51
|
Tanaka T, Padavattan S, Kumarevel T. Crystal structure of archaeal chromatin protein Alba2-double-stranded DNA complex from Aeropyrum pernix K1. J Biol Chem 2012; 287:10394-10402. [PMID: 22334696 DOI: 10.1074/jbc.m112.343210] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
All thermophilic and hyperthermophilic archaea encode homologs of dimeric Alba (Sac10b) proteins that bind cooperatively at high density to DNA. Here, we report the 2.0 Å resolution crystal structure of an Alba2 (Ape10b2)-dsDNA complex from Aeropyrum pernix K1. A rectangular tube-like structure encompassing duplex DNA reveals the positively charged residues in the monomer-monomer interface of each dimer packing on either side of the bound dsDNA in successive minor grooves. The extended hairpin loop connecting strands β3 and β4 undergoes significant conformational changes upon DNA binding to accommodate the other Alba2 dimer during oligomerization. Mutational analysis of key interacting residues confirmed the specificity of Alba2-dsDNA interactions.
Collapse
Affiliation(s)
- Tomoyuki Tanaka
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Sivaraman Padavattan
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | | |
Collapse
|
52
|
Daneshvar H, Wyllie S, Phillips S, Hagan P, Burchmore R. Comparative proteomics profiling of a gentamicin-attenuated Leishmania infantum cell line identifies key changes in parasite thiol-redox metabolism. J Proteomics 2012; 75:1463-71. [DOI: 10.1016/j.jprot.2011.11.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 10/21/2011] [Accepted: 11/15/2011] [Indexed: 11/24/2022]
|
53
|
Chêne A, Vembar SS, Rivière L, Lopez-Rubio JJ, Claes A, Siegel TN, Sakamoto H, Scheidig-Benatar C, Hernandez-Rivas R, Scherf A. PfAlbas constitute a new eukaryotic DNA/RNA-binding protein family in malaria parasites. Nucleic Acids Res 2011; 40:3066-77. [PMID: 22167473 PMCID: PMC3326326 DOI: 10.1093/nar/gkr1215] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In Plasmodium falciparum, perinuclear subtelomeric chromatin conveys monoallelic expression of virulence genes. However, proteins that directly bind to chromosome ends are poorly described. Here we identify a novel DNA/RNA-binding protein family that bears homology to the archaeal protein Alba (Acetylation lowers binding affinity). We isolated three of the four PfAlba paralogs as part of a molecular complex that is associated with the P. falciparum-specific TARE6 (Telomere-Associated Repetitive Elements 6) subtelomeric region and showed in electromobility shift assays (EMSAs) that the PfAlbas bind to TARE6 repeats. In early blood stages, the PfAlba proteins were enriched at the nuclear periphery and partially co-localized with PfSir2, a TARE6-associated histone deacetylase linked to the process of antigenic variation. The nuclear location changed at the onset of parasite proliferation (trophozoite-schizont), where the PfAlba proteins were also detectable in the cytoplasm in a punctate pattern. Using single-stranded RNA (ssRNA) probes in EMSAs, we found that PfAlbas bind to ssRNA, albeit with different binding preferences. We demonstrate for the first time in eukaryotes that Alba-like proteins bind to both DNA and RNA and that their intracellular location is developmentally regulated. Discovery of the PfAlbas may provide a link between the previously described subtelomeric non-coding RNA and the regulation of antigenic variation.
Collapse
Affiliation(s)
- Arnaud Chêne
- Institut Pasteur, Unité de Biologie des Interactions Hôte-Parasite, URA 2581, F-75015 Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Archaeal transcriptional regulation of the prokaryotic KdpFABC complex mediating K+ uptake in H. salinarum. Extremophiles 2011; 15:643-52. [DOI: 10.1007/s00792-011-0395-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 08/26/2011] [Indexed: 10/17/2022]
|
55
|
Maruyama H, Shin M, Oda T, Matsumi R, Ohniwa RL, Itoh T, Shirahige K, Imanaka T, Atomi H, Yoshimura SH, Takeyasu K. Histone and TK0471/TrmBL2 form a novel heterogeneous genome architecture in the hyperthermophilic archaeon Thermococcus kodakarensis. Mol Biol Cell 2011; 22:386-98. [PMID: 21148291 PMCID: PMC3031468 DOI: 10.1091/mbc.e10-08-0668] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Being distinct from bacteria and eukaryotes, Archaea constitute a third domain of living things. The DNA replication, transcription, and translation machineries of Archaea are more similar to those of eukaryotes, whereas the genes involved in metabolic processes show more similarity to their bacterial counterparts. We report here that TK0471/TrmB-like 2 (TrmBL2), in addition to histone, is a novel type of abundant chromosomal protein in the model euryarchaeon Thermococcus kodakarensis . The chromosome of T. kodakarensis can be separated into regions enriched either with histone, in which the genetic material takes on a “beads-on-a-string” appearance, or with TK0471/TrmBL2, in which it assumes a thick fibrous structure. TK0471/TrmBL2 binds to both coding and intergenic regions and represses transcription when bound to the promoter region. These results show that the archaeal chromosome is organized into heterogeneous structures and that TK0471/TrmBL2 acts as a general chromosomal protein as well as a global transcriptional repressor.
Collapse
Affiliation(s)
- Hugo Maruyama
- Laboratory of Plasma Membrane and Nuclear Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Jarrell KF, Walters AD, Bochiwal C, Borgia JM, Dickinson T, Chong JPJ. Major players on the microbial stage: why archaea are important. MICROBIOLOGY-SGM 2011; 157:919-936. [PMID: 21330437 DOI: 10.1099/mic.0.047837-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
As microbiology undergoes a renaissance, fuelled in part by developments in new sequencing technologies, the massive diversity and abundance of microbes becomes yet more obvious. The Archaea have traditionally been perceived as a minor group of organisms forced to evolve into environmental niches not occupied by their more 'successful' and 'vigorous' counterparts, the bacteria. Here we outline some of the evidence gathered by an increasingly large and productive group of scientists that demonstrates not only that the Archaea contribute significantly to global nutrient cycling, but also that they compete successfully in 'mainstream' environments. Recent data suggest that the Archaea provide the major routes for ammonia oxidation in the environment. Archaea also have huge economic potential that to date has only been fully realized in the production of thermostable polymerases. Archaea have furnished us with key paradigms for understanding fundamentally conserved processes across all domains of life. In addition, they have provided numerous exemplars of novel biological mechanisms that provide us with a much broader view of the forms that life can take and the way in which micro-organisms can interact with other species. That this information has been garnered in a relatively short period of time, and appears to represent only a small proportion of what the Archaea have to offer, should provide further incentives to microbiologists to investigate the underlying biology of this fascinating domain.
