrabadi M, Naddafi M, Karimi-Maleh H. Nano-architectural design of TiO 2 for high performance photocatalytic degradation of organic pollutant: A review. ENVIRONMENTAL RESEARCH 2022; 212:113347. [PMID: 35513059 DOI: 10.1016/j.envres.2022.113347] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/18/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
In the past several decades, significant efforts have been paid toward photocatalytic degradation of organic pollutants in environmental research. During the past years, titanium dioxide nano-architectures (TiO2 NAs) have been widely used in water purification applications with photocatalytic degradation processes under Uv/Vis light illumination. Photocatalysis process with nano-architectural design of TiO2 is viewed as an efficient procedure for directly channeling solar energy into water treatment reactions. The considerable band-gap values and the subsequent short life time of photo-generated charge carriers are showed among the limitations of this approach. One of these effective efforts is the using of oxidation processes with advance semiconductor photocatalyst NAs for degradation the organic pollutants under UV/Vis irradiation. Among them, nano-architectural design of TiO2 photocatalyst (such as Janus, yolk-shell (Y@S), hollow microspheres (HMSs) and nano-belt) is an effective way to improve oxidation processes for increasing photocatalytic activity in water treatment applications. In the light of the above issues, this study tends to provide a critical overview of the used strategies for preparing TiO2 photocatalysts with desirable physicochemical properties like enhanced absorption of light, low density, high surface area, photo-stability, and charge-carrier behavior. Among the various nanoarchitectural design of TiO2, the Y@S and HMSs have created a great appeal given their considerable large surface area, low density, homogeneous catalytic environment, favorable light harvesting properties, and enhanced molecular diffusion kinetics of the particles. In this review was summarized the developments that have been made for nano-architectural design of TiO2 photocatalyst. Additional focus is placed on the realization of interfacial charge and the possibility of achieving charge carriers separation for these NAs as electron migration is the extremely important factor for increasing the photocatalytic activity.
Collapse
Affiliation(s)
- Mojtaba Rostami
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran; Biosensor Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Rahimi-Nasrabadi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran; Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran; Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Freiberg, 09599, Germany
| | - Mastoureh Naddafi
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, PR China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran; Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus 2028, Johannesburg, 17011, South Africa.
| |
Collapse
|
58
|
Chen M, Li M, Lee SLJ, Zhao X, Lin S. Constructing novel graphitic carbon nitride-based nanocomposites - From the perspective of material dimensions and interfacial characteristics. CHEMOSPHERE 2022; 302:134889. [PMID: 35551931 DOI: 10.1016/j.chemosphere.2022.134889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Two-dimensional (2D) graphitic carbon nitride (g-C3N4), a fascinating metal-free conjugated polymer, has garnered immense interest in the fields of solar power generation and environmental remediation. The construction of g-C3N4-based nanocomposites with materials of various dimensions can further improve their photocatalytic activities by surface area enlargement, bandgap tuning, heterojunction formation, etc. In this paper, we comprehensively reviewed the design, synthesis, and functionalities of g-C3N4-based nanocomposites based on their applications in hydrogen evolution, CO2 reduction, and pollutants removal. We provided detailed analyses on the integration of 2D g-C3N4 with zero-, one-, two-, and three-dimensional materials with a focus on their interfacial characteristics and functional improvement. This review aims to stimulate fresh ideas on the interfacial engineering of g-C3N4-based nanocomposites to broaden their future applications.
Collapse
Affiliation(s)
- Mengmeng Chen
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Mengxue Li
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Stephanie Ling Jie Lee
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Xi Zhao
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Sijie Lin
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China; College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
59
|
Cui KP, Yang TT, Chen YH, Weerasooriya R, Li GH, Zhou K, Chen X. Magnetic recyclable heterogeneous catalyst Fe 3O 4/g-C 3N 4 for tetracycline hydrochloride degradation via photo-Fenton process under visible light. ENVIRONMENTAL TECHNOLOGY 2022; 43:3341-3354. [PMID: 33886443 DOI: 10.1080/09593330.2021.1921052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/16/2021] [Indexed: 05/22/2023]
Abstract
Antibiotic pollution of water resources is a global problem, and the development of new treatments for destroying antibiotics in water is a priority research. We successfully manufactured recyclable magnetic Fe3O4/g-C3N4 through the electrostatic self-assembly method. Selecting tetracycline (TC) as the target pollutant, using Fe3O4/g-C3N4 and H2O2 developed a heterogeneous optical Fenton system to remove TC under visible light. Fe3O4/g-C3N4 was systematically characterized by SEM, TEM, XRD, FTIR, XPS, DRS, and electrochemical methods. The removal efficiency of 7% Fe3O4/g-C3N4 at pH = 3, H2O2 = 5 mM, and catalyst dosage of 1.0 g/L can reach 99.8%. After magnetic separation, the Fe3O4/g-C3N4 photocatalyst can be recycled five times with minimal efficiency loss. The excellent degradation performance of the prepared catalyst may be attributed to the proper coupling interface between Fe3O4 and g-C3N4 which promotes the separation and transfer of photogenerated electrons. Photogenerated electrons can also accelerate the conversion of Fe3+ to Fe2+, thereby producing more ˙OH. The new Fe3O4/g-C3N4 can be used as a raw material for advanced oxidation of water contaminated by refractory antibiotics.
