51
|
Oiartzabal-Arano E, Perez-de-Nanclares-Arregi E, Espeso EA, Etxebeste O. Apical control of conidiation in Aspergillus nidulans. Curr Genet 2016; 62:371-7. [PMID: 26782172 DOI: 10.1007/s00294-015-0556-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 12/11/2015] [Accepted: 12/12/2015] [Indexed: 01/30/2023]
Abstract
The infection cycle of filamentous fungi consists of two main stages: invasion (growth) and dispersion (development). After the deposition of a spore on a host, germination, polar extension and branching of vegetative cells called hyphae allow a fast and efficient invasion. Under suboptimal conditions, genetic reprogramming of hyphae results in the generation of asexual spores, allowing dissemination to new hosts and the beginning of a new infection cycle. In the model filamentous fungus Aspergillus nidulans, asexual development or conidiation is induced by the upstream developmental activation (UDA) pathway. UDA proteins transduce signals from the tip, the polarity site of hyphae, to nuclei, where developmental programs are transcriptionally activated. The present review summarizes the current knowledge on this tip-to-nucleus communication mechanism, emphasizing its dependence on hyphal polarity. Future approaches to the topic will also be suggested, as stimulating elements contributing to the understanding of how apical signals are coupled with the transcriptional control of development and pathogenesis in filamentous fungi.
Collapse
Affiliation(s)
- Elixabet Oiartzabal-Arano
- Biochemistry II Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of The Basque Country (UPV/EHU), Manuel de Lardizabal, 3, 20018, San Sebastian, Spain
| | - Elixabet Perez-de-Nanclares-Arregi
- Biochemistry II Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of The Basque Country (UPV/EHU), Manuel de Lardizabal, 3, 20018, San Sebastian, Spain
| | - Eduardo A Espeso
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Oier Etxebeste
- Biochemistry II Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of The Basque Country (UPV/EHU), Manuel de Lardizabal, 3, 20018, San Sebastian, Spain.
| |
Collapse
|
52
|
Ishitsuka Y, Savage N, Li Y, Bergs A, Grün N, Kohler D, Donnelly R, Nienhaus GU, Fischer R, Takeshita N. Superresolution microscopy reveals a dynamic picture of cell polarity maintenance during directional growth. SCIENCE ADVANCES 2015; 1:e1500947. [PMID: 26665168 PMCID: PMC4673053 DOI: 10.1126/sciadv.1500947] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/14/2015] [Indexed: 05/02/2023]
Abstract
Polar (directional) cell growth, a key cellular mechanism shared among a wide range of species, relies on targeted insertion of new material at specific locations of the plasma membrane. How these cell polarity sites are stably maintained during massive membrane insertion has remained elusive. Conventional live-cell optical microscopy fails to visualize polarity site formation in the crowded cell membrane environment because of its limited resolution. We have used advanced live-cell imaging techniques to directly observe the localization, assembly, and disassembly processes of cell polarity sites with high spatiotemporal resolution in a rapidly growing filamentous fungus, Aspergillus nidulans. We show that the membrane-associated polarity site marker TeaR is transported on microtubules along with secretory vesicles and forms a protein cluster at that point of the apical membrane where the plus end of the microtubule touches. There, a small patch of membrane is added through exocytosis, and the TeaR cluster gets quickly dispersed over the membrane. There is an incessant disassembly and reassembly of polarity sites at the growth zone, and each new polarity site locus is slightly offset from preceding ones. On the basis of our imaging results and computational modeling, we propose a transient polarity model that explains how cell polarity is stably maintained during highly active directional growth.
Collapse
Affiliation(s)
- Yuji Ishitsuka
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Natasha Savage
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Yiming Li
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Anna Bergs
- Department of Microbiology, Institute for Applied Biosciences, KIT, 76187 Karlsruhe, Germany
| | - Nathalie Grün
- Department of Microbiology, Institute for Applied Biosciences, KIT, 76187 Karlsruhe, Germany
| | - Daria Kohler
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Rebecca Donnelly
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - G. Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
- Institute of Nanotechnology, KIT, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Toxicology and Genetics, KIT, 76344 Eggenstein-Leopoldshafen, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Corresponding author. E-mail: (G.U.N.); (R.F.); (N.T.)
| | - Reinhard Fischer
- Department of Microbiology, Institute for Applied Biosciences, KIT, 76187 Karlsruhe, Germany
- Corresponding author. E-mail: (G.U.N.); (R.F.); (N.T.)
