51
|
Molecular sampling of the allosteric binding pocket of the TSH receptor provides discriminative pharmacophores for antagonist and agonists. Biochem Soc Trans 2013; 41:213-7. [PMID: 23356285 PMCID: PMC3561627 DOI: 10.1042/bst20120319] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The TSHR (thyrotropin receptor) is activated endogenously by the large hormone thyrotropin and activated pathologically by auto-antibodies. Both activate and bind at the extracellular domain. Recently, SMLs (small-molecule ligands) have been identified, which bind in an allosteric binding pocket within the transmembrane domain. Modelling driven site-directed mutagenesis of amino acids lining this pocket led to the delineation of activation and inactivation sensitive residues. Modified residues showing CAMs (constitutively activating mutations) indicate signalling-sensitive positions and mark potential trigger points for agonists. Silencing mutations lead to an impairment of basal activity and mark contact points for antagonists. Mapping these residues on to a structural model of TSHR indicates locations where an SML may switch the receptor to an inactive or active conformation. In the present article, we report the effects of SMLs on these signalling-sensitive amino acids at the TSHR. Surprisingly, the antagonistic effect of SML compound 52 was reversed to an agonistic effect, when tested at the CAM Y667A. Switching agonism to antagonism and the reverse by changing either SMLs or residues covering the binding pocket provides detailed knowledge about discriminative pharmacophores. It prepares the basis for rational optimization of new high-affinity antagonists to interfere with the pathogenic activation of the TSHR.
Collapse
|
52
|
Davie BJ, Christopoulos A, Scammells PJ. Development of M1 mAChR allosteric and bitopic ligands: prospective therapeutics for the treatment of cognitive deficits. ACS Chem Neurosci 2013; 4:1026-48. [PMID: 23659787 PMCID: PMC3715844 DOI: 10.1021/cn400086m] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 05/09/2013] [Indexed: 12/22/2022] Open
Abstract
Since the cholinergic hypothesis of memory dysfunction was first reported, extensive research efforts have focused on elucidating the mechanisms by which this intricate system contributes to the regulation of processes such as learning, memory, and higher executive function. Several cholinergic therapeutic targets for the treatment of cognitive deficits, psychotic symptoms, and the underlying pathophysiology of neurodegenerative disorders, such as Alzheimer's disease and schizophrenia, have since emerged. Clinically approved drugs now exist for some of these targets; however, they all may be considered suboptimal therapeutics in that they produce undesirable off-target activity leading to side effects, fail to address the wide variety of symptoms and underlying pathophysiology that characterize these disorders, and/or afford little to no therapeutic effect in subsets of patient populations. A promising target for which there are presently no approved therapies is the M1 muscarinic acetylcholine receptor (M1 mAChR). Despite avid investigation, development of agents that selectively activate this receptor via the orthosteric site has been hampered by the high sequence homology of the binding site between the five muscarinic receptor subtypes and the wide distribution of this receptor family in both the central nervous system (CNS) and the periphery. Hence, a plethora of ligands targeting less structurally conserved allosteric sites of the M1 mAChR have been investigated. This Review aims to explain the rationale behind allosterically targeting the M1 mAChR, comprehensively summarize and critically evaluate the M1 mAChR allosteric ligand literature to date, highlight the challenges inherent in allosteric ligand investigation that are impeding their clinical advancement, and discuss potential methods for resolving these issues.
