51
|
Zhang H, Luo J, Li S, Wei Y, Wan Y. Biocatalytic Membrane Based on Polydopamine Coating: A Platform for Studying Immobilization Mechanisms. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:2585-2594. [PMID: 29381365 DOI: 10.1021/acs.langmuir.7b02860] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Application of biocatalytic membrane is promising in food, pharmaceutical, and water treatment industries, whereas enzyme immobilization is the key step of biocatalytic membrane preparation. Thus, how to minimize the negative effect of immobilization on enzyme performance is required to answer. In this work, we proposed a platform for biocatalytic membrane preparation and immobilization mechanism investigation based on polydopamine (PDA) coating, which was demonstrated by immobilizing five commonly used enzymes (laccase, glucose oxidase, lipase, pepsin, and dextranase) on three commercially available membranes via three immobilization mechanisms (electrostatic attraction, covalent bonding, and hydrophobic adsorption), respectively. By examining the enzyme loading, activity, and kinetics under different immobilization mechanisms, we found that except for dextranase, enzyme immobilization via electrostatic attraction retained the most activity, whereas covalent bonding and hydrophobic adsorption were detrimental to enzyme conformation. Enzyme immobilization via covalent bonding ensured a high enzyme loading, and hydrophobic adsorption was only suitable for lipase and dextranase immobilization. Moreover, the properties of functional groups around the enzyme active center should be considered for the selection of suitable immobilization strategy (i.e., avoid covering the active center by membrane carrier). This work not only established a versatile platform for biocatalytic membrane preparation but also provided a novel methodology to evaluate the effect of immobilization mechanisms on enzyme performance.
Collapse
Affiliation(s)
- Huiru Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190, PR China
- University of Chinese Academy of Sciences , Beijing 100049, PR China
| | - Jianquan Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190, PR China
- University of Chinese Academy of Sciences , Beijing 100049, PR China
| | - Sushuang Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190, PR China
- University of Chinese Academy of Sciences , Beijing 100049, PR China
| | - Yuping Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190, PR China
- University of Chinese Academy of Sciences , Beijing 100049, PR China
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190, PR China
- University of Chinese Academy of Sciences , Beijing 100049, PR China
| |
Collapse
|
52
|
Nguyen LN, Hai FI, McDonald JA, Khan SJ, Price WE, Nghiem LD. Continuous transformation of chiral pharmaceuticals in enzymatic membrane bioreactors for advanced wastewater treatment. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2017; 76:1816-1826. [PMID: 28991796 DOI: 10.2166/wst.2017.331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This study demonstrates continuous enantiomeric inversion and further biotransformation of chiral profens including ibuprofen, naproxen and ketoprofen by an enzymatic membrane bioreactor (EMBR) dosed with laccase. The EMBR showed non-enantioselective transformations, with high and consistent transformation of both (R)- and (S)-ibuprofen (93 ± 6%, n = 10), but lower removals of both enantiomers of naproxen (46 ± 16%, n = 10) and ketoprofen (48 ± 17%, n = 10). Enantiomeric analysis revealed a bidirectional but uneven inversion of the profens, for example 14% inversion of (R)- to (S)- compared to 4% from (S)- to (R)-naproxen. With redox-mediator addition, the enzymatic chiral inversion of both (R)- and (S)-profens remained unchanged, although the overall conversion became enantioselective; except for (S)-naproxen, the addition of redox mediator promoted the degradation of (R)-profens only.
