51
|
Chu JY, Lee KH, Kim AR, Yoo DJ. Improved Physicochemical Stability and High Ion Transportation of Poly(Arylene Ether Sulfone) Blocks Containing a Fluorinated Hydrophobic Part for Anion Exchange Membrane Applications. Polymers (Basel) 2018; 10:E1400. [PMID: 30961325 PMCID: PMC6401760 DOI: 10.3390/polym10121400] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/13/2018] [Accepted: 12/15/2018] [Indexed: 12/01/2022] Open
Abstract
A series of anion exchange membranes composed of partially fluorinated poly(arylene ether sulfone)s (PAESs) multiblock copolymers bearing quaternary ammonium groups were synthesized with controlled lengths of the hydrophilic precursor and hydrophobic oligomer via direct polycondensation. The chloromethylation and quaternization proceeded well by optimizing the reaction conditions to improve hydroxide conductivity and physical stability, and the fabricated membranes were very flexible and transparent. Atomic force microscope images of quaternized PAES (QN-PAES) membranes showed excellent hydrophilic/hydrophobic phase separation and distinct ion transition channels. An extended architecture of phase separation was observed by increasing the hydrophilic oligomer length, which resulted in significant improvements in the water uptake, ion exchange capacity, and hydroxide conductivity. Furthermore, the open circuit voltage (OCV) of QN-PAES X10Y23 and X10Y13 was found to be above 0.9 V, and the maximum power density of QN-PAES X10Y13 was 131.7 mW cm-2 at 60 °C under 100% RH.
Collapse
Affiliation(s)
- Ji Young Chu
- Department of Energy Storage/Conversion Engineering of Graduate School, Hydrogen and Fuel Cell Research Center, Chonbuk National University, Jeonju 54896, Korea.
| | - Kyu Ha Lee
- Department of Energy Storage/Conversion Engineering of Graduate School, Hydrogen and Fuel Cell Research Center, Chonbuk National University, Jeonju 54896, Korea.
| | - Ae Rhan Kim
- R&D Center for CANUTECH, Business Incubation Center and Department of Bioenvironmental Chemistry, Chonbuk National University, Jeonju 54896, Korea.
| | - Dong Jin Yoo
- Department of Energy Storage/Conversion Engineering of Graduate School, Hydrogen and Fuel Cell Research Center, Chonbuk National University, Jeonju 54896, Korea.
- Department of Life Science, Chonbuk National University, Jeonju 54896, Korea.
| |
Collapse
|
52
|
Wang Z, Li Z, Chen N, Lu C, Wang F, Zhu H. Crosslinked poly (2,6-dimethyl-1,4-phenylene oxide) polyelectrolyte enhanced with poly (styrene-b-(ethylene-co-butylene)-b-styrene) for anion exchange membrane applications. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.07.039] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
53
|
Liu L, Li D, Xing Y, Li N. Mid-block quaternized polystyrene-b-polybutadiene-b-polystyrene triblock copolymers as anion exchange membranes. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.07.055] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
54
|
Liu Y, Chen J, Tang Y, Li S, Dou Y, Zheng J. Synthesis and Characterization of Quaternized Poly(β-amino ester) for Highly Efficient Delivery of Small Interfering RNA. Mol Pharm 2018; 15:4558-4567. [DOI: 10.1021/acs.molpharmaceut.8b00549] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yun Liu
- Department of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Jing Chen
- Department of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yue Tang
- Department of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Shuhan Li
- Department of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yushun Dou
- Department of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Jiewen Zheng
- Department of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| |
Collapse
|
55
|
Lin CX, Wu HY, Li L, Wang XQ, Zhang QG, Zhu AM, Liu QL. Anion Conductive Triblock Copolymer Membranes with Flexible Multication Side Chain. ACS APPLIED MATERIALS & INTERFACES 2018; 10:18327-18337. [PMID: 29737165 DOI: 10.1021/acsami.8b03757] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
To achieve highly conductive and stable anion exchange membranes (AEMs) for fuel cells, novel triblock copolymer AEMs bearing flexible side chain were synthesized. The triblock structure and flexible side chain are responsible for the developed hydrophilic/hydrophobic phase separated morphology and well-connected ion conducting channels, as confirmed by transmission electron microscopy. As a result, the triblock copolymer AEMs with flexible side chain (ABA-TQA- x) demonstrated considerably higher conductivities, up to 130.5 mS cm-1 at 80 °C, than the AEMs with monocation side chain (ABA-MQA). Furthermore, the long alkyl spacer between the backbone and quaternary ammonium groups, as well as long intercation spacer limits the water swelling of the membranes to some degree, resulting in good alkaline stability. The ABA-TQA-44 membrane retained 84.7% and 83.1% of its original conductivity and ionic exchange capacity, respectively, after immersed in a 1 M aqueous KOH solution at 80 °C for 480 h. Furthermore, the peak power density of a H2/O2 single cell using ABA-TQA-44 is 204.6 mW cm-2 at a current density of 500 mA cm-2 at 80 °C.