Collapse
Affiliation(s)
- Kang-Ping Cui
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Ting-Ting Yang
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Yi-Han Chen
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Rohan Weerasooriya
- Key Lab of Aerospace Structural Parts Forming Technology and Equipment of Anhui Province, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei, People's Republic of China
- National Centre for Water Quality Research, National Institute of Fundamental Studies, Kandy, Sri Lanka
| | - Guang-Hong Li
- Anhui Shunyu Water Co., Ltd., Hefei, People's Republic of China
| | - Kai Zhou
- Anhui Shunyu Water Co., Ltd., Hefei, People's Republic of China
| | - Xing Chen
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, People's Republic of China
- Key Lab of Aerospace Structural Parts Forming Technology and Equipment of Anhui Province, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei, People's Republic of China
| |
Collapse
|
60
|
Efficient Z-scheme g-C3N4/MoO3 heterojunction photocatalysts decorated with carbon quantum dots: improved visible-light absorption and charge separation. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04804-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
61
|
Defect Engineering Modified Bismuth Vanadate toward Efficient Solar Hydrogen Peroxide Production. J Colloid Interface Sci 2022; 629:215-224. [DOI: 10.1016/j.jcis.2022.08.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/14/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022]
|
62
|
Zhang D, Liu Z, Mou R. Preparation and characterization of WO3/ZnO composite photocatalyst and its application for degradation of oxytetracycline in aqueous solution. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
63
|
Sharma D, Faraz M, Kumar D, Takhar D, Birajdar B, Khare N. Visible light activated V2O5/rGO nanocomposite for enhanced photodegradation of methylene blue dye and photoelectrochemical water splitting. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
64
|
Preparation of a Novel Composite Material Aluminum-Based MOF(DUT-5)/Bi2MoO6 for Degradation of Tetracycline. Catal Letters 2022. [DOI: 10.1007/s10562-022-04091-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
65
|
Hsu JW, Wei LW, Chen WR, Liu SH, Wang HP. Visible-Light Driven H 2O-to-H 2O 2 Reaction by Nitrogen-Enriched Resins for Photocatalytic Oxidation of an Organic Pollutant in Wastewater. ACS OMEGA 2022; 7:23727-23735. [PMID: 35847308 PMCID: PMC9281328 DOI: 10.1021/acsomega.2c02371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A photocatalytic H2O-to-H2O2 reaction for sustainable organic wastewater treatment is environmentally attractive. Phenolic resins, inexpensive metal-free photocatalysts, are capable of harvesting visible light. Herein, novel nitrogen-enriched resin photocatalysts with a desired band-gap energy (1.83-1.98 eV) for harvesting visible light were prepared by copolymerization of resorcinol and melem for simultaneous photocatalytic H2O-to-H2O2 and oxidation of methylene blue. Under visible light irradiation for 5 h, very high yields of H2O2 (870-975 μM of H2O2/g/h) by RFM resin photocatalysts could be achieved. The photocatalytic H2O2 for reactive oxygen species (•OH) and photogenerated h+ could account for high conversion (40% conversion under visible light irradiation within 3 h) in oxidation of methylene blue. Such unique low-cost metal-free resins demonstrate the visible light photocatalytic H2O-to-H2O2 reaction which can synergize with the oxidation of organic pollutants in wastewater.
Collapse
|
66
|
Zhao X, Li Z, Yu J, Li C, Xu S, Li F, Zhang C, Man B, Zhang C. Plasmonic and bi-piezoelectric enhanced photocatalysis using PVDF/ZnO/Au nanobrush. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:3339-3349. [PMID: 39635551 PMCID: PMC11501843 DOI: 10.1515/nanoph-2022-0194] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 12/07/2024]
Abstract
The photocatalytic degradation, as an environmental-friendly technology, has great significance for cost-effective and efficient catalysis processes, wherein piezo-photocatalysis can significantly increase the catalytic degradation rate using both solar and mechanical energy. Here, a ternary heterostructure PVDF/ZnO/Au (PZA) nanobrush photocatalyst with high piezo-photocatalytic efficiency was presented via low-temperature hydrothermal and chemical reduction methods. Under both solar and mechanical energy, the current response and degradation rate of the as-synthesized PZA nanobrush all increase significantly compared with that under solar alone and under mechanical energy alone, and the excellent recyclability is investigated. It is found that the PZA nanobrush with ultrasonic-assisted piezo-photocatalysis completely degrade MO of 20 mg/L in 60 min, which exhibits greater enhancement of photocatalytic activity than with stirring-assisted piezo-photocatalysis due to higher power. The high piezo-photocatalytic activity of PZA nanobrush is attributed to the surface plasmon resonance (SPR) coupling of Au and built-in electric field originating from the ZnO and PVDF, which can increase the absorption of visible light, promote the charge transfer and separation of photogenerated electrons/holes. This work introduces the SPR and bipiezotronic effect to improve plasmonic photocatalysis with PZA heterostructures, which offers a new solution in green technologies to design high-performance catalysts for the environmental remediation.
Collapse
Affiliation(s)
- Xiaofei Zhao
- School of Physics and Electronics, Shandong Normal University, Jinan250014, China
| | - Zhen Li
- School of Physics and Electronics, Shandong Normal University, Jinan250014, China
| | - Jing Yu
- School of Physics and Electronics, Shandong Normal University, Jinan250014, China
| | - Chonghui Li
- College of Physics and Electronic Information, Dezhou University, Dezhou253023, China
| | - Shicai Xu
- College of Physics and Electronic Information, Dezhou University, Dezhou253023, China
| | - Fengrui Li
- School of Physics and Electronics, Shandong Normal University, Jinan250014, China
| | - Chentao Zhang
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen361102, China
| | - Baoyuan Man
- School of Physics and Electronics, Shandong Normal University, Jinan250014, China
| | - Chao Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan250014, China
| |
Collapse
|
67
|
Ahmad N, Kuo CFJ, Mustaqeem M. Synthesis of novel CuNb 2O 6/g-C 3N 4 binary photocatalyst towards efficient visible light reduction of Cr (VI) and dyes degradation for environmental remediation. CHEMOSPHERE 2022; 298:134153. [PMID: 35283153 DOI: 10.1016/j.chemosphere.2022.134153] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/14/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
The further development of an efficient and sustainable water treatment requires the development of a very active and controllable photocatalyst. The heterojunction is a promising site where the activity of such a photocatalyst can be enhanced. Organic dyes have become a severe concern in recent years owing to their significant presence in wastewater. Hexavalent Chromium (Cr (VI)) is a potential carcinogen also exhibiting great persistence in wastewater. So, a low-waste, high-performance materials is required to eliminate organic dyes and Cr (VI) from wastewater. In this study, CNO/g-CN (CuNb2O6/g-C3N4) photocatalyst synthesized via co-precipitation, followed by calcination which were characterized using physiochemical and photo-electrochemical approaches to identify their structural, photochemical and optical traits. The uniqueness of the synthesized photocatalyst is due to both its efficient photo-reduction of Cr (VI) and photo-degradation of Rhodamine B (RhB), Methylene Blue (MB) and Methyl Orange (MO) under visible light. The CNO/g-CN composite with 30% CNO heterojunctions exhibited the highest photocatalytic activity with Cr (VI) 92.80% photoreduction and efficiency degradation for RhB, MB, MO of 99.6%, 98.50%, 99.0%, respectively, with constant rate (k). This efficient photocatalytic activity is attributed to the lower recombination rate of electron-hole pairs. Free radical trapping experiments showed that •O2- and h+ play an important role in the photodegradation. The study, therefore, opens an alternative route in the synthesis of very efficient binary photocatalysts for application in environmental remediation.