Collapse
Affiliation(s)
- Luong N Nguyen
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia E-mail: ; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
| | - Faisal I Hai
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia E-mail:
| | - James A McDonald
- School of Civil and Environmental Engineering, University of New South Wales, NSW 2052, Australia
| | - Stuart J Khan
- School of Civil and Environmental Engineering, University of New South Wales, NSW 2052, Australia
| | - William E Price
- Strategic Water Infrastructure Laboratory, School of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Long D Nghiem
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia E-mail:
| |
Collapse
|
53
|
Fan J, Luo J, Wan Y. Membrane chromatography for fast enzyme purification, immobilization and catalysis: A renewable biocatalytic membrane. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.05.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
54
|
Yang J, Li W, Ng TB, Deng X, Lin J, Ye X. Laccases: Production, Expression Regulation, and Applications in Pharmaceutical Biodegradation. Front Microbiol 2017; 8:832. [PMID: 28559880 PMCID: PMC5432550 DOI: 10.3389/fmicb.2017.00832] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/24/2017] [Indexed: 01/08/2023] Open
Abstract
Laccases are a family of copper-containing oxidases with important applications in bioremediation and other various industrial and biotechnological areas. There have been over two dozen reviews on laccases since 2010 covering various aspects of this group of versatile enzymes, from their occurrence, biochemical properties, and expression to immobilization and applications. This review is not intended to be all-encompassing; instead, we highlighted some of the latest developments in basic and applied laccase research with an emphasis on laccase-mediated bioremediation of pharmaceuticals, especially antibiotics. Pharmaceuticals are a broad class of emerging organic contaminants that are recalcitrant and prevalent. The recent surge in the relevant literature justifies a short review on the topic. Since low laccase yields in natural and genetically modified hosts constitute a bottleneck to industrial-scale applications, we also accentuated a genus of laccase-producing white-rot fungi, Cerrena, and included a discussion with regards to regulation of laccase expression.
Collapse
Affiliation(s)
- Jie Yang
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou UniversityFujian, China
| | - Wenjuan Li
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou UniversityFujian, China
| | - Tzi Bun Ng
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong KongShatin, Hong Kong
| | - Xiangzhen Deng
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou UniversityFujian, China
| | - Juan Lin
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou UniversityFujian, China
| | - Xiuyun Ye
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou UniversityFujian, China
| |
Collapse
|
55
|
Direct immobilization of laccase on titania nanoparticles from crude enzyme extracts of P. ostreatus culture for micro-pollutant degradation. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.01.043] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
56
|
Naghdi M, Taheran M, Brar SK, Kermanshahi-Pour A, Verma M, Surampalli RY. Immobilized laccase on oxygen functionalized nanobiochars through mineral acids treatment for removal of carbamazepine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 584-585:393-401. [PMID: 28117156 DOI: 10.1016/j.scitotenv.2017.01.021] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 05/28/2023]
Abstract
Biocatalytic treatment with oxidoreductase enzymes, especially laccases are an environmentally benign method for biodegradation of pharmaceutical compounds, such as carbamazepine to less harmful compounds. However, enzymes are required to be immobilized on supports to be reusable and maintain their activity. Functionalization of support prior to immobilization of enzyme is highly important because of biomolecule-support interface on enzyme activity and stability. In this work, the effect of oxidation of nanobiochar, a carbonaceous material produced by biomass pyrolysis, using HCl, H2SO4, HNO3 and their mixtures on immobilization of laccase has been studied. Scanning electron microscopy indicated that the structure of nanobiochars remained intact after oxidation and Fourier transform infrared spectroscopy confirmed the formation of carboxylic groups because of acid treatment. Titration measurements showed that the sample treated with H2SO4/HNO3 (50:50, v/v) had the highest number of carboxylic groups (4.7mmol/g) and consequently the highest efficiency for laccase immobilization. Additionally, it was observed that the storage, pH and thermal stability of immobilized laccase on functionalized nanobiochar was improved compared to free laccase showing its potential for continuous applications. The reusability tests towards oxidation of 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) showed that the immobilized laccase preserved 70% of the initial activity after 3cycles. Finally, using immobilized laccase for degradation of carbamazepine exhibited 83% and 86% removal in spiked water and secondary effluent, respectively.