Collapse
Affiliation(s)
- Ken F Jarrell
- Department of Microbiology and Immunology, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Alison D Walters
- Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, UK
| | - Chitvan Bochiwal
- Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, UK
| | - Juliet M Borgia
- Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, UK
| | - Thomas Dickinson
- Sheffield Hallam University, City Campus, Howard Street, Sheffield S1 1WB, UK
| | - James P J Chong
- Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, UK
| |
Collapse
|
57
|
Borg M, Brownfield L, Khatab H, Sidorova A, Lingaya M, Twell D. The R2R3 MYB transcription factor DUO1 activates a male germline-specific regulon essential for sperm cell differentiation in Arabidopsis. THE PLANT CELL 2011; 23:534-49. [PMID: 21285328 PMCID: PMC3077786 DOI: 10.1105/tpc.110.081059] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 01/07/2011] [Accepted: 01/12/2011] [Indexed: 05/18/2023]
Abstract
The male germline in flowering plants arises through asymmetric division of a haploid microspore. The resulting germ cell undergoes mitotic division and specialization to produce the two sperm cells required for double fertilization. The male germline-specific R2R3 MYB transcription factor DUO1 POLLEN1 (DUO1) plays an essential role in sperm cell specification by activating a germline-specific differentiation program. Here, we show that ectopic expression of DUO1 upregulates a significant number (~63) of germline-specific or enriched genes, including those required for fertilization. We validated 14 previously unknown DUO1 target genes by demonstrating DUO1-dependent promoter activity in the male germline. DUO1 is shown to directly regulate its target promoters through binding to canonical MYB sites, suggesting that the DUO1 target genes validated thus far are likely to be direct targets. This work advances knowledge of the DUO1 regulon that encompasses genes with a range of cellular functions, including transcription, protein fate, signaling, and transport. Thus, the DUO1 regulon has a major role in shaping the germline transcriptome and functions to commit progenitor germ cells to sperm cell differentiation.
Collapse
Affiliation(s)
- Michael Borg
- Department of Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Lynette Brownfield
- Department of Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
- Department of Biology and Zurich-Basel Plant Science Centre, Swiss Federal Institute of Technology, CH-8092 Zurich, Switzerland
| | - Hoda Khatab
- Department of Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Anna Sidorova
- Department of Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Melanie Lingaya
- Department of Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - David Twell
- Department of Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| |
Collapse
|
58
|
Abstract
DNA supercoiling plays essential role in maintaining proper chromosome structure, as well as the equilibrium between genome dynamics and stability under specific physicochemical and physiological conditions. In mesophilic organisms, DNA is negatively supercoiled and, until recently, positive supercoiling was considered a peculiar mark of (hyper)thermophilic archaea needed to survive high temperatures. However, several lines of evidence suggest that negative and positive supercoiling might coexist in both (hyper)thermophilic and mesophilic organisms, raising the possibility that positive supercoiling might serve as a regulator of various cellular events, such as chromosome condensation, gene expression, mitosis, sister chromatid cohesion, centromere identity and telomere homoeostasis.
Collapse
|
59
|
Natural history of eukaryotic DNA methylation systems. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 101:25-104. [PMID: 21507349 DOI: 10.1016/b978-0-12-387685-0.00002-0] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Methylation of cytosines and adenines in DNA is a widespread epigenetic mark in both prokaryotes and eukaryotes. In eukaryotes, it has a profound influence on chromatin structure and dynamics. Recent advances in genomics and biochemistry have considerably elucidated the functions and provenance of these DNA modifications. DNA methylases appear to have emerged first in bacterial restriction-modification (R-M) systems from ancient RNA-modifying enzymes, in transitions that involved acquisition of novel catalytic residues and DNA-recognition features. DNA adenine methylases appear to have been acquired by ciliates, heterolobosean amoeboflagellates, and certain chlorophyte algae. Six distinct clades of cytosine methylases, including the DNMT1, DNMT2, and DNMT3 clades, were acquired by eukaryotes through independent lateral transfer of their precursors from bacteria or bacteriophages. In addition to these, multiple adenine and cytosine methylases were acquired by several families of eukaryotic transposons. In eukaryotes, the DNA-methylase module was often combined with distinct modified and unmodified peptide recognition domains and other modules mediating specialized interactions, for example, the RFD module of DNMT1 which contains a permuted Sm domain linked to a helix-turn-helix domain. In eukaryotes, the evolution of DNA methylases appears to have proceeded in parallel to the elaboration of histone-modifying enzymes and the RNAi system, with functions related to counter-viral and counter-transposon defense, and regulation of DNA repair and differential gene expression being their primary ancestral functions. Diverse DNA demethylation systems that utilize base-excision repair via DNA glycosylases and cytosine deaminases appear to have emerged in multiple eukaryotic lineages. Comparative genomics suggests that the link between cytosine methylation and DNA glycosylases probably emerged first in a novel R-M system in bacteria. Recent studies suggest that the 5mC is not a terminal DNA modification, with enzymes of the Tet/JBP family of 2-oxoglutarate- and iron-dependent dioxygenases further hydroxylating it to form 5-hydroxymethylcytosine (5hmC). These enzymes emerged first in bacteriophages and appear to have been transferred to eukaryotes on one or more occasions. Eukaryotes appear to have recruited three major types of DNA-binding domains (SRA/SAD, TAM/MBD, and CXXC) in discriminating DNA with methylated or unmethylated cytosines. Analysis of the domain architectures of these domains and the DNA methylases suggests that early in eukaryotic evolution they developed a close functional link with SET-domain methylases and Jumonji-related demethylases that operate on peptides in chromatin proteins. In several eukaryotes, other functional connections were elaborated in the form of various combinations between domains related to DNA methylation and those involved in ATP-dependent chromatin remodeling and RNAi. In certain eukaryotes, such as mammals and angiosperms, novel dependencies on the DNA methylation system emerged, which resulted in it affecting unexpected aspects of the biology of these organisms such as parent-offspring interactions. In genomic terms, this was reflected in the emergence of new proteins related to methylation, such as Stella. The well-developed methylation systems of certain heteroloboseans, stramenopiles, chlorophytes, and haptophyte indicate that these might be new model systems to explore the relevance of DNA modifications in eukaryotes.
Collapse
|
60
|
Priyakumar UD, Harika G, Suresh G. Molecular simulations on the thermal stabilization of DNA by hyperthermophilic chromatin protein Sac7d, and associated conformational transitions. J Phys Chem B 2010; 114:16548-57. [PMID: 21086967 DOI: 10.1021/jp101583d] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Sac7d belongs to a family of chromosomal proteins, which are crucial for thermal stabilization of DNA at higher growth temperatures. It is capable of binding DNA nonspecifically, and is responsible for the increase in the melting temperature of DNA in the bound form up to 85 °C. Molecular dynamics (MD) simulations were performed at different temperatures on two protein-DNA complexes of Sac7d. Various structural and energetic parameters were calculated to examine the DNA stability and to investigate the conformational changes in DNA and the protein-DNA interactions. Room temperature simulations indicated very good agreement with the experimental structures. The protein structure is nearly unchanged at both 300 and 360 K, and only up to five base pairs of the DNA are stabilized by Sac7d at 360 K. However, the MD simulations on DNA alone systems show that they lose their helical structures at 360 K further supporting the role of Sac7d in stabilizing the oligomers. At higher temperatures (420 and 480 K), DNA undergoes denaturation in the presence and the absence of the protein. The DNA molecules were found to undergo B- to A-form transitions consistent with experimental studies, and the extent of these transitions are examined in detail. The extent of sampling B- and A-form regions was found to show temperature and sequence dependence. Multiple MD simulations yielded similar results validating the proposed model. Interaction energy calculations corresponding to protein-DNA binding indicates major contribution due to DNA backbone, explaining the nonspecific interactions of Sac7d.