Collapse
Affiliation(s)
- Briana J. Davie
- Medicinal
Chemistry and Drug Discovery Biology, Monash Institute of Pharmaceutical
Sciences, Monash University, 381 Royal
Parade, Parkville VIC 3052, Australia
| | - Arthur Christopoulos
- Medicinal
Chemistry and Drug Discovery Biology, Monash Institute of Pharmaceutical
Sciences, Monash University, 381 Royal
Parade, Parkville VIC 3052, Australia
| | - Peter J. Scammells
- Medicinal
Chemistry and Drug Discovery Biology, Monash Institute of Pharmaceutical
Sciences, Monash University, 381 Royal
Parade, Parkville VIC 3052, Australia
| |
Collapse
|
53
|
Davenport AP, Alexander SPH, Sharman JL, Pawson AJ, Benson HE, Monaghan AE, Liew WC, Mpamhanga CP, Bonner TI, Neubig RR, Pin JP, Spedding M, Harmar AJ. International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands. Pharmacol Rev 2013; 65:967-86. [PMID: 23686350 PMCID: PMC3698937 DOI: 10.1124/pr.112.007179] [Citation(s) in RCA: 235] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In 2005, the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification (NC-IUPHAR) published a catalog of all of the human gene sequences known or predicted to encode G protein-coupled receptors (GPCRs), excluding sensory receptors. This review updates the list of orphan GPCRs and describes the criteria used by NC-IUPHAR to recommend the pairing of an orphan receptor with its cognate ligand(s). The following recommendations are made for new receptor names based on 11 pairings for class A GPCRs: hydroxycarboxylic acid receptors [HCA₁ (GPR81) with lactate, HCA₂ (GPR109A) with 3-hydroxybutyric acid, HCA₃ (GPR109B) with 3-hydroxyoctanoic acid]; lysophosphatidic acid receptors [LPA₄ (GPR23), LPA₅ (GPR92), LPA₆ (P2Y5)]; free fatty acid receptors [FFA4 (GPR120) with omega-3 fatty acids]; chemerin receptor (CMKLR1; ChemR23) with chemerin; CXCR7 (CMKOR1) with chemokines CXCL12 (SDF-1) and CXCL11 (ITAC); succinate receptor (SUCNR1) with succinate; and oxoglutarate receptor [OXGR1 with 2-oxoglutarate]. Pairings are highlighted for an additional 30 receptors in class A where further input is needed from the scientific community to validate these findings. Fifty-seven human class A receptors (excluding pseudogenes) are still considered orphans; information has been provided where there is a significant phenotype in genetically modified animals. In class B, six pairings have been reported by a single publication, with 28 (excluding pseudogenes) still classified as orphans. Seven orphan receptors remain in class C, with one pairing described by a single paper. The objective is to stimulate research into confirming pairings of orphan receptors where there is currently limited information and to identify cognate ligands for the remaining GPCRs. Further information can be found on the IUPHAR Database website (http://www.iuphar-db.org).
Collapse
Affiliation(s)
- Anthony P Davenport
- Clinical Pharmacology Unit, University of Cambridge, Level 6, Centre for Clinical Investigation, Box 110, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Ramey HR, Decker JE, McKay SD, Rolf MM, Schnabel RD, Taylor JF. Detection of selective sweeps in cattle using genome-wide SNP data. BMC Genomics 2013; 14:382. [PMID: 23758707 PMCID: PMC3681554 DOI: 10.1186/1471-2164-14-382] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 05/24/2013] [Indexed: 12/25/2022] Open
Abstract
Background The domestication and subsequent selection by humans to create breeds and biological types of cattle undoubtedly altered the patterning of variation within their genomes. Strong selection to fix advantageous large-effect mutations underlying domesticability, breed characteristics or productivity created selective sweeps in which variation was lost in the chromosomal region flanking the selected allele. Selective sweeps have now been identified in the genomes of many animal species including humans, dogs, horses, and chickens. Here, we attempt to identify and characterise regions of the bovine genome that have been subjected to selective sweeps. Results Two datasets were used for the discovery and validation of selective sweeps via the fixation of alleles at a series of contiguous SNP loci. BovineSNP50 data were used to identify 28 putative sweep regions among 14 diverse cattle breeds. Affymetrix BOS 1 prescreening assay data for five breeds were used to identify 85 regions and validate 5 regions identified using the BovineSNP50 data. Many genes are located within these regions and the lack of sequence data for the analysed breeds precludes the nomination of selected genes or variants and limits the prediction of the selected phenotypes. However, phenotypes that we predict to have historically been under strong selection include horned-polled, coat colour, stature, ear morphology, and behaviour. Conclusions The bias towards common SNPs in the design of the BovineSNP50 assay led to the identification of recent selective sweeps associated with breed formation and common to only a small number of breeds rather than ancient events associated with domestication which could potentially be common to all European taurines. The limited SNP density, or marker resolution, of the BovineSNP50 assay significantly impacted the rate of false discovery of selective sweeps, however, we found sweeps in common between breeds which were confirmed using an ultra-high-density assay scored in a small number of animals from a subset of the breeds. No sweep regions were shared between indicine and taurine breeds reflecting their divergent selection histories and the very different environmental habitats to which these sub-species have adapted.
