51
|
|
52
|
Nano spinel CoFe2O4 deposited diatomite catalytic separation membrane for efficiently cleaning wastewater. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
53
|
Li N, Li R, Yu Y, Zhao J, Yan B, Chen G. Efficient degradation of bentazone via peroxymonosulfate activation by 1D/2D γ-MnOOH-rGO under simulated sunlight: Performance and mechanism insight. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140492. [PMID: 32886992 DOI: 10.1016/j.scitotenv.2020.140492] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
An innovative 1D/2D γ-MnOOH-rGO catalyst was successfully synthesized by anchoring γ-MnOOH nanowires on rGO nanosheets. Its catalytic activity was comprehensively evaluated by bentazone degradation in PMS/simulated sunlight system. Results showed that the γ-MnOOH-rGO catalyst achieved 96.1% decomposition of bentazone within 90 min in the coupled system, improving by 26.7% compared to that obtained in the γ-MnOOH mediated system. Moreover, the newly-designed γ-MnOOH-rGO exhibited stability, recyclability and practicability for bentazone elimination. Mechanism insight highlighted that more active sites exposed on γ-MnOOH-rGO surface, providing more opportunities for PMS activation and bentazone degradation. Besides, the rGO could transfer photo-induced electrons, accelerating radical-based reactions. More importantly, ∙OH and 1O2 appeared in γ-MnOOH-rGO/PMS/simulated sunlight system, which played an overwhelming role in bentazone removal. In prospect, the γ-MnOOH-rGO showed promising potential for refractory contaminants remediation from aquatic environment in PMS/photocatalytic system.
Collapse
Affiliation(s)
- Ning Li
- School of Environmental Science and Engineering, Tianjin Key Lab of Biomass Waste Utilization, Tianjin University, Tianjin 300072, China
| | - Rui Li
- School of Environmental Science and Engineering, Tianjin Key Lab of Biomass Waste Utilization, Tianjin University, Tianjin 300072, China
| | - Yang Yu
- Tianjin International Engineering Institute, Tianjin 300072, China
| | - Jianhui Zhao
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Beibei Yan
- School of Environmental Science and Engineering, Tianjin Key Lab of Biomass Waste Utilization, Tianjin University, Tianjin 300072, China
| | - Guanyi Chen
- School of Environmental Science and Engineering, Tianjin Key Lab of Biomass Waste Utilization, Tianjin University, Tianjin 300072, China; Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen 518071, China.
| |
Collapse
|
54
|
Meng F, Qin Y, Lu J, Lin X, Meng M, Sun G, Yan Y. Biomimetic design and synthesis of visible-light-driven g-C 3N 4 nanotube @polydopamine/NiCo-layered double hydroxides composite photocatalysts for improved photocatalytic hydrogen evolution activity. J Colloid Interface Sci 2020; 584:464-473. [PMID: 33096412 DOI: 10.1016/j.jcis.2020.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/23/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023]
Abstract
In the practical process of photocatalytic H2 evolution, optimizing the ability of light absorption and charge spatial separation is the top priority for improving the photocatalytic performance. In this study, we elaborately engineer neoteric g-C3N4 nanotube@polydopamine(pDA)/NiCo-LDH (LPC) composite photocatalyst by combining hydrothermal and calcination method. In the LPC composite system, the one-dimensional (1D) g-C3N4 nanotubes with larger specific surface area can afford more active sites and conduce to shorten the charge migration distance, as well as the high-speed mass transfer in the nanotube can accelerate the reaction course. The g-C3N4/NiCo-LDH type-II heterojunction can efficaciously stimulate the spatial separation of photo-produced charge. In addition, pDA as heterojunction metal-free interface mediums can provide multiple action (π-π* electron delocalization effect, adhesive action and photosensitization). The optimized LPC nanocomposite displays about 3.3-fold high photoactivity for H2 evolution compared with the g-C3N4 nanotube under solar light irradiation. In addition, the cycle experiment result shows that the LPC composite photocatalyst possesses superior stability and recyclability. The resultant g-C3N4@pDA/NiCo-LDH composite photocatalyst displays the potential practical application in the field of energy conversion.