Collapse
Affiliation(s)
- U Deva Priyakumar
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500 032, India.
| | | | | |
Collapse
|
61
|
Paquet F, Loth K, Meudal H, Culard F, Genest D, Lancelot G. Refined solution structure and backbone dynamics of the archaeal MC1 protein. FEBS J 2010; 277:5133-45. [PMID: 21078128 DOI: 10.1111/j.1742-4658.2010.07927.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The 3D structure of methanogen chromosomal protein 1 (MC1), determined with heteronuclear NMR methods, agrees with its function in terms of the shape and nature of the binding surface, whereas the 3D structure determined with homonuclear NMR does not. The structure features five loops, which show a large distribution in the ensemble of 3D structures. Evidence for the fact that this distribution signifies internal mobility on the nanosecond time scale was provided by using (15)N-relaxation and molecular dynamics simulations. Structural variations of the arm (11 residues) induced large shape anisotropy variations on the nanosecond time scale that ruled out the use of the model-free formalism to analyze the relaxation data. The backbone dynamics analysis of MC1 was achieved by comparison with 20 ns molecular dynamics trajectories. Two β-bulges showed that hydrogen bond formation correlated with ϕ and ψ dihedral angle transitions. These jumps were observed on the nanosecond time scale, in agreement with a large decrease in (15)N-NOE for Gly17 and Ile89. One water molecule bridging NH(Glu87) and CO(Val57) through hydrogen bonding contributed to these dynamics. Nanosecond slow motions observed in loops LP3 (35-42) and LP5 (67-77) reflected the lack of stable hydrogen bonds, whereas the other loops, LP1 (10-14), LP2 (22-24), and LP4 (50-53), were stabilized by several hydrogen bonds. Dynamics are often directly related to function. Our data strongly suggest that residues belonging to the flexible regions of MC1 could be involved in the interaction with DNA.
Collapse
Affiliation(s)
- Françoise Paquet
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Orléans, France.
| | | | | | | | | | | |
Collapse
|
62
|
|
63
|
Feng Y, Yao H, Wang J. Crystal structure of the crenarchaeal conserved chromatin protein Cren7 and double-stranded DNA complex. Protein Sci 2010; 19:1253-7. [PMID: 20512977 DOI: 10.1002/pro.385] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cren7 is a crenarchaeal conserved chromatin protein discovered recently. To explore the mechanism of the DNA packaging in Crenarchaeota, the crystal structure of Cren7-GCGATCGC complex has been determined and refined at 1.6 A resolution. Cren7 kinks the dsDNA sharply similar to Sul7d, another chromatin protein existing only in Sulfolobales, which reveals that the "bending and unwinding" compacting mechanism is conserved in Crenarchaeota. Significant structural differences are revealed by comparing both protein-dsDNA complexes. The kinked sites on the same dsDNA in the complexes with Sul7d and Cren7 show one base pair shift. For Cren7, fewer charged residues in the beta-barrel structural region bind to DNA, and additionally, the flexible loop L(beta3beta4) is also involved in the binding. Electrophoretic mobility shift assays indicate that loop L(beta3beta4) is essential for DNA-binding of Cren7. These differences provide insight into the functional difference of both chromatin proteins, suggesting that Cren7 may be more regulative than Sul7d in the DNA-binding affinity by the methylation in the flexible loop L(beta3beta4) in vivo.
Collapse
Affiliation(s)
- Yingang Feng
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | | | | |
Collapse
|
64
|
Walker CB, de la Torre JR, Klotz MG, Urakawa H, Pinel N, Arp DJ, Brochier-Armanet C, Chain PSG, Chan PP, Gollabgir A, Hemp J, Hügler M, Karr EA, Könneke M, Shin M, Lawton TJ, Lowe T, Martens-Habbena W, Sayavedra-Soto LA, Lang D, Sievert SM, Rosenzweig AC, Manning G, Stahl DA. Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea. Proc Natl Acad Sci U S A 2010; 107:8818-23. [PMID: 20421470 PMCID: PMC2889351 DOI: 10.1073/pnas.0913533107] [Citation(s) in RCA: 544] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ammonia-oxidizing archaea are ubiquitous in marine and terrestrial environments and now thought to be significant contributors to carbon and nitrogen cycling. The isolation of Candidatus "Nitrosopumilus maritimus" strain SCM1 provided the opportunity for linking its chemolithotrophic physiology with a genomic inventory of the globally distributed archaea. Here we report the 1,645,259-bp closed genome of strain SCM1, revealing highly copper-dependent systems for ammonia oxidation and electron transport that are distinctly different from known ammonia-oxidizing bacteria. Consistent with in situ isotopic studies of marine archaea, the genome sequence indicates N. maritimus grows autotrophically using a variant of the 3-hydroxypropionate/4-hydroxybutryrate pathway for carbon assimilation, while maintaining limited capacity for assimilation of organic carbon. This unique instance of archaeal biosynthesis of the osmoprotectant ectoine and an unprecedented enrichment of multicopper oxidases, thioredoxin-like proteins, and transcriptional regulators points to an organism responsive to environmental cues and adapted to handling reactive copper and nitrogen species that likely derive from its distinctive biochemistry. The conservation of N. maritimus gene content and organization within marine metagenomes indicates that the unique physiology of these specialized oligophiles may play a significant role in the biogeochemical cycles of carbon and nitrogen.