Collapse
Affiliation(s)
- Holly R Ramey
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | | | |
Collapse
|
55
|
Troppmann B, Kleinau G, Krause G, Gromoll J. Structural and functional plasticity of the luteinizing hormone/choriogonadotrophin receptor. Hum Reprod Update 2013; 19:583-602. [DOI: 10.1093/humupd/dmt023] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
56
|
Palczewski K, Orban T. From atomic structures to neuronal functions of g protein-coupled receptors. Annu Rev Neurosci 2013; 36:139-64. [PMID: 23682660 DOI: 10.1146/annurev-neuro-062012-170313] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
G protein-coupled receptors (GPCRs) are essential mediators of signal transduction, neurotransmission, ion channel regulation, and other cellular events. GPCRs are activated by diverse stimuli, including light, enzymatic processing of their N-termini, and binding of proteins, peptides, or small molecules such as neurotransmitters. GPCR dysfunction caused by receptor mutations and environmental challenges contributes to many neurological diseases. Moreover, modern genetic technology has helped identify a rich array of mono- and multigenic defects in humans and animal models that connect such receptor dysfunction with disease affecting neuronal function. The visual system is especially suited to investigate GPCR structure and function because advanced imaging techniques permit structural studies of photoreceptor neurons at both macro and molecular levels that, together with biochemical and physiological assessment in animal models, provide a more complete understanding of GPCR signaling.
Collapse
Affiliation(s)
- Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965, USA.
| | | |
Collapse
|
57
|
Vogel KJ, Brown MR, Strand MR. Phylogenetic investigation of Peptide hormone and growth factor receptors in five dipteran genomes. Front Endocrinol (Lausanne) 2013; 4:193. [PMID: 24379806 PMCID: PMC3863949 DOI: 10.3389/fendo.2013.00193] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 11/29/2013] [Indexed: 12/26/2022] Open
Abstract
Peptide hormones and growth factors bind to membrane receptors and regulate a myriad of processes in insects and other metazoans. The evolutionary relationships among characterized and uncharacterized ("orphan") receptors can provide insights into receptor-ligand biology and narrow target choices in deorphanization studies. However, the large number and low sequence conservation of these receptors make evolutionary analysis difficult. Here, we characterized the G-protein-coupled receptors (GPCRs), receptor guanylyl cyclases (RGCs), and protein kinase receptors (PKRs) of mosquitoes and select other flies by interrogating the genomes of Aedes aegypti, Anopheles gambiae, Culex quinquefasciatus, Drosophila melanogaster, and D. mojavensis. Sequences were grouped by receptor type, clustered using the program CLANS, aligned using HMMR, and phylogenetic trees built using PhyML. Our results indicated that PKRs had relatively few orphan clades whereas GPCRs and RGCs had several. In addition, more than half of the Class B secretin-like GPCRs and RGCs remained uncharacterized. Additional studies revealed that Class B GPCRs exhibited more gain and loss events than other receptor types. Finally, using the neuropeptide F family of insect receptors and the neuropeptide Y family of vertebrate receptors, we also show that functional sites considered critical for ligand binding are conserved among distinct family members and between distantly related taxa. Overall, our results provide the first comprehensive analysis of peptide hormone and growth factor receptors for a major insect group.