Collapse
Affiliation(s)
- Fanying Meng
- College of Science, Beihua University, Jilin 132013, PR China; Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yingying Qin
- Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, PR China
| | - Jian Lu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinyu Lin
- Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, PR China
| | - Minjia Meng
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Gang Sun
- College of Science, Beihua University, Jilin 132013, PR China.
| | - Yongsheng Yan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
55
|
Li P, Zhang M, Zhai Z, Wang M, Li P, Hou Y, Jason Niu Q. Precise assembly of a zeolite imidazolate framework on polypropylene support for the fabrication of thin film nanocomposite reverse osmosis membrane. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118412] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
56
|
Wang M, Xu Z, Hou Y, Li P, Sun H, Niu QJ. Photo-Fenton assisted self-cleaning hybrid ultrafiltration membranes with high-efficient flux recovery for wastewater remediation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117159] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
57
|
Varjani S, Rakholiya P, Ng HY, You S, Teixeira JA. Microbial degradation of dyes: An overview. BIORESOURCE TECHNOLOGY 2020; 314:123728. [PMID: 32665105 DOI: 10.1016/j.biortech.2020.123728] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 05/21/2023]
Abstract
Industrialization increases use of dyes due to its high demand in paper, cosmetic, textile, leather and food industries. This in turn would increase wastewater generation from dye industrial activities. Various dyes and its structural compounds present in dye industrial wastewater have harmful effects on plants, animals and humans. Synthetic dyes are more resistant than natural dyes to physical and chemical methods for remediation which makes them more difficult to get decolorize. Microbial degradation has been researched and reviewed largely for quicker dye degradation. Genetically engineered microorganisms (GEMs) play important role in achieving complete dye degradation. This paper provides scientific and technical information about dyes & dye intermediates and biodegradation of azo dye. It also compiles information about factors affecting dye(s) biodegradation, role of genetically modified organisms (GMOs) in process of dye(s) degradation and perspectives in this field of research.
Collapse
Affiliation(s)
- Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India.
| | - Parita Rakholiya
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India; Kadi Sarva Vishwavidyalaya, Gandhinagar, Gujarat 382015, India
| | - How Yong Ng
- National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Siming You
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Jose A Teixeira
- CEB - Centre of Biological Engineering, University of Minho, 4710057 Braga, Portugal
| |
Collapse
|
58
|
Qing W, Liu F, Yao H, Sun S, Chen C, Zhang W. Functional catalytic membrane development: A review of catalyst coating techniques. Adv Colloid Interface Sci 2020; 282:102207. [PMID: 32688044 DOI: 10.1016/j.cis.2020.102207] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/02/2020] [Accepted: 07/04/2020] [Indexed: 12/18/2022]
Abstract
Catalytic membranes combine catalytic activity with conventional filtration membranes, thus enabling diverse attractive benefits into the conventional membrane filtration processes, such as easy catalyst reuse, antifouling, anti-microbial, and enhancing process efficiency. Up to date, tremendous progresses have been made on functional catalytic membrane preparation and applications, which significantly advances the competitiveness of membrane technologies in process industries. The present article provides a critical and holistic overview of the current state of knowledge on existing catalyst coating techniques for functional catalytic membrane development. Based on coating mechanisms, the techniques are generally categorized into physical and chemical surface coating routes. For each technique, we first introduce fundamental principle, followed by a critical discussion of their applications with representative case studies. Advantages and drawbacks are also emphasized for different surface coating technologies. Finally, future perspectives are highlighted to provide deep insights into their future developments.
Collapse
Affiliation(s)
- Weihua Qing
- Beijing International Science and Technology Cooperation Base for Antibiotics and Resistance Genes Control, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China; Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States of America
| | - Fang Liu
- Beijing International Science and Technology Cooperation Base for Antibiotics and Resistance Genes Control, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Hong Yao
- Beijing International Science and Technology Cooperation Base for Antibiotics and Resistance Genes Control, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China.
| | - Shaobin Sun
- Beijing International Science and Technology Cooperation Base for Antibiotics and Resistance Genes Control, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China; Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States of America
| | - Chen Chen
- Department of Municipal and Environmental Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Wen Zhang
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States of America
| |
Collapse
|
59
|
|
60
|
Zhou Y, Li Z, Hao C, Zhang Y, Chai S, Han G, Xu H, Lu J, Dang Y, Sun X, Fu Y. Electrocatalysis enhancement of α, β-PbO2 nanocrystals induced via rare earth Er(III) doping strategy: Principle, degradation application and electrocatalytic mechanism. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135535] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|