Collapse
Affiliation(s)
- Naveed Ahmad
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan, ROC
| | - Chung-Feng Jeffrey Kuo
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan, ROC.
| | - Mujahid Mustaqeem
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan, ROC
| |
Collapse
|
68
|
Design of hollow mesoporous TiO2@BiOBr/Bi4O5Br2 type-II/Z-scheme tandem heterojunctions under confinement effect: Improved space charge separation and enhanced visible-light photocatalytic performance. J Colloid Interface Sci 2022; 617:341-352. [DOI: 10.1016/j.jcis.2022.03.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/23/2022] [Accepted: 03/05/2022] [Indexed: 12/23/2022]
|
69
|
Kamaraj E, Lee YR, Balasubramani K. Fabrication of a visible‐light‐driven
p
‐type
NiWO
4
/
n
‐type
SnO
2
heterojunction with efficient photocatalytic activity for degradation of Amaranth. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Eswaran Kamaraj
- Department of Chemistry, College of Natural Sciences Kongju National University Gongju Republic of Korea
- School of Chemical Engineering Yeungnam University Gyeongsan Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering Yeungnam University Gyeongsan Republic of Korea
| | | |
Collapse
|
70
|
Liu X, Xu C, Xiao C, Tang Y, Chen X, Chen Y, Si Y, Zhu L, Wang X. Insights into the evaluation of photocatalytic quenching experimental results by degrading a dye. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04747-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
71
|
Poletti L, Ragno D, Bortolini O, Presini F, Pesciaioli F, Carli S, Caramori S, Molinari A, Massi A, Di Carmine G. Photoredox Cross-Dehydrogenative Coupling of N-Aryl Glycines Mediated by Mesoporous Graphitic Carbon Nitride: An Environmentally Friendly Approach to the Synthesis of Non-Proteinogenic α-Amino Acids (NPAAs) Decorated with Indoles. J Org Chem 2022; 87:7826-7837. [PMID: 35621232 PMCID: PMC9207928 DOI: 10.1021/acs.joc.2c00474] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
Indole-decorated
glycine derivatives are prepared through an environmentally
benign cross-dehydrogenative coupling between N-aryl
glycine analogues and indoles (yield of ≤81%). Merging heterogeneous
organocatalysis and photocatalysis, C–H functionalization has
been achieved by selective C-2 oxidation of N-aryl
glycines to afford the electrophilic imine followed by Friedel–Crafts
alkylation with indole. The sustainability of the process has been
taken into account in the reaction design through the implementation
of a metal-free recyclable heterogeneous photocatalyst and a green
reaction medium. Scale-up of the benchmark reaction (gram scale, yield
of 69%) and recycling experiments (over seven runs without a loss
of efficiency) have been performed to prove the robustness of the
protocol. Finally, mechanistic studies were conducted employing electron
paramagnetic resonance spectroscopy to unveil the roles of the photocatalyst
and oxygen in the formation of odd-electron species.
Collapse
Affiliation(s)
- Lorenzo Poletti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari, 46, 44121 Ferrara, Italy
| | - Daniele Ragno
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari, 46, 44121 Ferrara, Italy
| | - Olga Bortolini
- Department of Environmental and Prevention Sciences, University of Ferrara, Via L. Borsari, 46, 44121 Ferrara, Italy
| | - Francesco Presini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari, 46, 44121 Ferrara, Italy
| | - Fabio Pesciaioli
- Department of Physical and Chemical Sciences, Università degli Studi dell'Aquila, Via Vetoio, 42, 67100 L'Aquila, Italy
| | - Stefano Carli
- Department of Environmental and Prevention Sciences, University of Ferrara, Via L. Borsari, 46, 44121 Ferrara, Italy
| | - Stefano Caramori
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari, 46, 44121 Ferrara, Italy
| | - Alessandra Molinari
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari, 46, 44121 Ferrara, Italy
| | - Alessandro Massi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari, 46, 44121 Ferrara, Italy
| | - Graziano Di Carmine
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari, 46, 44121 Ferrara, Italy
| |
Collapse
|
72
|
Carbon-Based Nanocatalysts (CnCs) for Biomass Valorization and Hazardous Organics Remediation. NANOMATERIALS 2022; 12:nano12101679. [PMID: 35630900 PMCID: PMC9147642 DOI: 10.3390/nano12101679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/05/2023]
Abstract
The continuous increase of the demand in merchandise and fuels augments the need of modern approaches for the mass-production of renewable chemicals derived from abundant feedstocks, like biomass, as well as for the water and soil remediation pollution resulting from the anthropogenic discharge of organic compounds. Towards these directions and within the concept of circular (bio)economy, the development of efficient and sustainable catalytic processes is of paramount importance. Within this context, the design of novel catalysts play a key role, with carbon-based nanocatalysts (CnCs) representing one of the most promising class of materials. In this review, a wide range of CnCs utilized for biomass valorization towards valuable chemicals production, and for environmental remediation applications are summarized and discussed. Emphasis is given in particular on the catalytic production of 5-hydroxymethylfurfural (5-HMF) from cellulose or starch-rich food waste, the hydrogenolysis of lignin towards high bio-oil yields enriched predominately in alkyl and oxygenated phenolic monomers, the photocatalytic, sonocatalytic or sonophotocatalytic selective partial oxidation of 5-HMF to 2,5-diformylfuran (DFF) and the decomposition of organic pollutants in aqueous matrixes. The carbonaceous materials were utilized as stand-alone catalysts or as supports of (nano)metals are various types of activated micro/mesoporous carbons, graphene/graphite and the chemically modified counterparts like graphite oxide and reduced graphite oxide, carbon nanotubes, carbon quantum dots, graphitic carbon nitride, and fullerenes.