| | - Norio Takeshita
- Department of Microbiology, Institute for Applied Biosciences, KIT, 76187 Karlsruhe, Germany
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Corresponding author. E-mail: (G.U.N.); (R.F.); (N.T.)
| |
Collapse
|
53
|
Herrero-Garcia E, Perez-de-Nanclares-Arregi E, Cortese MS, Markina-Iñarrairaegui A, Oiartzabal-Arano E, Etxebeste O, Ugalde U, Espeso EA. Tip-to-nucleus migration dynamics of the asexual development regulator FlbB in vegetative cells. Mol Microbiol 2015; 98:607-24. [PMID: 26256571 DOI: 10.1111/mmi.13156] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2015] [Indexed: 01/24/2023]
Abstract
In Aspergillus nidulans, asexual differentiation requires the presence of the transcription factor FlbB at the cell tip and apical nuclei. Understanding the relationship between these two pools is crucial for elucidating the biochemical processes mediating conidia production. Tip-to-nucleus communication was demonstrated by photo-convertible FlbB::Dendra2 visualization. Tip localization of FlbB depends on Cys382 in the C-terminus and the bZIP DNA-binding domain in the N-terminus. FlbE, a critical FlbB interactor, binds the bZIP domain. Furthermore, the absence of FlbE results in loss of tip localization but not nuclear accumulation. flbE deletion also abrogates transcriptional activity indicating that FlbB gains transcriptional competence from interactions with FlbE at the tip. Finally, a bipartite nuclear localization signal is required for nuclear localization of FlbB. Those motifs of FlbB may play various roles in the sequence of events necessary for the distribution and activation of this transcriptionally active developmental factor. The tip accumulation, FlbE-dependent activation, transport and nuclear import sketch out a process of relaying an environmentally triggered signal from the tip to the nuclei. As the first known instance of transcription factor-mediated tip-to-nucleus communication in filamentous fungi, this provides a general framework for analyses focused on elucidating the set of molecular mechanisms coupling apical signals to transcriptional events.
Collapse
Affiliation(s)
- Erika Herrero-Garcia
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Elixabet Perez-de-Nanclares-Arregi
- Biochemistry II laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of The Basque Country, 20018, San Sebastian, Spain
| | - Marc S Cortese
- Biochemistry II laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of The Basque Country, 20018, San Sebastian, Spain
| | - Ane Markina-Iñarrairaegui
- Biochemistry II laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of The Basque Country, 20018, San Sebastian, Spain
| | - Elixabet Oiartzabal-Arano
- Biochemistry II laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of The Basque Country, 20018, San Sebastian, Spain
| | - Oier Etxebeste
- Biochemistry II laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of The Basque Country, 20018, San Sebastian, Spain
| | - Unai Ugalde
- Biochemistry II laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of The Basque Country, 20018, San Sebastian, Spain
| | - Eduardo A Espeso
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| |
Collapse
|
54
|
Manck R, Ishitsuka Y, Herrero S, Takeshita N, Nienhaus GU, Fischer R. Genetic evidence for a microtubule-capture mechanism during polarised growth of Aspergillus nidulans. J Cell Sci 2015; 128:3569-82. [PMID: 26272919 DOI: 10.1242/jcs.169094] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 08/10/2015] [Indexed: 12/13/2022] Open
Abstract
The cellular switch from symmetry to polarity in eukaryotes depends on the microtubule (MT) and actin cytoskeletons. In fungi such as Schizosaccharomyces pombe or Aspergillus nidulans, the MT cytoskeleton determines the sites of actin polymerization through cortical cell-end marker proteins. Here we describe A. nidulans MT guidance protein A (MigA) as the first ortholog of the karyogamy protein Kar9 from Saccharomyces cerevisiae in filamentous fungi. A. nidulans MigA interacts with the cortical ApsA protein and is involved in spindle positioning during mitosis. MigA is also associated with septal and nuclear MT organizing centers (MTOCs). Super-resolution photoactivated localization microscopy (PALM) analyses revealed that MigA is recruited to assembling and retracting MT plus ends in an EbA-dependent manner. MigA is required for MT convergence in hyphal tips and plays a role in correct localization of the cell-end markers TeaA and TeaR. In addition, MigA interacts with a class-V myosin, suggesting that an active mechanism exists to capture MTs and to pull the ends along actin filaments. Hence, the organization of MTs and actin depend on each other, and positive feedback loops ensure robust polar growth.