Collapse
Affiliation(s)
- Kevin J. Vogel
- Department of Entomology, The University of Georgia, Athens, GA, USA
- *Correspondence: Kevin J. Vogel, Department of Entomology, The University of Georgia, 413 Biological Sciences Building, Athens, GA 30602, USA e-mail:
| | - Mark R. Brown
- Department of Entomology, The University of Georgia, Athens, GA, USA
| | - Michael R. Strand
- Department of Entomology, The University of Georgia, Athens, GA, USA
| |
Collapse
|
58
|
Vertebrate extracellular calcium-sensing receptor evolution: selection in relation to life history and habitat. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2012; 8:86-94. [PMID: 23321268 DOI: 10.1016/j.cbd.2012.12.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/07/2012] [Accepted: 12/09/2012] [Indexed: 11/20/2022]
Abstract
Ionic calcium (Ca(2+)) supports essential functions within physiological systems, and consequently its concentration is homeostatically regulated within narrow bounds in the body fluids of animals through endocrine effects at ion-transporting osmoregulatory tissues. In vertebrates, extracellular Ca(2+) is detected at the cell surface by the extracellular calcium-sensing receptor (CaSR), a member of the G protein-coupled receptor (GPCR) superfamily. Interestingly, the taxonomic distribution of CaSRs is restricted to vertebrates, with some CaSR-like receptors apparently present in non-vertebrate chordates. Since bone is a known Ca(2+) storage site and is characteristically restricted to the vertebrate lineage, we hypothesized a functional association of CaSR with vertebrate skeleton that may have an ancient origin. Protein sequence alignment and phylogenetic analysis of vertebrate CaSRs and related GPCRs of the glutamate receptor-like family expose similarities and indel differences among these receptors, and reveal the evolutionary history of CaSRs. Evolutionary selection was tested statistically by evaluating the relationship between non-synonymous (replacement, dN) versus synonymous (silent, dS) amino acid substitution rates (as dN/dS) of protein-coding DNA sequences among branches of the estimated protein phylogeny. On a background of strong purifying selection (dN/dS<1) in the CaSR phylogeny, statistical evidence for adaptive evolution (dN/dS>1) was detected on some branches to major clades in the CaSR phylogeny, especially to the tetrapod vertebrate CaSRs and chordate CaSR-like branches. Testing also revealed overall purifying selection at the codon level. At some sites relaxation from strong purifying selection was seen, but evidence for adaptive evolution was not detected for individual sites. The results suggest purifying selection of CaSRs, and of adaptive evolution among some major vertebrate clades, reflecting clade specific differences in natural history and organismal biology, including skeletal involvement in calcium homeostasis.
Collapse
|
59
|
Katritch V, Cherezov V, Stevens RC. Structure-function of the G protein-coupled receptor superfamily. Annu Rev Pharmacol Toxicol 2012; 53:531-56. [PMID: 23140243 DOI: 10.1146/annurev-pharmtox-032112-135923] [Citation(s) in RCA: 823] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
During the past few years, crystallography of G protein-coupled receptors (GPCRs) has experienced exponential growth, resulting in the determination of the structures of 16 distinct receptors-9 of them in 2012 alone. Including closely related subtype homology models, this coverage amounts to approximately 12% of the human GPCR superfamily. The adrenergic, rhodopsin, and adenosine receptor systems are also described by agonist-bound active-state structures, including a structure of the receptor-G protein complex for the β(2)-adrenergic receptor. Biochemical and biophysical techniques, such as nuclear magnetic resonance and hydrogen-deuterium exchange coupled with mass spectrometry, are providing complementary insights into ligand-dependent dynamic equilibrium between different functional states. Additional details revealed by high-resolution structures illustrate the receptors as allosteric machines that are controlled not only by ligands but also by ions, lipids, cholesterol, and water. This wealth of data is helping redefine our knowledge of how GPCRs recognize such a diverse array of ligands and how they transmit signals 30 angstroms across the cell membrane; it also is shedding light on a structural basis of GPCR allosteric modulation and biased signaling.