Collapse
Affiliation(s)
- C. B. Walker
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195
- Geosyntec Consultants, Seattle, WA 98101
| | - J. R. de la Torre
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195
| | - M. G. Klotz
- Department of Biology, University of Louisville, Louisville, KY 40292
| | - H. Urakawa
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195
| | - N. Pinel
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195
| | - D. J. Arp
- Department of Botany and Plant Pathology, Oregon State University, Corvalis, OR 97331
| | - C. Brochier-Armanet
- Université de Provence Aix-Marseille I, Laboratoire de Chimie Bactérienne, Centre National de la Recherche Scientifique Unité Propre de Recherche, Marseille, 13402 France
| | - P. S. G. Chain
- Biosciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550
- Microbial Program, Joint Genome Institute, Walnut Creek, CA 94598
- Center for Microbial Ecology, Michigan State University, East Lansing, MI 48824
| | - P. P. Chan
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064
| | - A. Gollabgir
- Razavi Newman Center for Bioinformatics, Salk Institute for Biological Studies, La Jolla, CA 92037
| | - J. Hemp
- School of Chemical Sciences, University of Illinois, Urbana, IL 61801
| | - M. Hügler
- Leibniz-Institut für Meereswissenschaften, Kiel, 24105 Germany
- Water Technology Center, Karlsruhe, 76139 Germany
| | - E. A. Karr
- Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019
| | - M. Könneke
- Institut für Chemie und Biologie des Meeres, Universität Oldenburg, Oldenburg, 26129 Germany
| | - M. Shin
- Biosciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550
- Microbial Program, Joint Genome Institute, Walnut Creek, CA 94598
| | - T. J. Lawton
- Departments of Biochemistry, Molecular Biology and Cell Biology, and Chemistry, Northwestern University, Evanston, IL 60208; and
| | - T. Lowe
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064
| | - W. Martens-Habbena
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195
| | - L. A. Sayavedra-Soto
- Department of Botany and Plant Pathology, Oregon State University, Corvalis, OR 97331
| | - D. Lang
- Biosciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550
- Microbial Program, Joint Genome Institute, Walnut Creek, CA 94598
| | - S. M. Sievert
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543
| | - A. C. Rosenzweig
- Departments of Biochemistry, Molecular Biology and Cell Biology, and Chemistry, Northwestern University, Evanston, IL 60208; and
| | - G. Manning
- Razavi Newman Center for Bioinformatics, Salk Institute for Biological Studies, La Jolla, CA 92037
| | - D. A. Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195
| |
Collapse
|
65
|
Zhang Z, Gong Y, Guo L, Jiang T, Huang L. Structural insights into the interaction of the crenarchaeal chromatin protein Cren7 with DNA. Mol Microbiol 2010; 76:749-59. [PMID: 20345658 DOI: 10.1111/j.1365-2958.2010.07136.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cren7, a newly found chromatin protein, is highly conserved in the Crenarchaeota. The protein shows higher affinity for double-stranded DNA than for single-stranded DNA, constrains negative DNA supercoils in vitro and is associated with genomic DNA in vivo. Here we report the crystal structures of the Cren7 protein from Sulfolobus solfataricus in complex with two DNA sequences. Cren7 binds in the minor groove of DNA and causes a single-step sharp kink in DNA (approximately 53 degrees) through the intercalation of the hydrophobic side chain of Leu28. Loop beta 3-beta 4 of Cren7 undergoes a significant conformational change upon binding of the protein to DNA, suggesting its critical role in the stabilization of the protein-DNA complex. The roles of DNA-contacting amino acid residues in stabilizing the Cren7-DNA interaction were examined by mutational analysis. Structural comparison of Cren7-DNA complexes with Sac7d-DNA complexes reveals significant differences between the two proteins in DNA binding surface, suggesting that Cren7 and Sul7d serve distinct functions in chromosomal organization.
Collapse
Affiliation(s)
- Zhenfeng Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | | | | | | | | |
Collapse
|
66
|
Dimer-dimer stacking interactions are important for nucleic acid binding by the archaeal chromatin protein Alba. Biochem J 2010; 427:49-55. [PMID: 20082605 PMCID: PMC2841500 DOI: 10.1042/bj20091841] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Archaea use a variety of small basic proteins to package their DNA. One of the most widespread and highly conserved is the Alba (Sso10b) protein. Alba interacts with both DNA and RNA in vitro, and we show in the present study that it binds more tightly to dsDNA (double-stranded DNA) than to either ssDNA (single-stranded DNA) or RNA. The Alba protein is dimeric in solution, and forms distinct ordered complexes with DNA that have been visualized by electron microscopy studies; these studies suggest that, on binding dsDNA, the protein forms extended helical protein fibres. An end-to-end association of consecutive Alba dimers is suggested by the presence of a dimer–dimer interface in crystal structures of Alba from several species, and by the strong conservation of the interface residues, centred on Arg59 and Phe60. In the present study we map perturbation of the polypeptide backbone of Alba upon binding to DNA and RNA by NMR, and demonstrate the central role of Phe60 in forming the dimer–dimer interface. Site-directed spin labelling and pulsed ESR are used to confirm that an end-to-end, dimer–dimer interaction forms in the presence of dsDNA.
Collapse
|
67
|
de Souza RF, Iyer LM, Aravind L. Diversity and evolution of chromatin proteins encoded by DNA viruses. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1799:302-18. [PMID: 19878744 PMCID: PMC3243496 DOI: 10.1016/j.bbagrm.2009.10.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 10/21/2009] [Accepted: 10/22/2009] [Indexed: 11/23/2022]
Abstract
Double-stranded DNA viruses display a great variety of proteins that interact with host chromatin. Using the wealth of available genomic and functional information, we have systematically surveyed chromatin-related proteins encoded by dsDNA viruses. The distribution of viral chromatin-related proteins is primarily influenced by viral genome size and the superkingdom to which the host of the virus belongs. Smaller viruses usually encode multifunctional proteins that mediate several distinct interactions with host chromatin proteins and viral or host DNA. Larger viruses additionally encode several enzymes, which catalyze manipulations of chromosome structure, chromatin remodeling and covalent modifications of proteins and DNA. Among these viruses, it is also common to encounter transcription factors and DNA-packaging proteins such as histones and IHF/HU derived from cellular genomes, which might play a role in constituting virus-specific chromatin states. Through all size ranges a subset of domains in viral chromatin proteins appears to have been derived from those found in host proteins. Examples include the Zn-finger domains of the E6 and E7 proteins of papillomaviruses, SET domain methyltransferases and Jumonji-related demethylases in certain nucleocytoplasmic large DNA viruses and BEN domains in poxviruses and polydnaviruses. In other cases, chromatin-interacting modules, such as the LXCXE motif, appear to have been widely disseminated across distinct viral lineages, resulting in similar retinoblastoma targeting strategies. Viruses, especially those with large linear genomes, have evolved a number of mechanisms to manipulate viral chromosomes in the process of replication-associated recombination. These include topoisomerases, Rad50/SbcC-like ABC ATPases and a novel recombinase system in bacteriophages utilizing RecA and Rad52 homologs. Larger DNA viruses also encode SWI2/SNF2 and A18-like ATPases which appear to play specialized roles in transcription and recombination. Finally, it also appears that certain domains of viral provenance have given rise to key functions in eukaryotic chromatin such as a HEH domain of chromosome tethering proteins and the TET/JBP-like cytosine and thymine hydroxylases.