Collapse
|
73
|
Hajiali M, Farhadian M, Tangestaninejad S, khosravi M. Synthesis and characterization of Bi2MoO6/MIL-101(Fe) as a novel composite with enhanced photocatalytic performance: Effect of water matrix and reaction mechanism. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103546] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
74
|
George JK, Bhagat A, Bhaduri B, Verma N. Carbon Nanofiber-Bridged Carbon Nitride-Fe2O3 Photocatalyst: Hydrogen Generation and Degradation of Aqueous Organics. Catal Letters 2022. [DOI: 10.1007/s10562-022-03985-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
75
|
Environment Friendly g-C3N4-Based Catalysts and Their Recent Strategy in Organic Transformations. HIGH ENERGY CHEMISTRY 2022. [PMCID: PMC8960706 DOI: 10.1134/s0018143922020102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Organic molecules synthesized in an environmentally friendly manner have excellent therapeutic potential. The entire preparation technique was examined in the existence of a light source, implying that light has been replaced by heating and the usage of dangerous chemicals has decreased, resulting in less pollution of the environment. The advantages of these nanocarbon catalysts include high efficiency, environmentally friendly synthesis, eco-friendly, inexpensive, and non-corrodible. In organic transformations, solid metal base/metal-free catalysts produce better results. Here, the metal-free semiconductor g-C3N4 was used to demonstrate the catalytic behavior of organic conversions. g-C3N4 is a two-dimensional material and a p‑type semiconductor to enhance the photocatalytic activity. The excellent properties of g-C3N4 sheet lead to the support of metals to form metal-organic frameworks. Most of the reactions gained positive response under visible light irradiation. This review will inspire readers in widen the applications of g-C3N4 based catalyst in various organic transformation reactions.
Collapse
|
76
|
Habibi-Yangjeh A, Basharnavaz H, Hossein Kamali S. Enhancement in hydrogen storage capabilities of Cr, Mo, and W-embedded graphitic carbon nitride nanosheets: A DFT investigation. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
77
|
Kumar A, Kashyap S, Sharma M, Krishnan V. Tuning the surface and optical properties of graphitic carbon nitride by incorporation of alkali metals (Na, K, Cs and Rb): Effect on photocatalytic removal of organic pollutants. CHEMOSPHERE 2022; 287:131988. [PMID: 34523438 DOI: 10.1016/j.chemosphere.2021.131988] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
Alkali metals have been known for their intercalation properties and can be employed for the separation of stacking in sheet-like materials. In this work, alkali metals (Na, K, Rb and Cs) have been systematically incorporated in varying concentrations in g-C3N4 sheets and their effect on resulting optical, surface and photocatalytic properties have been explored in detail. It was observed that the optical, electronic and surface properties of g-C3N4 were altered upon the incorporation of different alkali metal ions. The band gap and specific surface area of resulting materials were decreased as compared to the pristine g-C3N4. In addition, the alkali metal incorporation in g-C3N4 sheets showed the formation of cyanide groups and nitrogen vacancies in the resulted materials. Further, the photocatalytic activity of g-C3N4 and alkali metal incorporated g-C3N4 was calculated by studying the degradation of acid red 94 dye under visible light irradiation. It was observed that the photocatalytic activity of pristine g-C3N4 sheets was decreased with an increase in the concentration of alkali salt used during the synthesis of alkali metal incorporated g-C3N4. This decrease in the activity could arise due to the decreased surface area, detrimental amount of nitrogen vacancies and high concentration of alkali metal ions incorporated in the structural framework of g-C3N4 sheets. This work provides a unique example of the adverse effect of alkali metal ions on photocatalytic activity of g-C3N4 and paves future directions for the improvement of the performance of g-C3N4 based materials.
Collapse
Affiliation(s)
- Ashish Kumar
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, 175075, Himachal Pradesh, India
| | - Saniya Kashyap
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, 175075, Himachal Pradesh, India
| | - Manisha Sharma
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, 175075, Himachal Pradesh, India
| | - Venkata Krishnan
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, 175075, Himachal Pradesh, India.
| |
Collapse
|
78
|
Yang H, He D, Liu C, Zhang T, Qu J, Jin D, Zhang K, Lv Y, Zhang Z, Zhang YN. Visible-light-driven photocatalytic disinfection by S-scheme α-Fe 2O 3/g-C 3N 4 heterojunction: Bactericidal performance and mechanism insight. CHEMOSPHERE 2022; 287:132072. [PMID: 34481174 DOI: 10.1016/j.chemosphere.2021.132072] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
High-performance photocatalytic applications require to develop heterostructures between two semiconductors with matched band energy levels to facilitate charge-carrier separation. The S-scheme photocatalytic system has great potential to be explored, in terms of the improvement of charge separation, however, small efforts have been made in photocatalytic disinfection application. In this study, a non-toxic and low-cost S-scheme photocatalytic system composed of α-Fe2O3 and g-C3N4 was fabricated by in-suit production of g-C3N4 and firstly applied into water disinfection. The α-Fe2O3/g-C3N4 junction demonstrated an enhanced activity for photocatalytic bacterial inactivation, with the complete inactivation of 7 log10 cfu·mL-1 of Escherichia coli K-12 cells within 120 min under visible light irradiation. Its logarithmic bacterial inactivation efficiency was nearly 7 times better than that of single g-C3N4. The experimental results suggested that the effective prevention of charge-carrier recombination led to an improved generation of reactive oxygen species (ROSs), resulting in impressive disinfection performance. Moreover, the DNA gel electrophoresis experiments validated the reason for the irreversible death of bacteria, which was the leakage and destruction of chromosomal DNA. In addition, this S-scheme heterojunction also showed excellent photocatalytic disinfection performance in authentic water matrices (including tap water, secondary treated sewage effluent, and surface water) under visible light irradiation. Hence, the α-Fe2O3/g-C3N4 composite has great potential for sustainable and efficient photocatalytic disinfection applications.