Collapse
Affiliation(s)
- Vsevolod Katritch
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
60
|
Paluzzi JP, O'Donnell MJ. Identification, spatial expression analysis and functional characterization of a pyrokinin-1 receptor in the Chagas' disease vector, Rhodnius prolixus. Mol Cell Endocrinol 2012; 363:36-45. [PMID: 22820129 DOI: 10.1016/j.mce.2012.07.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/24/2012] [Accepted: 07/11/2012] [Indexed: 11/21/2022]
Abstract
The capability or capa gene, encodes a pyrokinin-related peptide (known as pyrokinin-1, PK1) that contains the consensus carboxy-terminal sequence of WFGPRL-NH(2). Although the CAPA precursor polypeptide in Rhodnius prolixus yields the anti-diuretic hormone, RhoprCAPA-α2, no function has yet been elucidated for the pyrokinin-1 peptide, RhoprCAPA-αPK1. In order to elucidate the possible physiological roles of the PK1-related peptides in R. prolixus, we have isolated and functionally characterized the PK1 receptor, RhoprPK1-R. Additionally, we have determined a set of three optimal reference genes to utilize for normalization of data obtained when carrying out spatial expression analyses via quantitative reverse transcriptase PCR (RT-qPCR) in various tissues of fifth instar R. prolixus. The RhoprPK1-R expression profile differs strikingly from the receptor for the anti-diuretic hormone RhoprCAPA-α2, which is localized mainly to gut epithelial tissues. Instead, RhoprPK1-R expression in fifth instar stage insects was identified in tissues that are not involved in osmotic and ionic balance, including the prothoracic glands, male reproductive tissues and a pooled sample composed of fat body, dorsal vessel, abdominal nerves and female reproductive tissues. Thus, this research establishes novel possibilities for the physiological roles of the pyrokinin-related peptides in this medically relevant disease vector.
Collapse
Affiliation(s)
- Jean-Paul Paluzzi
- Department of Biology, McMaster University, Hamilton, ON, Canada L8S 4K1.
| | | |
Collapse
|
61
|
Skeletal tissues in Mozambique tilapia (Oreochromis mossambicus) express the extracellular calcium-sensing receptor. Comp Biochem Physiol A Mol Integr Physiol 2012; 163:311-8. [DOI: 10.1016/j.cbpa.2012.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/26/2012] [Accepted: 07/26/2012] [Indexed: 11/20/2022]
|
62
|
Patel MV, Hallal DA, Jones JW, Bronner DN, Zein R, Caravas J, Husain Z, Friedrich M, Vanberkum MFA. Dramatic expansion and developmental expression diversification of the methuselah gene family during recent Drosophila evolution. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2012; 318:368-87. [PMID: 22711569 DOI: 10.1002/jez.b.22453] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Functional studies of the methuselah/methuselah-like (mth/mthl) gene family have focused on the founding member mth, but little is known regarding the developmental functions of this receptor or any of its paralogs. We undertook a comprehensive analysis of developmental expression and sequence divergence in the mth/mthl gene family. Using in situ hybridization techniques, we detect expression of six genes (mthl1, 5, 9, 11, 13, and 14) in the embryo during gastrulation and development of the gut, heart, and lymph glands. Four receptors (mthl3, 4, 6, and 8) are expressed in the larval central nervous system, imaginal discs, or both, and two receptors (mthl10 and mth) are expressed in both embryos and larvae. Phylogenetic analysis of all mth/mthl genes in five Drosophila species, mosquito and flour beetle structured the mth/mthl family into several subclades. mthl1, 5, and 14 are present in most species, each forming a separate clade. A newly identified Drosophila mthl gene (CG31720; herein mthl15) formed another ancient clade. The remaining Drosophila receptors, including mth, are members of a large "superclade" that diversified relatively recently during dipteran evolution, in many cases within the melanogaster subgroup. Comparing the expression patterns of the mth/mthl "superclade" paralogs to the embryonic expression of the singleton ortholog in Tribolium suggests both subfunctionalization and acquisition of novel functionalities. Taken together, our findings shed novel light on mth as a young member of an adaptively evolving developmental gene family.