Collapse
Affiliation(s)
- Robson F. de Souza
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, United States of America
| | - Lakshminarayan M. Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, United States of America
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, United States of America
| |
Collapse
|
68
|
Cavalier-Smith T. Origin of the cell nucleus, mitosis and sex: roles of intracellular coevolution. Biol Direct 2010; 5:7. [PMID: 20132544 PMCID: PMC2837639 DOI: 10.1186/1745-6150-5-7] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 02/04/2010] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The transition from prokaryotes to eukaryotes was the most radical change in cell organisation since life began, with the largest ever burst of gene duplication and novelty. According to the coevolutionary theory of eukaryote origins, the fundamental innovations were the concerted origins of the endomembrane system and cytoskeleton, subsequently recruited to form the cell nucleus and coevolving mitotic apparatus, with numerous genetic eukaryotic novelties inevitable consequences of this compartmentation and novel DNA segregation mechanism. Physical and mutational mechanisms of origin of the nucleus are seldom considered beyond the long-standing assumption that it involved wrapping pre-existing endomembranes around chromatin. Discussions on the origin of sex typically overlook its association with protozoan entry into dormant walled cysts and the likely simultaneous coevolutionary, not sequential, origin of mitosis and meiosis. RESULTS I elucidate nuclear and mitotic coevolution, explaining the origins of dicer and small centromeric RNAs for positionally controlling centromeric heterochromatin, and how 27 major features of the cell nucleus evolved in four logical stages, making both mechanisms and selective advantages explicit: two initial stages (origin of 30 nm chromatin fibres, enabling DNA compaction; and firmer attachment of endomembranes to heterochromatin) protected DNA and nascent RNA from shearing by novel molecular motors mediating vesicle transport, division, and cytoplasmic motility. Then octagonal nuclear pore complexes (NPCs) arguably evolved from COPII coated vesicle proteins trapped in clumps by Ran GTPase-mediated cisternal fusion that generated the fenestrated nuclear envelope, preventing lethal complete cisternal fusion, and allowing passive protein and RNA exchange. Finally, plugging NPC lumens by an FG-nucleoporin meshwork and adopting karyopherins for nucleocytoplasmic exchange conferred compartmentation advantages. These successive changes took place in naked growing cells, probably as indirect consequences of the origin of phagotrophy. The first eukaryote had 1-2 cilia and also walled resting cysts; I outline how encystation may have promoted the origin of meiotic sex. I also explain why many alternative ideas are inadequate. CONCLUSION Nuclear pore complexes are evolutionary chimaeras of endomembrane- and mitosis-related chromatin-associated proteins. The keys to understanding eukaryogenesis are a proper phylogenetic context and understanding organelle coevolution: how innovations in one cell component caused repercussions on others.
Collapse
|
69
|
Schomacher L, Schürer KA, Ciirdaeva E, McDermott P, Chong JPJ, Kramer W, Fritz HJ. Archaeal DNA uracil repair via direct strand incision: A minimal system reconstituted from purified components. DNA Repair (Amst) 2010; 9:438-47. [PMID: 20129830 DOI: 10.1016/j.dnarep.2010.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 12/21/2009] [Accepted: 01/05/2010] [Indexed: 11/19/2022]
Abstract
Hydrolytic deamination of DNA cytosine residues results in U/G mispairs, pre-mutagenic lesions threatening long-term genetic stability. Hence, DNA uracil repair is ubiquitous throughout all extant life forms and base excision repair, triggered by a uracil DNA glycosylase (UDG), is the mechanistic paradigm adopted, as it seems, by all bacteria and eukaryotes and a large fraction of archaea. However, members of the UDG superfamily of enzymes are absent from the extremely thermophilic archaeon Methanothermobacter thermautotrophicus DeltaH. This organism, as a hitherto unique case, initiates repair by direct strand incision next to the DNA-U residue, a reaction catalyzed by the DNA uridine endonuclease Mth212, an ExoIII homologue. To elucidate the detailed mechanism, in particular to identify the molecular partners contributing to this repair process, we reconstituted DNA uracil repair in vitro from only four purified enzymes of M. thermautotrophicus DeltaH. After incision at the 5'-side of a 2'-d-uridine residue by Mth212 DNA polymerase B (mthPolB) is able to take over the 3'-OH terminus and carry out repair synthesis generating a 5'-flap structure that is resolved by mthFEN, a 5'-flap endonuclease. Finally, DNA ligase seals the resulting nick. This defines mechanism and minimal enzymatic requirements of DNA-U repair in this organism.
Collapse
Affiliation(s)
- Lars Schomacher
- Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
70
|
Daniels JP, Kelly S, Wickstead B, Gull K. Identification of a crenarchaeal orthologue of Elf1: implications for chromatin and transcription in Archaea. Biol Direct 2009; 4:24. [PMID: 19640276 PMCID: PMC2732611 DOI: 10.1186/1745-6150-4-24] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2009] [Accepted: 07/29/2009] [Indexed: 11/12/2022] Open
Abstract
The transcription machineries of Archaea and eukaryotes are similar in many aspects, but little is understood about archaeal chromatin and its role in transcription. Here, we describe the identification in hyperthermophilic Crenarchaeota and a Korarchaeon of an orthologue of the eukaryotic transcription elongation factor Elf1, which has been shown to function in chromatin structure maintenance of actively transcribed templates. Our discovery has implications for the relationship of chromatin and transcription in Archaea and the evolution of these processes in eukaryotes.
Collapse
Affiliation(s)
- Jan-Peter Daniels
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Steven Kelly
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
- Centre for Mathematical Biology, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB , UK
- Oxford Centre for Interactive Systems Biology, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Bill Wickstead
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| |
Collapse
|
71
|
Cavalcanti DP, Shimada MK, Probst CM, Souto-Padrón TCBS, de Souza W, Goldenberg S, Fragoso SP, Motta MCM. Expression and subcellular localization of kinetoplast-associated proteins in the different developmental stages of Trypanosoma cruzi. BMC Microbiol 2009; 9:120. [PMID: 19497120 PMCID: PMC2700280 DOI: 10.1186/1471-2180-9-120] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 06/04/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The kinetoplast DNA (kDNA) of trypanosomatids consists of an unusual arrangement of circular molecules catenated into a single network. The diameter of the isolated kDNA network is similar to that of the entire cell. However, within the kinetoplast matrix, the kDNA is highly condensed. Studies in Crithidia fasciculata showed that kinetoplast-associated proteins (KAPs) are capable of condensing the kDNA network. However, little is known about the KAPs of Trypanosoma cruzi, a parasitic protozoon that shows distinct patterns of kDNA condensation during their complex morphogenetic development. In epimastigotes and amastigotes (replicating forms) the kDNA fibers are tightly packed into a disk-shaped kinetoplast, whereas trypomastigotes (non-replicating) present a more relaxed kDNA organization contained within a rounded structure. It is still unclear how the compact kinetoplast disk of epimastigotes is converted into a globular structure in the infective trypomastigotes. RESULTS In this work, we have analyzed KAP coding genes in trypanosomatid genomes and cloned and expressed two kinetoplast-associated proteins in T. cruzi: TcKAP4 and TcKAP6. Such small basic proteins are expressed in all developmental stages of the parasite, although present a differential distribution within the kinetoplasts of epimastigote, amastigote and trypomastigote forms. CONCLUSION Several features of TcKAPs, such as their small size, basic nature and similarity with KAPs of C. fasciculata, are consistent with a role in DNA charge neutralization and condensation. Additionally, the differential distribution of KAPs in the kinetoplasts of distinct developmental stages of the parasite, indicate that the kDNA rearrangement that takes place during the T. cruzi differentiation process is accompanied by TcKAPs redistribution.