Collapse
Affiliation(s)
- Hao Yang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China.
| | - Dongyang He
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China.
| | - Chuanhao Liu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China.
| | - Tingting Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China.
| | - Jiao Qu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China.
| | - Dexin Jin
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China.
| | - Kangning Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China.
| | - Yihan Lv
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China.
| | - Zhaocheng Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China.
| | - Ya-Nan Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China.
| |
Collapse
|
79
|
Pattappan D, Kavya KV, Vargheese S, Kumar RTR, Haldorai Y. Graphitic carbon nitride/NH 2-MIL-101(Fe) composite for environmental remediation: Visible-light-assisted photocatalytic degradation of acetaminophen and reduction of hexavalent chromium. CHEMOSPHERE 2022; 286:131875. [PMID: 34411933 DOI: 10.1016/j.chemosphere.2021.131875] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/29/2021] [Accepted: 08/10/2021] [Indexed: 05/24/2023]
Abstract
Herein, an efficient photocatalyst composed of graphitic carbon nitrate and iron-based metal-organic framework (g-C3N4/NH2-MIL-101(Fe)) composite was fabricated by a solvothermal method for the degradation of acetaminophen (AAP) and reduction of Cr(VI) under sunlight illumination. The composite was confirmed by X-ray diffraction. UV-visible spectra showed that the bare g-C3N4, pure Fe-MOF, and composite harvest solar light effectively. The photocatalytic experiment indicated that the composite exhibited superior reduction efficiency of Cr(VI) (66%) compared to the bare g-C3N4 (35%) and pure Fe-MOF (51%) at pH 7. As the pH decreases from 9 to 2, the reduction efficiency increased. The highest Cr(VI) reduction (91%) was observed at pH 2. On the other hand, the catalyst degraded 94% of AAP at pH 7 compared to the bare g-C3N4 (42%) and pure Fe-MOF (60%) in the presence of hydrogen peroxide. A radical scavenger experiment endorsed that the generation of superoxide radicals was the main reason for the AAP degradation. The cyclic stability test indicated that there was no substantial decrease in the degradation efficiency of AAP after ten repeated cycles. The kinetic studies showed that the photodegradation of AAP and reduction Cr(VI) was well-fitted to the first-order kinetics. Gas chromatography-mass spectrometry analysis showed that hydroquinone, aliphatic carboxylic acids, monohydroxy, and dihydroxy paracetamol were the main products formed as a result of such degradation process. Therefore, the iron-based MOF and their composites can be used as effective photocatalysts for pollutants degradation.
Collapse
Affiliation(s)
- Dhanaprabhu Pattappan
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, 641046. Tamilnadu, India
| | - K V Kavya
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, 641046. Tamilnadu, India
| | - Stella Vargheese
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, 641046. Tamilnadu, India
| | - R T Rajendra Kumar
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, 641046. Tamilnadu, India
| | - Yuvaraj Haldorai
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, 641046. Tamilnadu, India.
| |
Collapse
|
80
|
Li T, Shi J, Liu Z, Xie W, Cui K, Hu B, Che G, Wang L, Zhou T, Liu C. Constructing porous intramolecular donor–acceptor integrated carbon nitride doped with m-aminophenol for boosting photocatalytic degradation and hydrogen evolution activity. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00897a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A porous intramolecular D–A integrated carbon nitride with boosted photocatalytic activity was constructed via thermal melting followed by thermal copolymerization of m-aminophenol with urea.
Collapse
Affiliation(s)
- Tiantian Li
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun 130103, P.R. China
- College of Chemistry, Jilin Normal University, Siping 136000, P.R. China
| | - Jingmin Shi
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun 130103, P.R. China
- College of Chemistry, Jilin Normal University, Siping 136000, P.R. China
| | - Zhixue Liu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun 130103, P.R. China
- College of Chemistry, Jilin Normal University, Siping 136000, P.R. China
| | - Wei Xie
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun 130103, P.R. China
- College of Chemistry, Jilin Normal University, Siping 136000, P.R. China
| | - Keyu Cui
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun 130103, P.R. China
- College of Chemistry, Jilin Normal University, Siping 136000, P.R. China
| | - Bo Hu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun 130103, P.R. China
- College of Chemistry, Jilin Normal University, Siping 136000, P.R. China
| | - Guangbo Che
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun 130103, P.R. China
- College of Environmental Science and Engineering, Jilin Normal University, Siping 136000, P.R. China
- School of Chemistry, Baicheng Normal University, Baicheng 137099, P.R. China
| | - Liang Wang
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun 130103, P.R. China
- College of Chemistry, Jilin Normal University, Siping 136000, P.R. China
| | - Tianyu Zhou
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun 130103, P.R. China
- College of Environmental Science and Engineering, Jilin Normal University, Siping 136000, P.R. China
- Key Laboratory of Environmental Materials and Pollution Control, The Education Department of Jilin Province, Jilin Normal University, Siping 136000, P.R. China
| | - Chunbo Liu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun 130103, P.R. China
- College of Environmental Science and Engineering, Jilin Normal University, Siping 136000, P.R. China
- Key Laboratory of Environmental Materials and Pollution Control, The Education Department of Jilin Province, Jilin Normal University, Siping 136000, P.R. China
| |
Collapse
|
81
|
Role of B-doping in g-C3N4 nanosheets for enhanced photocatalytic NO removal and H2 generation. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.09.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
82
|
Ma Y, Li J, Jin Y, Gao K, Cai H, Ou G. The enhancement mechanism of ultra-active Ag 3PO 4 modified by tungsten and the effective degradation towards phenolic pollutants. CHEMOSPHERE 2021; 285:131440. [PMID: 34252812 DOI: 10.1016/j.chemosphere.2021.131440] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/22/2021] [Accepted: 07/03/2021] [Indexed: 05/23/2023]
Abstract
A novel strategy of W modification was applied to overcome the disadvantages of Ag3PO4. Ultra-active Ag3PO4 with different W doping ratios were successfully synthesized by facile chemical precipitation method, among which 0.5%W-AP showed the best results. Meanwhile, the stability and yield were enhanced. XRD, Raman and ESR etc. were employed to investigate the morphology, structure and optical properties of samples. It was proved W6+ entered into the Ag3PO4 lattice, occupied the position of P5+ and doped in the form of WO42-. The significant improvement of photocatalytic performance of W doped Ag3PO4 was attributed to the change of morphology, the decrease of particle size, the increase of crystallinity, the shrink of band gap energy and the reduction of photo-induced carriers recombination rate with W doping. The photocatalytic mechanism analysis showed h+ was the main oxidative species in the photocatalytic process, •O2- and •OH played minor roles. Under visible light irradiation, the impacts of the important operating parameters on the typical phenolic pollutants, phenol and bisphenol A, were evaluated with 0.5%W-AP. It was confirmed that 68% and 82% of phenol and bisphenol A were respectively degraded within 15 min and 40 min under optimized photocatalytic parameters: 0.4 g/L catalyst dosage, 20 mg/L pollutant concentration, pH 5.7 and 125 mW/cm2 irradiation intensity, and the corresponding K' were 2.14 and 5.50 times of undoped samples. This work provides a new approach for effective degradation towards phenolic pollutants by Ag3PO4 with ultra-high photocatalytic activity, high applicability and enhanced stability and yield.