Collapse
Affiliation(s)
- Meghna V Patel
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Trzaskowski B, Latek D, Yuan S, Ghoshdastider U, Debinski A, Filipek S. Action of molecular switches in GPCRs--theoretical and experimental studies. Curr Med Chem 2012; 19:1090-109. [PMID: 22300046 PMCID: PMC3343417 DOI: 10.2174/092986712799320556] [Citation(s) in RCA: 357] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 12/30/2011] [Accepted: 01/02/2012] [Indexed: 01/14/2023]
Abstract
G protein coupled receptors (GPCRs), also called 7TM receptors, form a huge superfamily of membrane proteins that, upon activation by extracellular agonists, pass the signal to the cell interior. Ligands can bind either to extracellular N-terminus and loops (e.g. glutamate receptors) or to the binding site within transmembrane helices (Rhodopsin-like family). They are all activated by agonists although a spontaneous auto-activation of an empty receptor can also be observed. Biochemical and crystallographic methods together with molecular dynamics simulations and other theoretical techniques provided models of the receptor activation based on the action of so-called "molecular switches" buried in the receptor structure. They are changed by agonists but also by inverse agonists evoking an ensemble of activation states leading toward different activation pathways. Switches discovered so far include the ionic lock switch, the 3-7 lock switch, the tyrosine toggle switch linked with the nPxxy motif in TM7, and the transmission switch. The latter one was proposed instead of the tryptophan rotamer toggle switch because no change of the rotamer was observed in structures of activated receptors. The global toggle switch suggested earlier consisting of a vertical rigid motion of TM6, seems also to be implausible based on the recent crystal structures of GPCRs with agonists. Theoretical and experimental methods (crystallography, NMR, specific spectroscopic methods like FRET/BRET but also single-molecule-force-spectroscopy) are currently used to study the effect of ligands on the receptor structure, location of stable structural segments/domains of GPCRs, and to answer the still open question on how ligands are binding: either via ensemble of conformational receptor states or rather via induced fit mechanisms. On the other hand the structural investigations of homoand heterodimers and higher oligomers revealed the mechanism of allosteric signal transmission and receptor activation that could lead to design highly effective and selective allosteric or ago-allosteric drugs.
Collapse
Affiliation(s)
- B Trzaskowski
- Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
64
|
Cöster M, Wittkopf D, Kreuchwig A, Kleinau G, Thor D, Krause G, Schöneberg T. Using ortholog sequence data to predict the functional relevance of mutations in G‐protein‐coupled receptors. FASEB J 2012; 26:3273-81. [DOI: 10.1096/fj.12-203737] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Maxi Cöster
- Molecular Biochemistry, Institute of Biochemistry, Medical FacultyUniversity of Leipzig Leipzig Germany
| | - Doreen Wittkopf
- Molecular Biochemistry, Institute of Biochemistry, Medical FacultyUniversity of Leipzig Leipzig Germany
| | | | - Gunnar Kleinau
- Institute of Experimental Pediatric EndocrinologyCharité Universitätsmedizin Berlin Berlin Germany
| | - Doreen Thor
- Molecular Biochemistry, Institute of Biochemistry, Medical FacultyUniversity of Leipzig Leipzig Germany
| | - Gerd Krause
- Leibniz Institute for Molecular Pharmacology Berlin Germany
| | - Torsten Schöneberg
- Molecular Biochemistry, Institute of Biochemistry, Medical FacultyUniversity of Leipzig Leipzig Germany
| |
Collapse
|
65
|
Wooding S. Signatures of natural selection in a primate bitter taste receptor. J Mol Evol 2012; 73:257-65. [PMID: 22218679 DOI: 10.1007/s00239-011-9481-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 12/14/2011] [Indexed: 01/15/2023]
Abstract
Bitter taste receptors (TAS2Rs) enable animals to detect and avoid toxins in the environment, including noxious defense compounds produced by plants. This suggests that TAS2Rs are under complex pressures from natural selection. To investigate these pressures, we examined signatures of selection in the primate TAS2R38 gene. Whole-gene (1,002 bp) sequences from 40 species representing all major primate taxa uncovered extensive variation. Nucleotide substitutions occurred at 448 positions, resulting in 201 amino acid changes. Two single-nucleotide deletions, one three-nucleotide in-frame deletion, and one premature stop codon were also observed. The rate of non-synonymous substitution (ω = dN/dS), was high in TAS2R38 (ω = 0.60) compared to other genes, but significantly lower than expected under neutrality (P = 4.0 × 10(-9)), indicating that purifying selection has maintained the basic structure of the receptor. However, differences were present among receptor subregions. Non-synonymous rates were significantly lower than expected in transmembrane domains (ω = 0.55, P = 1.18 × 10(-12)) and internal loops (ω = 0.51, P = 7.04 × 10(-5)), but not external loops (ω = 1.16, P = 0.53), and evidence of positive selection was found in external loop 2, which exhibited a high rate (ω = 2.53) consistent with rapid shifts in ligand targeting. These patterns point to a history of rapid yet constrained change in bitter taste responses in the course of primate evolution.