Collapse
Affiliation(s)
- Danielle Pereira Cavalcanti
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Brent MM, Iwata A, Carten J, Zhao K, Marmorstein R. Structure and biochemical characterization of protein acetyltransferase from Sulfolobus solfataricus. J Biol Chem 2009; 284:19412-9. [PMID: 19473964 DOI: 10.1074/jbc.m109.014951] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Sulfolobus solfataricus protein acetyltransferase (PAT) acetylates ALBA, an abundant nonspecific DNA-binding protein, on Lys(16) to reduce its DNA affinity, and the Sir2 deacetylase reverses the modification to cause transcriptional repression. This represents a "primitive" model for chromatin regulation analogous to histone modification in eukaryotes. We report the 1.84-A crystal structure of PAT in complex with coenzyme A. The structure reveals homology to both prokaryotic GNAT acetyltransferases and eukaryotic histone acetyltransferases (HATs), with an additional "bent helix" proximal to the substrate binding site that might play an autoregulatory function. Investigation of active site mutants suggests that PAT does not use a single general base or acid residue for substrate deprotonation and product reprotonation, respectively, and that a diffusional step, such as substrate binding, may be rate-limiting. The catalytic efficiency of PAT toward ALBA is low relative to other acetyltransferases, suggesting that there may be better, unidentified substrates for PAT. The structural similarity of PAT to eukaryotic HATs combined with its conserved role in chromatin regulation suggests that PAT is evolutionarily related to the eukaryotic HATs.
Collapse
Affiliation(s)
- Michael M Brent
- Wistar Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
73
|
Nimrod G, Szilágyi A, Leslie C, Ben-Tal N. Identification of DNA-binding proteins using structural, electrostatic and evolutionary features. J Mol Biol 2009; 387:1040-53. [PMID: 19233205 PMCID: PMC2726711 DOI: 10.1016/j.jmb.2009.02.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 02/12/2009] [Accepted: 02/12/2009] [Indexed: 11/22/2022]
Abstract
DNA-binding proteins (DBPs) participate in various crucial processes in the life-cycle of the cells, and the identification and characterization of these proteins is of great importance. We present here a random forests classifier for identifying DBPs among proteins with known 3D structures. First, clusters of evolutionarily conserved regions (patches) on the surface of proteins were detected using the PatchFinder algorithm; earlier studies showed that these regions are typically the functionally important regions of proteins. Next, we trained a classifier using features like the electrostatic potential, cluster-based amino acid conservation patterns and the secondary structure content of the patches, as well as features of the whole protein, including its dipole moment. Using 10-fold cross-validation on a dataset of 138 DBPs and 110 proteins that do not bind DNA, the classifier achieved a sensitivity and a specificity of 0.90, which is overall better than the performance of published methods. Furthermore, when we tested five different methods on 11 new DBPs that did not appear in the original dataset, only our method annotated all correctly. The resulting classifier was applied to a collection of 757 proteins of known structure and unknown function. Of these proteins, 218 were predicted to bind DNA, and we anticipate that some of them interact with DNA using new structural motifs. The use of complementary computational tools supports the notion that at least some of them do bind DNA.
Collapse
Affiliation(s)
- Guy Nimrod
- Department of Biochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - András Szilágyi
- Institute of Enzymology, Hungarian Academy of Sciences, H-1113 Budapest, Hungary
| | - Christina Leslie
- Computational Biology Program, Memorial Sloan-Kettering Cancer Center, NY 10065, USA
| | - Nir Ben-Tal
- Department of Biochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
74
|
Sakakibara N, Kelman LM, Kelman Z. Unwinding the structure and function of the archaeal MCM helicase. Mol Microbiol 2009; 72:286-96. [DOI: 10.1111/j.1365-2958.2009.06663.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
75
|
Luijsterburg MS, White MF, van Driel R, Dame RT. The major architects of chromatin: architectural proteins in bacteria, archaea and eukaryotes. Crit Rev Biochem Mol Biol 2009; 43:393-418. [PMID: 19037758 DOI: 10.1080/10409230802528488] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The genomic DNA of all organisms across the three kingdoms of life needs to be compacted and functionally organized. Key players in these processes are DNA supercoiling, macromolecular crowding and architectural proteins that shape DNA by binding to it. The architectural proteins in bacteria, archaea and eukaryotes generally do not exhibit sequence or structural conservation especially across kingdoms. Instead, we propose that they are functionally conserved. Most of these proteins can be classified according to their architectural mode of action: bending, wrapping or bridging DNA. In order for DNA transactions to occur within a compact chromatin context, genome organization cannot be static. Indeed chromosomes are subject to a whole range of remodeling mechanisms. In this review, we discuss the role of (i) DNA supercoiling, (ii) macromolecular crowding and (iii) architectural proteins in genome organization, as well as (iv) mechanisms used to remodel chromosome structure and to modulate genomic activity. We conclude that the underlying mechanisms that shape and remodel genomes are remarkably similar among bacteria, archaea and eukaryotes.
Collapse
Affiliation(s)
- Martijn S Luijsterburg
- Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
76
|
Eirín-López JM, González-Romero R, Dryhurst D, Méndez J, Ausió J. Long-Term Evolution of Histone Families: Old Notions and New Insights into Their Mechanisms of Diversification Across Eukaryotes. Evol Biol 2009. [DOI: 10.1007/978-3-642-00952-5_8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
77
|
Genetic evidence for the importance of protein acetylation and protein deacetylation in the halophilic archaeon Haloferax volcanii. J Bacteriol 2008; 191:1610-7. [PMID: 19114494 DOI: 10.1128/jb.01252-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Protein acetylation and deacetylation reactions are involved in many regulatory processes in eukaryotes. Recently, it was found that similar processes occur in bacteria and archaea. Sequence analysis of the genome of the haloarchaeon Haloferax volcanii led to the identification of three putative protein acetyltransferases belonging to the Gcn5 family, Pat1, Pat2, and Elp3, and two deacetylases, Sir2 and HdaI. Intriguingly, the gene that encodes HdaI shares an operon with an archaeal histone homolog. We performed gene knockouts to determine whether the genes encoding these putative acetyltransferases and deacetylases are essential. A sir2 deletion mutant was able to grow normally, whereas an hdaI deletion mutant was nonviable. The latter is consistent with the finding that trichostatin A, a specific inhibitor of HdaI, inhibits cell growth in a concentration-dependent manner. We also showed that each of the acetyltransferases by itself is dispensable for growth but that deletion of both pat2 and elp3 could not be achieved. The corresponding genes are therefore "synthetic lethals," and the protein acetyltransferases probably have a common and essential substrate.