Collapse
Affiliation(s)
- Mitra Naghdi
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada
| | - Mehrdad Taheran
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada
| | - Satinder K Brar
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| | - Azadeh Kermanshahi-Pour
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia B3J 1Z1, Canada
| | - M Verma
- CO(2) Solutions Inc., 2300, Rue Jean-Perrin, Québec, Québec G2C 1T9, Canada
| | - R Y Surampalli
- Department of Civil Engineering, University of Nebraska-Lincoln, N104 SEC PO Box 886105, Lincoln, NE 68588-6105, US
| |
Collapse
|
57
|
Qin L, Zhao Y, Liu J, Hou J, Zhang Y, Wang J, Zhu J, Zhang B, Lvov Y, Van der Bruggen B. Oriented Clay Nanotube Membrane Assembled on Microporous Polymeric Substrates. ACS APPLIED MATERIALS & INTERFACES 2016; 8:34914-34923. [PMID: 27936539 DOI: 10.1021/acsami.6b12858] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Organized arrays of halloysite clay nanotubes have great potential in molecular separation, absorption, and biomedical applications. A highly oriented layer of halloysite on polyacrylonitrile porous membrane was prepared via a facile evaporation-induced method. Scanning electronic microscopy, surface attenuated total reflection Fourier transform infrared spectroscopy, and energy dispersive X-ray spectroscopy mapping indicated formation of the nanoarchitecture-controlled membrane. The well-ordered nanotube coating allowed for the excellent dye rejection (97.7% for reactive black 5) with high salt permeation (86.5% for aqueous NaCl), and thus these membranes were suitable for dye purification or concentration. These well-aligned nanotubes' composite membranes also showed very good fouling resistance against dye accumulation and bovine serum albumin adsorption as compared to the pristine polyacrylonitrile or membrane coated with disordered halloysite layer.
Collapse
Affiliation(s)
- Lijuan Qin
- School of Chemical Engineering and Energy, Zhengzhou University , Zhengzhou 450001, China
| | - Yafei Zhao
- School of Chemical Engineering and Energy, Zhengzhou University , Zhengzhou 450001, China
| | - Jindun Liu
- School of Chemical Engineering and Energy, Zhengzhou University , Zhengzhou 450001, China
| | - Jingwei Hou
- UNESCO Centre for Membrane Science and Technology, University of New South Wales , Sydney, Australia
| | - Yatao Zhang
- School of Chemical Engineering and Energy, Zhengzhou University , Zhengzhou 450001, China
| | - Jing Wang
- School of Chemical Engineering and Energy, Zhengzhou University , Zhengzhou 450001, China
- Department of Chemical Engineering, KU Leuven , Heverlee, Belgium
| | - Junyong Zhu
- Department of Chemical Engineering, KU Leuven , Heverlee, Belgium
| | - Bing Zhang
- School of Chemical Engineering and Energy, Zhengzhou University , Zhengzhou 450001, China
| | - Yuri Lvov
- Institute for Micromanufacturing, Louisiana Tech University , Ruston, Louisiana 71270, United States
- I. Gubkin Russian State University of Oil and Gas , Moscow 119991, Russia
| | | |
Collapse
|
58
|
Mallakpour S, Soltanian S. Surface functionalization of carbon nanotubes: fabrication and applications. RSC Adv 2016. [DOI: 10.1039/c6ra24522f] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
This review highlights recent development in functionalization of CNTs and their applications.
Collapse
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory
- Department of Chemistry
- Isfahan University of Technology
- Isfahan
- Islamic Republic of Iran
| | - Samaneh Soltanian
- Organic Polymer Chemistry Research Laboratory
- Department of Chemistry
- Isfahan University of Technology
- Isfahan
- Islamic Republic of Iran
| |
Collapse
|
59
|
Gebreyohannes AY, Mazzei R, Poerio T, Aimar P, Vankelecom IFJ, Giorno L. Pectinases immobilization on magnetic nanoparticles and their anti-fouling performance in a biocatalytic membrane reactor. RSC Adv 2016. [DOI: 10.1039/c6ra20455d] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Reversible enzyme immobilization on membrane using magneto-responsive bionanocomposites, magneto-responsive mixed matrix membrane and an external magnetic field for in situ membrane biocatalysis.
Collapse
Affiliation(s)
| | - Rosalinda Mazzei
- Institute on Membrane Technology ITM-CNR
- National Research Council of Italy
- 87036 Rende (CS)
- Italy
| | - Teresa Poerio
- Institute on Membrane Technology ITM-CNR
- National Research Council of Italy
- 87036 Rende (CS)
- Italy
| | - Pierre Aimar
- Laboratoire de Génie Chimique
- Université de Toulouse
- CNRS
- INPT
- UPS
| | - Ivo F. J. Vankelecom
- Centrum voor Oppervlaktechemie en Katalyse Dept. M2S
- Faculteit Bio-ingenieurswetenschappen
- KU Leuven
- Leuven Chem & Tech
- 3001 Leuven
| | - Lidietta Giorno
- Institute on Membrane Technology ITM-CNR
- National Research Council of Italy
- 87036 Rende (CS)
- Italy
| |
Collapse
|