Collapse
|
56
|
Chen N, Long C, Li Y, Lu C, Zhu H. Ultrastable and High Ion-Conducting Polyelectrolyte Based on Six-Membered N-Spirocyclic Ammonium for Hydroxide Exchange Membrane Fuel Cell Applications. ACS APPLIED MATERIALS & INTERFACES 2018; 10:15720-15732. [PMID: 29664605 DOI: 10.1021/acsami.8b02884] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In response to prepare high-stable and ion-conducting polyelectrolyte for hydroxide exchange membrane (HEM) applications, we present an ultrastable polyelectrolyte based on six-membered heterocyclic 6-azonia-spiro[5.5]undecane (ASU) and polyphenyl ether (PPO). A series of ASU-functionalized PPO polyelectrolytes (ASU-PPO), which can be easily dissolved in low-boiling pointing solvent, have been successfully synthesized by a remote-grafting method. The ASU precursor is stable in 1 M NaOH/D2O at 80 °C for 2500 h as well as in 5 M NaOH/D2O at 80 °C for 2000 h, and the predicted half-life of the ASU precursor would exceed 10 000 h, even higher in the future. Besides, these remote-grafting ASU-PPO polyelectrolytes are stable in 1 M NaOH(aq) at 80 °C for 1500 h. Robust and pellucid segmented ASU and triple-ammonium-functionalized PPO-based HEMs attach OH- conductivity of 96 mS/cm at 80 °C and realize maximal power density of 178 mW/cm2 under current density of 401 mA/cm2.
Collapse
Affiliation(s)
- Nanjun Chen
- State Key Laboratory of Chemical Resource Engineering, Institute of Modern Catalysis, Department of Organic Chemistry, School of Science , Beijing University of Chemical Technology , Beijing 100029 , P. R. China
| | - Chuan Long
- State Key Laboratory of Chemical Resource Engineering, Institute of Modern Catalysis, Department of Organic Chemistry, School of Science , Beijing University of Chemical Technology , Beijing 100029 , P. R. China
| | - Yunxi Li
- State Key Laboratory of Chemical Resource Engineering, Institute of Modern Catalysis, Department of Organic Chemistry, School of Science , Beijing University of Chemical Technology , Beijing 100029 , P. R. China
| | - Chuanrui Lu
- State Key Laboratory of Chemical Resource Engineering, Institute of Modern Catalysis, Department of Organic Chemistry, School of Science , Beijing University of Chemical Technology , Beijing 100029 , P. R. China
| | - Hong Zhu
- State Key Laboratory of Chemical Resource Engineering, Institute of Modern Catalysis, Department of Organic Chemistry, School of Science , Beijing University of Chemical Technology , Beijing 100029 , P. R. China
| |
Collapse
|
57
|
Braglia M, Ferrari I, Pasquini L, Djenizian T, Sette M, Di Vona M, Knauth P. Electrochemical synthesis of thin, dense, and conformal anion exchange membranes with quaternary ammonium groups. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.01.151] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
58
|
Xu X, Wang L, Wang J, Yin Q, Dong S, Han J, Wei M. Hydroxide-ion-conductive gas barrier films based on layered double hydroxide/polysulfone multilayers. Chem Commun (Camb) 2018; 54:7778-7781. [DOI: 10.1039/c8cc02900h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hybrid films were fabricated via the layer-by-layer assembly of layered double hydroxide (LDH) nanoplates and quaternary ammonium grafted polysulfone (QAPSF), and showed dual functionality with both gas barrier and hydroxide ion conductivity properties.
Collapse
Affiliation(s)
- Xiaozhi Xu
- State Key Laboratory of Chemical Resource Engineering
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- Beijing University of Chemical Technology
- Beijing
- China
| | - Lumei Wang
- State Key Laboratory of Chemical Resource Engineering
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- Beijing University of Chemical Technology
- Beijing
- China
| | - Jiajie Wang
- State Key Laboratory of Chemical Resource Engineering
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- Beijing University of Chemical Technology
- Beijing
- China
| | - Qing Yin
- State Key Laboratory of Chemical Resource Engineering
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- Beijing University of Chemical Technology
- Beijing
- China
| | - Siyuan Dong
- State Key Laboratory of Chemical Resource Engineering
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- Beijing University of Chemical Technology
- Beijing
- China
| | - Jingbin Han
- State Key Laboratory of Chemical Resource Engineering
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- Beijing University of Chemical Technology
- Beijing
- China
| | - Min Wei
- State Key Laboratory of Chemical Resource Engineering
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- Beijing University of Chemical Technology
- Beijing
- China
| |
Collapse
|
59
|
Wang X, Wang P, Sun Y, Wang J, Fang H, Yang S, Wei H, Ding Y. A mechanically strong and tough anion exchange membrane engineered with non-covalent modalities. Chem Commun (Camb) 2017; 53:12369-12372. [DOI: 10.1039/c7cc07284h] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mechanically robust and tough anion exchange membrane was constructed using the strategy of supramolecular modalities.
Collapse
Affiliation(s)
- Xiaojuan Wang
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Anhui Key Laboratory of Advanced Functional Materials and Devices
- Hefei University of Technology
- Hefei 230009
| | - Ping Wang
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Anhui Key Laboratory of Advanced Functional Materials and Devices
- Hefei University of Technology
- Hefei 230009
| | - Yiyan Sun
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices
- School of Space and Environment
- Beihang University
- Beijing 100191
- China
| | - Jinlei Wang
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Anhui Key Laboratory of Advanced Functional Materials and Devices
- Hefei University of Technology
- Hefei 230009
| | - Huagao Fang
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Anhui Key Laboratory of Advanced Functional Materials and Devices
- Hefei University of Technology
- Hefei 230009
| | - Shanzhong Yang
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Anhui Key Laboratory of Advanced Functional Materials and Devices
- Hefei University of Technology
- Hefei 230009
| | - Haibing Wei
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Anhui Key Laboratory of Advanced Functional Materials and Devices
- Hefei University of Technology
- Hefei 230009
| | - Yunsheng Ding
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Anhui Key Laboratory of Advanced Functional Materials and Devices
- Hefei University of Technology
- Hefei 230009
| |
Collapse
|