Collapse
|
78
|
Archaeal chromatin proteins histone HMtB and Alba have lost DNA-binding ability in laboratory strains of Methanothermobacter thermautotrophicus. Extremophiles 2008; 12:811-7. [PMID: 18719853 DOI: 10.1007/s00792-008-0185-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 08/04/2008] [Indexed: 10/21/2022]
Abstract
Alignments of the sequences of the all members of the archaeal histone and Alba1 families of chromatin proteins identified isoleucine residues, I19 in HMtB and I39 in MtAlba, in Methanothermobacter thermautotrophicus, at locations predicted to be directly involved in DNA binding. In all other HMfB family members, residue 19 is an arginine (R19), and either arginine or lysine is present in almost all other Alba1 family members at the structural site equivalent to I39 in MtAlba. Electrophoretic mobility shift assays revealed that recombinant HMtB and MtAlba do not bind DNA, but variants constructed with R19 and R39, respectively, bound DNA; and whereas MtAlba(I19) did not bind RNA, MtAlba(R19) bound both single stranded RNA and tRNA. Amplification and sequencing of MT0254 (encodes HMtB) and MT1483 (encodes MtAlba) from several Methanothermobacter thermautotrophicus lineages has revealed that HMtB and MtAlba had arginine residues at positions 19 and 39, respectively, in the original isolate and that spontaneous mutations must have occurred, and been fixed, in some laboratory lineages that now have HMtB(I19) and MtAlba(I39). The retention of these variants suggests some continuing functions and fusion of the HMtB(I19) sequence to HMtA2 resulted in a protein that folds to form a histone fold heterodimer that binds and compacts DNA. The loss of DNA binding by HMtB(I19) does not therefore prevent HMtB from participating in DNA interactions as one partner of an archaeal histone heterodimer.
Collapse
|
79
|
Guo L, Feng Y, Zhang Z, Yao H, Luo Y, Wang J, Huang L. Biochemical and structural characterization of Cren7, a novel chromatin protein conserved among Crenarchaea. Nucleic Acids Res 2008; 36:1129-37. [PMID: 18096617 PMCID: PMC2275093 DOI: 10.1093/nar/gkm1128] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 12/03/2007] [Accepted: 12/04/2007] [Indexed: 11/13/2022] Open
Abstract
Archaea contain a variety of chromatin proteins consistent with the evolution of different genome packaging mechanisms. Among the two main kingdoms in the Archaea, Euryarchaeota synthesize histone homologs, whereas Crenarchaeota have not been shown to possess a chromatin protein conserved at the kingdom level. We report the identification of Cren7, a novel family of chromatin proteins highly conserved in the Crenarchaeota. A small, basic, methylated and abundant protein, Cren7 displays a higher affinity for double-stranded DNA than for single-stranded DNA, constrains negative DNA supercoils and is associated with genomic DNA in vivo. The solution structure and DNA-binding surface of Cren7 from the hyperthermophilic crenarchaeon Sulfolobus solfataricus were determined by NMR. The protein adopts an SH3-like fold. It interacts with duplex DNA through a beta-sheet and a long flexible loop, presumably resulting in DNA distortions through intercalation of conserved hydrophobic residues into the DNA structure. These data suggest that the crenarchaeal kingdom in the Archaea shares a common strategy in chromatin organization.
Collapse
Affiliation(s)
- Li Guo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 3A Datun Road, Beijing 100101, P. R. China and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, P.R. China
| | - Yingang Feng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 3A Datun Road, Beijing 100101, P. R. China and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, P.R. China
| | - Zhenfeng Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 3A Datun Road, Beijing 100101, P. R. China and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, P.R. China
| | - Hongwei Yao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 3A Datun Road, Beijing 100101, P. R. China and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, P.R. China
| | - Yuanming Luo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 3A Datun Road, Beijing 100101, P. R. China and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, P.R. China
| | - Jinfeng Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 3A Datun Road, Beijing 100101, P. R. China and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, P.R. China
| | - Li Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 3A Datun Road, Beijing 100101, P. R. China and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, P.R. China
| |
Collapse
|
80
|
Ahnert SE, Fink TMA, Zinovyev A. How much non-coding DNA do eukaryotes require? J Theor Biol 2008; 252:587-92. [PMID: 18384817 DOI: 10.1016/j.jtbi.2008.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2007] [Revised: 02/05/2008] [Accepted: 02/05/2008] [Indexed: 11/27/2022]
Abstract
Despite tremendous advances in the field of genomics, the amount and function of the large non-coding part of the genome in higher organisms remains poorly understood. Here we report an observation, made for 37 fully sequenced eukaryotic genomes, which indicates that eukaryotes require a certain minimum amount of non-coding DNA (ncDNA). This minimum increases quadratically with the amount of DNA located in exons. Based on a simple model of the growth of regulatory networks, we derive a theoretical prediction of the required quantity of ncDNA and find it to be in excellent agreement with the data. The amount of additional ncDNA (in basepairs) which eukaryotes require obeys N(DEF)=1/2 (N(C)/N(P)) (N(C)-N(P)), where N(C) is the amount of exonic DNA, and N(P) is a constant of about 10 Mb. This value N(DEF) corresponds to a few percent of the genome in Homo sapiens and other mammals, and up to half the genome in simpler eukaryotes. Thus, our findings confirm that eukaryotic life depends on a substantial fraction of ncDNA and also make a prediction of the size of this fraction, which matches the data closely.
Collapse
|
81
|
Shinkai A, Sekine SI, Urushibata A, Terada T, Shirouzu M, Yokoyama S. The putative DNA-binding protein Sto12a from the thermoacidophilic archaeon Sulfolobus tokodaii contains intrachain and interchain disulfide bonds. J Mol Biol 2007; 372:1293-304. [PMID: 17720190 DOI: 10.1016/j.jmb.2007.07.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 07/20/2007] [Accepted: 07/23/2007] [Indexed: 11/24/2022]
Abstract
The Sto12a protein, from the thermoacidophilic archaeon Sulfolobus tokodaii, has been identified as a small putative DNA-binding protein. Most of the proteins with a high level of amino acid sequence homology to this protein are derived from members of the Sulfolobaceae family, including a transcriptional regulator. We determined the crystal structure of Sto12a at 2.05 A resolution by multiple-wavelength anomalous dispersion phasing from the selenomethionine-containing protein crystal. This is the first structure of a member of this family of DNA-binding proteins. The Sto12a protein forms a homodimer, and the structure is composed of an N-terminal alpha-helix, a winged-helix-turn-helix domain, and a C-terminal alpha-helix that forms an interchain antiparallel coiled coil. The two winged-helix domains are located at both ends of the coiled coil, with putative DNA-recognition helices separated by approximately 34 A. A structural homology search indicated that the winged-helix domain shared a high level of homology with those found in B-DNA- or Z-DNA-binding proteins from various species, including archaea, bacteria, and human, despite a low level of sequence similarity. The unique structural features of the Sto12a protein include intrachain and interchain disulfide bonds, which stabilize the chain and homodimer structures. There are three cysteine residues: Cys15 and Cys16 in the N-terminal alpha-helix, and Cys100 in the C-terminal alpha-helix. Cys15 is involved in an interchain disulfide bridge with the other Cys15, and Cys16 forms an intrachain disulfide bridge with Cys100. This is a novel fold among winged-helix DNA-binding proteins. Possible DNA-binding interactions of the Sto12a protein are discussed based on the crystal structure of Sto12a and comparisons to other winged-helix DNA-binding proteins.