Collapse
Affiliation(s)
- Raphael Manck
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Department of Microbiology, Hertzstrasse 16, Karlsruhe D-76187, Germany
| | - Yuji Ishitsuka
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Physics and Center for Functional Nanostructures, Karlsruhe 76131, Germany
| | - Saturnino Herrero
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Department of Microbiology, Hertzstrasse 16, Karlsruhe D-76187, Germany
| | - Norio Takeshita
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Department of Microbiology, Hertzstrasse 16, Karlsruhe D-76187, Germany University of Tsukuba, Faculty of Life and Environmental Sciences, Tsukuba, Ibaraki 305-8572, Japan
| | - G Ulrich Nienhaus
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Physics and Center for Functional Nanostructures, Karlsruhe 76131, Germany
| | - Reinhard Fischer
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Department of Microbiology, Hertzstrasse 16, Karlsruhe D-76187, Germany
| |
Collapse
|
55
|
Functional Analysis of Sterol Transporter Orthologues in the Filamentous Fungus Aspergillus nidulans. EUKARYOTIC CELL 2015; 14:908-21. [PMID: 26116213 DOI: 10.1128/ec.00027-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 06/24/2015] [Indexed: 11/20/2022]
Abstract
Polarized growth in filamentous fungi needs a continuous supply of proteins and lipids to the growing hyphal tip. One of the important membrane compounds in fungi is ergosterol. At the apical plasma membrane ergosterol accumulations, which are called sterol-rich plasma membrane domains (SRDs). The exact roles and formation mechanism of the SRDs remained unclear, although the importance has been recognized for hyphal growth. Transport of ergosterol to hyphal tips is thought to be important for the organization of the SRDs. Oxysterol binding proteins, which are conserved from yeast to human, are involved in nonvesicular sterol transport. In Saccharomyces cerevisiae seven oxysterol-binding protein homologues (OSH1 to -7) play a role in ergosterol distribution between closely located membranes independent of vesicle transport. We found five homologous genes (oshA to oshE) in the filamentous fungi Aspergillus nidulans. The functions of OshA-E were characterized by gene deletion and subcellular localization. Each gene-deletion strain showed characteristic phenotypes and different sensitivities to ergosterol-associated drugs. Green fluorescent protein-tagged Osh proteins showed specific localization in the late Golgi compartments, puncta associated with the endoplasmic reticulum, or diffusely in the cytoplasm. The genes expression and regulation were investigated in a medically important species Aspergillus fumigatus, as well as A. nidulans. Our results suggest that each Osh protein plays a role in ergosterol distribution at distinct sites and contributes to proper fungal growth.
Collapse
|
56
|
Takeshita N, Wernet V, Tsuizaki M, Grün N, Hoshi HO, Ohta A, Fischer R, Horiuchi H. Transportation of Aspergillus nidulans Class III and V Chitin Synthases to the Hyphal Tips Depends on Conventional Kinesin. PLoS One 2015; 10:e0125937. [PMID: 25955346 PMCID: PMC4425547 DOI: 10.1371/journal.pone.0125937] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/21/2015] [Indexed: 12/02/2022] Open
Abstract
Cell wall formation and maintenance are crucial for hyphal morphogenesis. In many filamentous fungi, chitin is one of the main structural components of the cell wall. Aspergillus nidulans ChsB, a chitin synthase, and CsmA, a chitin synthase with a myosin motor-like domain (MMD) at its N-terminus, both localize predominantly at the hyphal tip regions and at forming septa. ChsB and CsmA play crucial roles in polarized hyphal growth in A. nidulans. In this study, we investigated the mechanism by which CsmA and ChsB accumulate at the hyphal tip in living hyphae. Deletion of kinA, a gene encoding conventional kinesin (kinesin-1), impaired the localization of GFP-CsmA and GFP-ChsB at the hyphal tips. The transport frequency of GFP-CsmA and GFP-ChsB in both anterograde and retrograde direction appeared lower in the kinA-deletion strain compared to wild type, although the velocities of the movements were comparable. Co-localization of GFP-ChsB and GFP-CsmA with mRFP1-KinArigor, a KinA mutant that binds to microtubules but does not move along them, was observed in the posterior of the hyphal tip regions. KinA co-immunoprecipitated with ChsB and CsmA. Co-localization and association of CsmA with KinA did not depend on the MMD. These findings indicate that ChsB and CsmA are transported along microtubules to the subapical region by KinA.