Collapse
Affiliation(s)
- Yujing Ma
- Department of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China; Engineering Research Center for Comprehensive Utilization and Cleaning Process of Phosphate Resource, Ministry of Education, Chengdu, 610065, China
| | - Jun Li
- Department of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China; Engineering Research Center for Comprehensive Utilization and Cleaning Process of Phosphate Resource, Ministry of Education, Chengdu, 610065, China.
| | - Yang Jin
- Department of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China; Engineering Research Center for Comprehensive Utilization and Cleaning Process of Phosphate Resource, Ministry of Education, Chengdu, 610065, China
| | - Kaige Gao
- Department of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China; Engineering Research Center for Comprehensive Utilization and Cleaning Process of Phosphate Resource, Ministry of Education, Chengdu, 610065, China
| | - Haitao Cai
- Department of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China; Engineering Research Center for Comprehensive Utilization and Cleaning Process of Phosphate Resource, Ministry of Education, Chengdu, 610065, China
| | - Guangyu Ou
- Department of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China; Engineering Research Center for Comprehensive Utilization and Cleaning Process of Phosphate Resource, Ministry of Education, Chengdu, 610065, China
| |
Collapse
|
83
|
Mohanta D, Ahmaruzzaman M. Facile fabrication of novel Fe 3O 4-SnO 2-gC 3N 4 ternary nanocomposites and their photocatalytic properties towards the degradation of carbofuran. CHEMOSPHERE 2021; 285:131395. [PMID: 34252806 DOI: 10.1016/j.chemosphere.2021.131395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Herein, Fe3O4-SnO2 nanoheterojunction has been synthesized and successfully encapsulated in gC3N4 matrix using a novel hydrothermal technique. The synthesized material was characterized using sophisticated analytical methods like XRD, TEM, BET, UV-Vis, VSM and XPS to evaluate structural, morphological, optical, magnetic and surface chemical properties. The hybrid nanostructure Fe3O4-SnO2-gC3N4 has been utilized for the LED light-induced photocatalytic degradation of carbofuran. The catalyst exhibited notable photocatalytic performance under visible light with an efficiency of ~89% and pseudo first order rate constant of 0.015 min-1. The result of change in variables like catalyst dose, pollutant concentration, pH and contact time on the photodegradation efficiency and degradation kinetics was studied. The incorporation of Fe3O4 improved the magnetic separation of the catalyst after several cycles of operation, thereby improving the practical utility of the catalyst system to tackle organic pollutants.
Collapse
Affiliation(s)
- Dipyaman Mohanta
- Department of Chemistry, National Institute of Technology, Silchar, Assam, 788010, India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology, Silchar, Assam, 788010, India.
| |
Collapse
|
84
|
Shalini Reghunath B, Davis D, Sunaja Devi KR. Synthesis and characterization of Cr 2AlC MAX phase for photocatalytic applications. CHEMOSPHERE 2021; 283:131281. [PMID: 34467941 DOI: 10.1016/j.chemosphere.2021.131281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/04/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
MAX phase, a layered ternary carbide/nitride, displays both ceramic and metallic properties, which has significantly attracted the materials research. In this work, Cr2AlC MAX phase powder with high purity was fabricated via a facile and cost-effective pressure-less sintering methodology and utilized for photocatalytic degradation of different organic pollutants for the first time. Various characterization techniques were used for confirming the morphological and other physico-chemical properties of the catalyst. Cr2AlC MAX phase with a low band gap of 1.28 eV has shown 99% efficiency in the degradation of malachite green, an organic pollutant under visible light irradiation. The scavenger studies conclude that, O2•-and h+ as the active species during the photocatalytic reaction. Furthermore, the kinetic study revealed that the reaction obeys pseudo-first-order kinetics and can be reused for four cycles without losing the activity. This novel approach can give new insight into the potential application of MAX phase materials in the field of wastewater treatment under visible light irradiation.
Collapse
Affiliation(s)
- B Shalini Reghunath
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, Karnataka, 560029, India
| | - Deepak Davis
- Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology (Deemed to be University), Chennai, 603203, Tamil Nadu, India
| | - K R Sunaja Devi
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, Karnataka, 560029, India.
| |
Collapse
|
85
|
Qi S, Liu X, Zhang R, Zhang Y, Xu H. Preparation and photocatalytic properties of g-C3N4/BiOCl heterojunction. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108907] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
86
|
Gandamalla A, Manchala S, Verma A, Fu YP, Shanker V. Microwave-assisted synthesis of ZnAl-LDH/g-C 3N 4 composite for degradation of antibiotic ciprofloxacin under visible-light illumination. CHEMOSPHERE 2021; 283:131182. [PMID: 34153923 DOI: 10.1016/j.chemosphere.2021.131182] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/23/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Ciprofloxacin (CIP) is a fluoroquinolone family antibiotic pollutant. CIP existence in water environment has been rising very fast in day-to-day life and subsequently, it gives enormous health issues for humans because of its potent biological activity. To encounter this, current researchers are focusing on the development of highly efficient visible light semiconductor nanocomposites with potential photocatalytic activity. In the present work, we have successfully synthesized highly efficient zinc-aluminum layered double hydroxides with graphitic carbon nitride (ZALDH/CN) composites via a simple microwave irradiation method first time for the degradation of CIP under visible light. The fabricated materials are subsequently characterized by various spectroscopic techniques. UV-Vis DRS, TRFL, XRD, FT-IR, BET, FE-SEM, TEM, and XPS for optical, crystal structure, morphological, and elemental analysis. The main reactive intermediates which are formed during the photocatalytic degradation process were analyzed by LC-MS analysis. It is worth to note that, the optimized ZALDH/CN-10 composite showed the highest photo-degradation rate constant of 1.22 × 10-2 min-1 with 84.10% degradation is higher than bare CN and ZALDH photocatalysts. Based on the electron-hole pair trapping experiment results, possible CIP photo-degradation mechanism was also explained in the present study. With all results, this work demonstrates the ZALDH/CN composite materials showed a high synergistic effect with more specific surface area. Highest specific surface area leads to enhanced visible light adsorption capacity. Subsequently improved number of catalytically active sites. Furthermore, as compared with pure materials, composites of ZALDH/CN are having low electron-hole pair recombination. Consequently, the composites ZALDH/CN showed superior photocatalytic activity for antibiotic pollutant CIP degradation under visible-light illumination.