Collapse
Affiliation(s)
- Stephen Wooding
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390-8591, USA.
| |
Collapse
|
66
|
Engel KMY, Schröck K, Teupser D, Holdt LM, Tönjes A, Kern M, Dietrich K, Kovacs P, Krügel U, Scheidt HA, Schiller J, Huster D, Brockmann GA, Augustin M, Thiery J, Blüher M, Stumvoll M, Schöneberg T, Schulz A. Reduced food intake and body weight in mice deficient for the G protein-coupled receptor GPR82. PLoS One 2011; 6:e29400. [PMID: 22216272 PMCID: PMC3247265 DOI: 10.1371/journal.pone.0029400] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 11/28/2011] [Indexed: 02/06/2023] Open
Abstract
G protein-coupled receptors (GPCR) are involved in the regulation of numerous physiological functions. Therefore, GPCR variants may have conferred important selective advantages during periods of human evolution. Indeed, several genomic loci with signatures of recent selection in humans contain GPCR genes among them the X-chromosomally located gene for GPR82. This gene encodes a so-called orphan GPCR with unknown function. To address the functional relevance of GPR82 gene-deficient mice were characterized. GPR82-deficient mice were viable, reproduced normally, and showed no gross anatomical abnormalities. However, GPR82-deficient mice have a reduced body weight and body fat content associated with a lower food intake. Moreover, GPR82-deficient mice showed decreased serum triacylglyceride levels, increased insulin sensitivity and glucose tolerance, most pronounced under Western diet. Because there were no differences in respiratory and metabolic rates between wild-type and GPR82-deficient mice our data suggest that GPR82 function influences food intake and, therefore, energy and body weight balance. GPR82 may represent a thrifty gene most probably representing an advantage during human expansion into new environments.
Collapse
Affiliation(s)
- Kathrin M. Y. Engel
- Molecular Biochemistry, Institute of Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Kristin Schröck
- Molecular Biochemistry, Institute of Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Daniel Teupser
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Lesca Miriam Holdt
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Anke Tönjes
- Department of Internal Medicine, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Matthias Kern
- Department of Internal Medicine, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Kerstin Dietrich
- Interdisciplinary Centre for Clinical Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Peter Kovacs
- Interdisciplinary Centre for Clinical Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Ute Krügel
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Holger A. Scheidt
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Jürgen Schiller
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Daniel Huster
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Gudrun A. Brockmann
- Institute of Animal Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Joachim Thiery
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Department of Internal Medicine, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Michael Stumvoll
- Department of Internal Medicine, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Torsten Schöneberg
- Molecular Biochemistry, Institute of Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
- * E-mail:
| | - Angela Schulz
- Molecular Biochemistry, Institute of Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
| |
Collapse
|
67
|
Fatakia SN, Costanzi S, Chow CC. Molecular evolution of the transmembrane domains of G protein-coupled receptors. PLoS One 2011; 6:e27813. [PMID: 22132149 PMCID: PMC3221663 DOI: 10.1371/journal.pone.0027813] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 10/25/2011] [Indexed: 11/19/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are a superfamily of integral membrane proteins vital for signaling and are important targets for pharmaceutical intervention in humans. Previously, we identified a group of ten amino acid positions (called key positions), within the seven transmembrane domain (7TM) interhelical region, which had high mutual information with each other and many other positions in the 7TM. Here, we estimated the evolutionary selection pressure at those key positions. We found that the key positions of receptors for small molecule natural ligands were under strong negative selection. Receptors naturally activated by lipids had weaker negative selection in general when compared to small molecule-activated receptors. Selection pressure varied widely in peptide-activated receptors. We used this observation to predict that a subgroup of orphan GPCRs not under strong selection may not possess a natural small-molecule ligand. In the subgroup of MRGX1-type GPCRs, we identified a key position, along with two non-key positions, under statistically significant positive selection.