Collapse
Affiliation(s)
- Norio Takeshita
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Valentin Wernet
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Makusu Tsuizaki
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Nathalie Grün
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Hiro-omi Hoshi
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Akinori Ohta
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Reinhard Fischer
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Hiroyuki Horiuchi
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
57
|
Ozaki K, Chikashige Y, Hiraoka Y, Matsumoto T. Fission yeast Scp3 potentially maintains microtubule orientation through bundling. PLoS One 2015; 10:e0120109. [PMID: 25767875 PMCID: PMC4359140 DOI: 10.1371/journal.pone.0120109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/19/2015] [Indexed: 11/19/2022] Open
Abstract
Microtubules play important roles in organelle transport, the maintenance of cell polarity and chromosome segregation and generally form bundles during these processes. The fission yeast gene scp3+ was identified as a multicopy suppressor of the cps3-81 mutant, which is hypersensitive to isopropyl N-3-chlorophenylcarbamate (CIPC), a poison that induces abnormal multipolar spindle formation in higher eukaryotes. In this study, we investigated the function of Scp3 along with the effect of CIPC in the fission yeast Schizosaccharomyces pombe. Microscopic observation revealed that treatment with CIPC, cps3-81 mutation and scp3+ gene deletion disturbed the orientation of microtubules in interphase cells. Overexpression of scp3+ suppressed the abnormal orientation of microtubules by promoting bundling. Functional analysis suggested that Scp3 functions independently from Ase1, a protein largely required for the bundling of the mitotic spindle. A strain lacking the ase1+ gene was more sensitive to CIPC, with the drug affecting the integrity of the mitotic spindle, indicating that CIPC has a mitotic target that has a role redundant with Ase1. These results suggested that multiple systems are independently involved to ensure microtubule orientation by bundling in fission yeast.
Collapse
Affiliation(s)
- Kanako Ozaki
- Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto, Japan
| | - Yuji Chikashige
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Hyogo, Japan
| | - Yasushi Hiraoka
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Hyogo, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Tomohiro Matsumoto
- Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto, Japan
- Radiation Biology Center, Kyoto University, Kyoto, Kyoto, Japan
- * E-mail:
| |
Collapse
|
58
|
Meyer V, Fiedler M, Nitsche B, King R. The Cell Factory Aspergillus Enters the Big Data Era: Opportunities and Challenges for Optimising Product Formation. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 149:91-132. [PMID: 25616499 DOI: 10.1007/10_2014_297] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Living with limits. Getting more from less. Producing commodities and high-value products from renewable resources including waste. What is the driving force and quintessence of bioeconomy outlines the lifestyle and product portfolio of Aspergillus, a saprophytic genus, to which some of the top-performing microbial cell factories belong: Aspergillus niger, Aspergillus oryzae and Aspergillus terreus. What makes them so interesting for exploitation in biotechnology and how can they help us to address key challenges of the twenty-first century? How can these strains become trimmed for better growth on second-generation feedstocks and how can we enlarge their product portfolio by genetic and metabolic engineering to get more from less? On the other hand, what makes it so challenging to deduce biological meaning from the wealth of Aspergillus -omics data? And which hurdles hinder us to model and engineer industrial strains for higher productivity and better rheological performance under industrial cultivation conditions? In this review, we will address these issues by highlighting most recent findings from the Aspergillus research with a focus on fungal growth, physiology, morphology and product formation. Indeed, the last years brought us many surprising insights into model and industrial strains. They clearly told us that similar is not the same: there are different ways to make a hypha, there are more protein secretion routes than anticipated and there are different molecular and physical mechanisms which control polar growth and the development of hyphal networks. We will discuss new conceptual frameworks derived from these insights and the future scientific advances necessary to create value from Aspergillus Big Data.