Collapse
Affiliation(s)
- Ambedkar Gandamalla
- Department of Chemistry, National Institute of Technology Warangal, Warangal, 506004, Telangana, India; Center for Advanced Materials, National Institute of Technology Warangal, Warangal, 506004, Telangana, India; Department of Material Science and Engineering, National Dong Hwa University, Hualien, 97401, Taiwan, ROC
| | - Saikumar Manchala
- Department of Chemistry, National Institute of Technology Warangal, Warangal, 506004, Telangana, India; Center for Advanced Materials, National Institute of Technology Warangal, Warangal, 506004, Telangana, India; Department of Chemistry, Malla Reddy Engineering College (Autonomous), Maisaammaguda, Dhulapally, Secunderabad, 500100, Telangana, India
| | - Atul Verma
- Department of Material Science and Engineering, National Dong Hwa University, Hualien, 97401, Taiwan, ROC
| | - Yen-Pei Fu
- Department of Material Science and Engineering, National Dong Hwa University, Hualien, 97401, Taiwan, ROC.
| | - Vishnu Shanker
- Department of Chemistry, National Institute of Technology Warangal, Warangal, 506004, Telangana, India; Center for Advanced Materials, National Institute of Technology Warangal, Warangal, 506004, Telangana, India.
| |
Collapse
|
87
|
Liu Z, Kang SZ, Qin L, Li X. Smartly implanted reduced graphene oxide into graphic carbon nitride and copper species for enhanced photoelectric performance. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
88
|
Barik B, Sahoo SJ, Maji B, Bag J, Mishra M, Dash P. Microwave-Assisted Development of Magnetically Recyclable PANI-Modified CoFe 2O 4-WO 3 p–n–n Heterojunction: A Visible-Light-Driven Photocatalyst for Antibiotic Toxicity Reduction. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bapun Barik
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Shital Jyotsna Sahoo
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Banalata Maji
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Janmejaya Bag
- Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Monalisa Mishra
- Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Priyabrat Dash
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| |
Collapse
|
89
|
Naghibi S, Basravi A, Tang Y. Crystal Growth, Optical Properties, and Photocatalytic Performances of ZnO‐CuAl
2
O
4
Hybrid Compounds: Theoretical and Experimental Studies. CRYSTAL RESEARCH AND TECHNOLOGY 2021. [DOI: 10.1002/crat.202100128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sanaz Naghibi
- College of Science and Engineering Institute for NanoScale Science and Technology Flinders University Tonsley South Australia 5042 Australia
| | - Ali Basravi
- Department of Materials Engineering Shahreza Branch Islamic Azad University P.O. Box: 86145‐311 Shahreza Iran
| | - Youhong Tang
- College of Science and Engineering Institute for NanoScale Science and Technology Flinders University Tonsley South Australia 5042 Australia
| |
Collapse
|
90
|
Dadigala R, Bandi R, Alle M, Gangapuram BR, Guttena V, Kim JC. In-situ fabrication of novel flower like MoS 2/CoTiO 3 nanorod heterostructures for the recyclable degradation of ciprofloxacin and bisphenol A under sunlight. CHEMOSPHERE 2021; 281:130822. [PMID: 34010718 DOI: 10.1016/j.chemosphere.2021.130822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/02/2021] [Accepted: 05/07/2021] [Indexed: 05/14/2023]
Abstract
Effectual degradation of toxic water contaminants is a crucial step in water purification and designing an efficient semiconductor based hybrid structure photocatalyst is a good approach to achieve this. Benefiting from the combination of semiconductors, a series of novel visible-light active flower-like MoS2/CoTiO3 nanorod heterostructures with excellent morphological contact interface were prepared through a facile in-situ hydrothermal process. These heterostructures were well characterized and demonstrated high photocatalytic performance for ciprofloxacin (CIP) and bisphenol A (BPA) under sunlight irradiation. Compared to pristine CoTiO3 and MoS2, the optimal catalyst (5 wt% MoS2/CoTiO3) presented 39.97 and 22.32 times higher activity for CIP degradation and 26.85 and 15.66 times higher activity for BPA degradation, respectively. This improved activity can be accounted for the effective interfacial contact which promotes the efficient charge carriers separation and reduce its recombination. The catalyst exhibited decent stability and was potentially reused for five cycles without significant loss in activity. Furthermore, based on active species scavenging experiments the plausible photodegradation mechanism is discussed in detail.
Collapse
Affiliation(s)
- Ramakrishna Dadigala
- Department of Chemistry, Osmania University, Hyderabad, Telangana state, 500007, India
| | - Rajkumar Bandi
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Madhusudhan Alle
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Bhagavanth Reddy Gangapuram
- Department of Chemistry, PG Center Wanaparthy, Palamuru University, Mahabub Nagar, Telangana State, 509001, India
| | - Veerabhadram Guttena
- Department of Chemistry, Osmania University, Hyderabad, Telangana state, 500007, India.