Collapse
Affiliation(s)
- Sarosh N. Fatakia
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stefano Costanzi
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Carson C. Chow
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
68
|
Unal H, Karnik SS. Domain coupling in GPCRs: the engine for induced conformational changes. Trends Pharmacol Sci 2011; 33:79-88. [PMID: 22037017 DOI: 10.1016/j.tips.2011.09.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/23/2011] [Accepted: 09/29/2011] [Indexed: 11/28/2022]
Abstract
Recent solved structures of G protein-coupled receptors (GPCRs) provide insights into variation of the structure and molecular mechanisms of GPCR activation. In this review, we provide evidence for the emerging paradigm of domain coupling facilitated by intrinsic disorder of the ligand-free state in GPCRs. The structure-function and dynamic studies suggest that ligand-bound GPCRs exhibit multiple active conformations in initiating cellular signals. Long-range intramolecular and intermolecular interactions at distant sites on the same receptor are crucial factors that modulate signaling function of GPCRs. Positive or negative coupling between the extracellular, the transmembrane and the intracellular domains facilitates cooperativity of activating 'switches' as requirements for the functional plasticity of GPCRs. Awareness that allosteric ligands robustly affect domain coupling provides a novel mechanistic basis for rational drug development, small molecule antagonism and GPCR regulation by classical as well as nonclassical modes.
Collapse
Affiliation(s)
- Hamiyet Unal
- Department of Molecular Cardiology, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | |
Collapse
|
69
|
Katritch V, Cherezov V, Stevens RC. Diversity and modularity of G protein-coupled receptor structures. Trends Pharmacol Sci 2011; 33:17-27. [PMID: 22032986 DOI: 10.1016/j.tips.2011.09.003] [Citation(s) in RCA: 352] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/19/2011] [Accepted: 09/19/2011] [Indexed: 01/21/2023]
Abstract
G protein-coupled receptors (GPCRs) comprise the most 'prolific' family of cell membrane proteins, which share a general mechanism of signal transduction, but greatly vary in ligand recognition and function. Crystal structures are now available for rhodopsin, adrenergic, and adenosine receptors in both inactive and activated forms, as well as for chemokine, dopamine, and histamine receptors in inactive conformations. Here we review common structural features, outline the scope of structural diversity of GPCRs at different levels of homology, and briefly discuss the impact of the structures on drug discovery. Given the current set of GPCR crystal structures, a distinct modularity is now being observed between the extracellular (ligand-binding) and intracellular (signaling) regions. The rapidly expanding repertoire of GPCR structures provides a solid framework for experimental and molecular modeling studies, and helps to chart a roadmap for comprehensive structural coverage of the whole superfamily and an understanding of GPCR biological and therapeutic mechanisms.
Collapse
Affiliation(s)
- Vsevolod Katritch
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
70
|
Latronico AC, Hochberg Z. G Protein–Coupled Receptors in Child Development, Growth, and Maturation. Sci Signal 2010; 3:re7. [DOI: 10.1126/scisignal.3143re7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Ana Claudia Latronico
- Developmental Endocrinology Unit, Hormone and Molecular Genetics Laboratory (LIM/42), Hospital das Clinicas, Sao Paulo University Medical School, São Paulo 05403-900, Brazil
| | - Ze’ev Hochberg
- Meyer Children’s Hospital, Rambam Medical Center, Rappaport Faculty of Medicine and Research Institute, Technion–Israel Institute of Technology, P.O. Box 9602, Haifa 31096, Israel
| |
Collapse
|