Collapse
Affiliation(s)
- Vera Meyer
- Department Applied and Molecular Microbiology, Institute of Biotechnology, Berlin University of Technology, Gustav-Meyer-Allee 25, 13355, Berlin, Germany,
| | | | | | | |
Collapse
|
59
|
Fluorescence-Based Methods for the Study of Protein Localization, Interaction, and Dynamics in Filamentous Fungi. Fungal Biol 2015. [DOI: 10.1007/978-3-319-22437-4_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
60
|
Pöhlmann J, Risse C, Seidel C, Pohlmann T, Jakopec V, Walla E, Ramrath P, Takeshita N, Baumann S, Feldbrügge M, Fischer R, Fleig U. The Vip1 inositol polyphosphate kinase family regulates polarized growth and modulates the microtubule cytoskeleton in fungi. PLoS Genet 2014; 10:e1004586. [PMID: 25254656 PMCID: PMC4177672 DOI: 10.1371/journal.pgen.1004586] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/08/2014] [Indexed: 11/19/2022] Open
Abstract
Microtubules (MTs) are pivotal for numerous eukaryotic processes ranging from cellular morphogenesis, chromosome segregation to intracellular transport. Execution of these tasks requires intricate regulation of MT dynamics. Here, we identify a new regulator of the Schizosaccharomyces pombe MT cytoskeleton: Asp1, a member of the highly conserved Vip1 inositol polyphosphate kinase family. Inositol pyrophosphates generated by Asp1 modulate MT dynamic parameters independent of the central +TIP EB1 and in a dose-dependent and cellular-context-dependent manner. Importantly, our analysis of the in vitro kinase activities of various S. pombe Asp1 variants demonstrated that the C-terminal phosphatase-like domain of the dual domain Vip1 protein negatively affects the inositol pyrophosphate output of the N-terminal kinase domain. These data suggest that the former domain has phosphatase activity. Remarkably, Vip1 regulation of the MT cytoskeleton is a conserved feature, as Vip1-like proteins of the filamentous ascomycete Aspergillus nidulans and the distantly related pathogenic basidiomycete Ustilago maydis also affect the MT cytoskeleton in these organisms. Consistent with the role of interphase MTs in growth zone selection/maintenance, all 3 fungal systems show aspects of aberrant cell morphogenesis. Thus, for the first time we have identified a conserved biological process for inositol pyrophosphates.
Collapse
Affiliation(s)
- Jennifer Pöhlmann
- Lehrstuhl für funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Carmen Risse
- Lehrstuhl für funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Constanze Seidel
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Karlsruhe, Germany
| | - Thomas Pohlmann
- Institut für Mikrobiologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Visnja Jakopec
- Lehrstuhl für funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Eva Walla
- Lehrstuhl für funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Pascal Ramrath
- Lehrstuhl für funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Norio Takeshita
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Karlsruhe, Germany
- University of Tsukuba, Faculty of Life and Environmental Sciences, Ibaraki, Tsukuba, Japan
| | - Sebastian Baumann
- Institut für Mikrobiologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Michael Feldbrügge
- Institut für Mikrobiologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Reinhard Fischer
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Karlsruhe, Germany
| | - Ursula Fleig
- Lehrstuhl für funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
61
|
F-box protein RcyA controls turnover of the kinesin-7 motor KipA in Aspergillus nidulans. EUKARYOTIC CELL 2014; 13:1085-94. [PMID: 24951440 DOI: 10.1128/ec.00042-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fungal filamentous growth depends on continuous membrane insertion at the tip, the delivery of membrane-bound positional markers, and the secretion of enzymes for cell wall biosynthesis. This is achieved through exocytosis. At the same time, polarized growth requires membrane and protein recycling through endocytosis. Endocytic vesicles are thought to enter the protein degradation pathway or recycle their content to the cell surface. In Saccharomyces cerevisiae, the Rcy1 F-box protein is involved in the recycling process of a v-SNARE protein. We identified a Rcy1 orthologue, RcyA, in the filamentous fungus Aspergillus nidulans as a protein interacting with the KipA kinesin-7 motor protein in a yeast two-hybrid screen. The interaction was confirmed through bimolecular fluorescence complementation. RcyA possesses an F-box domain at the N terminus and a prenylation (CaaX) motif at the C terminus. RcyA shows also similarity to Sec10, a component of the exocyst complex. The RcyA protein localized to the hyphal tip and forming septa, likely through transportation on secretory vesicles and partially on early endosomes, but independently of KipA. Deletion of rcyA did not cause severe morphological changes but caused partial defects in the recycling of the SynA v-SNARE protein and the positioning of the cell end markers TeaA and TeaR. In addition, deletion of rcyA led to increased concentrations of the KipA protein, whereas the transcript concentration was unaffected. These results suggest that RcyA probably labels KipA for degradation and thereby controls the protein amount of KipA.
Collapse
|