| | - Jin-Chul Kim
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
91
|
Pham XN, Le HT, Nguyen TT, Pham NT. Ag
3
PO
4
‐Supported Magnetic Hydroxyapatite Composite as Green Photocatalyst for the Removal of Cationic and Anionic Dyes from Aqueous Solution. Chem Eng Technol 2021. [DOI: 10.1002/ceat.202100261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Xuan Nui Pham
- Hanoi University of Mining and Geology Department of Chemical Engineering 18-Vien Street, Duc Thang Ward, Bac Tu Liem 10000 Hanoi Vietnam
| | - Huu-Tai Le
- Hanoi University of Mining and Geology Department of Chemical Engineering 18-Vien Street, Duc Thang Ward, Bac Tu Liem 10000 Hanoi Vietnam
| | - Trung-Tien Nguyen
- Hanoi University of Mining and Geology Department of Chemical Engineering 18-Vien Street, Duc Thang Ward, Bac Tu Liem 10000 Hanoi Vietnam
| | - Ngan-Thi Pham
- Hanoi University of Mining and Geology Department of Chemical Engineering 18-Vien Street, Duc Thang Ward, Bac Tu Liem 10000 Hanoi Vietnam
| |
Collapse
|
92
|
Li J, Tian M, Zhang W, Qian J, Zhao S, Dang W, Jiang H, Li C. Structure and photocatalytic performance comparison of two distinctive copper phenylacetylides. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jing Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, and the Energy and Catalysis Hub, College of Chemistry and Materials Science Northwest University Xi'an China
| | - Meng Tian
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, and the Energy and Catalysis Hub, College of Chemistry and Materials Science Northwest University Xi'an China
| | - Wen Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, and the Energy and Catalysis Hub, College of Chemistry and Materials Science Northwest University Xi'an China
| | - Jing Qian
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, and the Energy and Catalysis Hub, College of Chemistry and Materials Science Northwest University Xi'an China
| | - Sen Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, and the Energy and Catalysis Hub, College of Chemistry and Materials Science Northwest University Xi'an China
| | - Wenqiang Dang
- Department of Physics Tianshui Normal University Tianshui China
| | - Hai‐Ying Jiang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, and the Energy and Catalysis Hub, College of Chemistry and Materials Science Northwest University Xi'an China
| | - Chengbo Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, and the Energy and Catalysis Hub, College of Chemistry and Materials Science Northwest University Xi'an China
| |
Collapse
|
93
|
Rostami M, Nasab AS, Fasihi-Ramandi M, Badiei A, Ganjali MR, Rahimi-Nasrabadi M, Ahmadi F. Cur-loaded magnetic ZnFe2O4@mZnO-Ox-p-g-C3N4 composites as dual pH- and ultrasound responsive nano-carriers for controlled and targeted cancer chemotherapy. MATERIALS CHEMISTRY AND PHYSICS 2021; 271:124863. [DOI: 10.1016/j.matchemphys.2021.124863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
|
94
|
Wei J, Chen Z, Tong Z. Engineering Z-scheme silver oxide/bismuth tungstate heterostructure incorporated reduced graphene oxide with superior visible-light photocatalytic activity. J Colloid Interface Sci 2021; 596:22-33. [DOI: 10.1016/j.jcis.2021.03.117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/01/2021] [Accepted: 03/20/2021] [Indexed: 12/23/2022]
|
95
|
Sridevi A, Ramji B, Prasanna Venkatesan G, Sugumaran V, Selvakumar P. A facile synthesis of TiO2/BiOCl and TiO2/BiOCl/La2O3 heterostructure photocatalyst for enhanced charge separation efficiency with improved UV-light catalytic activity towards Rhodamine B and Reactive Yellow 86. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108715] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
96
|
Shamsi T, Amoozadeh A. Glucose‐assisted preparation of n‐TiO
2
‐P25/Ag: An efficient and robust photocatalyst for enhancing visible‐light photo‐oxidation of benzyl alcohol. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Taiebeh Shamsi
- Department of Organic Chemistry, Faculty of Chemistry Semnan University Semnan Iran
| | - Ali Amoozadeh
- Department of Organic Chemistry, Faculty of Chemistry Semnan University Semnan Iran
| |
Collapse
|
97
|
Ahmad N, Anae J, Khan MZ, Sabir S, Yang XJ, Thakur VK, Campo P, Coulon F. Visible light-conducting polymer nanocomposites as efficient photocatalysts for the treatment of organic pollutants in wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 295:113362. [PMID: 34346390 DOI: 10.1016/j.jenvman.2021.113362] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/28/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
This review compiles recent advances and challenges on photocatalytic treatment of wastewater using nanoparticles, nanocomposites, and polymer nanocomposites as photocatalyst. The review provides an overview of the fundamental principles of photocatalytic treatment along the recent advances on photocatalytic treatment, especially on the modification strategies and operational conditions to enhance treatment efficiency and removal of recalcitrant organic contaminants. The different types of photocatalysts along the key factors influencing their performance are also critically discussed and recommendations for future research are provided.
Collapse
Affiliation(s)
- Nafees Ahmad
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK 43 0AL, UK; Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
| | - Jerry Anae
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK 43 0AL, UK
| | - Mohammad Zain Khan
- Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
| | - Suhail Sabir
- Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
| | - Xiao Jin Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China; State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre, Scotland's Rural College, Edinburgh, EH9 3JG, UK
| | - Pablo Campo
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK 43 0AL, UK
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK 43 0AL, UK.
| |
Collapse
|
98
|
Chen C, Wang L, Cheng T, Zhang X, Zhou Z, Zhang X, Xu Q. Ag3PO4/AgSbO3 composite as novel photocatalyst with significantly enhanced activity through a Z-scheme degradation mechanism. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-021-02345-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
99
|
Wang S, Liu D, Yu J, Zhang X, Zhao P, Ren Z, Sun Y, Li M, Han S. Photocatalytic Penicillin Degradation Performance and the Mechanism of the Fragmented TiO 2 Modified by CdS Quantum Dots. ACS OMEGA 2021; 6:18178-18189. [PMID: 34308049 PMCID: PMC8296572 DOI: 10.1021/acsomega.1c02079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/24/2021] [Indexed: 06/02/2023]
Abstract
In this study, a novel method was adopted to construct a CdS-TiO2 heterostructure to degrade penicillin under sunlight. A potato extract was used during the synthesis process of CdS QDs as a stabilizer and a modifier. The CdS-TiO2 composite with a heterostructure delivers high photocatalytic degradation efficiency. In detail, 0.6 mg/mL of CdS-TiO2 can successfully decompose penicillin after 2 h, and 5‰ CdS-TiO2 shows the optimal degradation efficiency with the degradation rate reaching 88%. Furthermore, the underlying mechanisms of the penicillin decomposition reaction were investigated by the EPR test and trapping experiment. It was found that the high photocatalytic degradation efficiency was attributed to the heterojunction of CdS-TiO2, which successfully suppresses the recombination of the conduction band of CdS and the valence band of TiO2. Moreover, it was confirmed that the reaction is the O2-consuming process, and introducing O2 can greatly accelerate the generation of a superoxide radical during the photocatalytic degradation process, which eventually improves the degradation of penicillin and shortens the degradation time. Finally, this work provides the possible penicillin degradation pathways, which will inspire the researchers to explore and design novel photocatalysts in the field of wastewater treatment in the future.
Collapse
|
100
|
Wang L, Wu J. A review of recent progress in silver silicate-based photocatalysts for organic pollutant degradation. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108619] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|