Collapse
Affiliation(s)
- Akeo Shinkai
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | | | | | | | | | | |
Collapse
|
82
|
Renzone G, Vitale RM, Scaloni A, Rossi M, Amodeo P, Guagliardi A. Structural characterization of the functional regions in the archaeal protein Sso7d. Proteins 2007; 67:189-97. [PMID: 17243156 DOI: 10.1002/prot.21220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sso7d from the extreme thermophilic crenarchaeon Sulfolobus solfataricus is a multifunctional protein in in vitro assays, whose in vivo role is still puzzling. Crystals of Sso7d in complex with DNA elucidated the protein surface involved in the binding to the nucleic acid, whereas the locations of the Sso7d regions responsible for a chaperone activity in renaturing protein aggregates (i.e., the protein-binding surface and the site of ATPase activity) are still unknown. We identified the regions of Sso7d involved in protein-binding by limited proteolysis experiments associated to advanced mass spectrometric procedures performed on isolated Sso7d and Sso7d in complex with the peptide melittin. By affinity labeling of Sso7d with the ATP analogue 5'-p-fluorosulfonylbenzoyl adenosine and characterization of the labeled tryptic peptides by tandem mass spectrometry, we found that Y7 and K39 are residues involved in ATP binding/hydrolysis. Insights into the positions of the ligands melittin and ATP were achieved by a molecular modeling study; the models obtained were in agreement with most experimental data. A comparison among the complexes of Sso7d with DNA, with melittin, and with ATP showed that the DNA-binding surface and the protein-binding surface overlap, whereas the ATPase site is mostly independent of the binding sites for the nucleic acid and melittin.
Collapse
Affiliation(s)
- Giovanni Renzone
- Laboratorio di Proteomica e Spettrometria di Massa, ISPAAM, CNR, 80147 Naples, Italy
| | | | | | | | | | | |
Collapse
|
83
|
Peterson SN, Dahlquist FW, Reich NO. The role of high affinity non-specific DNA binding by Lrp in transcriptional regulation and DNA organization. J Mol Biol 2007; 369:1307-17. [PMID: 17498742 DOI: 10.1016/j.jmb.2007.04.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 03/22/2007] [Accepted: 04/10/2007] [Indexed: 11/28/2022]
Abstract
Transcriptional regulatory proteins typically bind specific DNA sequences with approximately 10(3)-10(7)-fold higher affinity than non-specific DNA and this discrimination is essential for their in vivo function. Here we show that the bacterial leucine-responsive regulatory protein (Lrp) does not follow this trend and has a approximately 20-400-fold binding discrimination between specific and non-specific DNA sequences. We suggest that the dual function of Lrp to regulate genes and to organize DNA utilizes this unique property. A approximately 20-fold decrease in binding affinity from specific DNA is dependent upon cryptic binding sites, including the sequence GN(2-3)TTT and A-tracts. Removal of these sites still results in high binding affinity, only approximately 70-fold weaker than that of specific sites. Similar to Lrp's binding of specific sites in the pap and ilvIH promoters, Lrp binds cooperatively to non-specific DNA; thus, protein/protein interactions are important for both specific and non-specific DNA binding. When considering this cooperativity of Lrp binding, the binding selectivity to specific sites may increase to a maximum of approximately 400-fold. Neither leucine nor the pap-specific local regulator PapI alter Lrp's non-specific binding affinity or cooperative binding of non-specific DNA. We hypothesize that Lrp combines low sequence discrimination and relatively high intracellular protein concentrations to ensure its ability to regulate the transcription of specific genes while also functioning as a nucleoid-associated protein. Modeling of Lrp binding data and comparison to other proteins with regulatory and nucleoid-associated properties suggests similar mechanisms.
Collapse
Affiliation(s)
- Stacey N Peterson
- Program in Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106, USA
| | | | | |
Collapse
|
84
|
Abstract
The archaeal DNA replication machinery bears striking similarity to that of eukaryotes and is clearly distinct from the bacterial apparatus. In recent years, considerable advances have been made in understanding the biochemistry of the archaeal replication proteins. Furthermore, a number of structures have now been obtained for individual components and higher-order assemblies of archaeal replication factors, yielding important insights into the mechanisms of DNA replication in both archaea and eukaryotes.
Collapse
Affiliation(s)
- Elizabeth R Barry
- MRC Cancer Cell Unit, Hutchison MRC Research Centre, Hills Road, Cambridge CB2 2XZ, United Kingdom
| | | |
Collapse
|
85
|
Luo X, Schwarz-Linek U, Botting CH, Hensel R, Siebers B, White MF. CC1, a novel crenarchaeal DNA binding protein. J Bacteriol 2007; 189:403-9. [PMID: 17085561 PMCID: PMC1797387 DOI: 10.1128/jb.01246-06] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Accepted: 10/21/2006] [Indexed: 01/01/2023] Open
Abstract
The genomes of the related crenarchaea Pyrobaculum aerophilum and Thermoproteus tenax lack any obvious gene encoding a single-stranded DNA binding protein (SSB). SSBs are essential for DNA replication, recombination, and repair and are found in all other genomes across the three domains of life. These two archaeal genomes also have only one identifiable gene encoding a chromatin protein (the Alba protein), while most other archaea have at least two different abundant chromatin proteins. We performed a biochemical screen for novel nucleic acid binding proteins present in cell extracts of T. tenax. An assay for proteins capable of binding to a single-stranded DNA oligonucleotide resulted in identification of three proteins. The first protein, Alba, has been shown previously to bind single-stranded DNA as well as duplex DNA. The two other proteins, which we designated CC1 (for crenarchaeal chromatin protein 1), are very closely related to one another, and homologs are restricted to the P. aerophilum and Aeropyrum pernix genomes. CC1 is a 6-kDa, monomeric, basic protein that is expressed at a high level in T. tenax. This protein binds single- and double-stranded DNAs with similar affinities. These properties are consistent with a role for CC1 as a crenarchaeal chromatin protein.
Collapse
Affiliation(s)
- Xiao Luo
- Centre for Biomolecular Sciences, University of St. Andrews, St. Andrews, Fife KY16 9ST, UK
| | | | | | | | | | | |
Collapse
|
86
|
Sandman K, Reeve JN. Archaeal histones and the origin of the histone fold. Curr Opin Microbiol 2006; 9:520-5. [PMID: 16920388 DOI: 10.1016/j.mib.2006.08.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Accepted: 08/10/2006] [Indexed: 10/24/2022]
Abstract
Histone sequences have been identified in many archaeal genomes and in environmental samples, and they constitute a family of proteins that are structural homologs of the eukaryotic core histones. Most archaeal histones conform to the single histone-fold structural models that have been described, but a few histone variants exhibit short insertions, additional domains or fusions. Interpretation of these structural variations offers clues to the steps that might have occurred during the evolution and specialization of eukaryotic core histones.
Collapse
Affiliation(s)
- Kathleen Sandman
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA.
| | | |
Collapse
|