51
|
Mignon C, Sodoyer R, Werle B. Antibiotic-free selection in biotherapeutics: now and forever. Pathogens 2015; 4:157-81. [PMID: 25854922 PMCID: PMC4493468 DOI: 10.3390/pathogens4020157] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/09/2015] [Accepted: 03/23/2015] [Indexed: 11/16/2022] Open
Abstract
The continuously improving sophistication of molecular engineering techniques gives access to novel classes of bio-therapeutics and new challenges for their production in full respect of the strengthening regulations. Among these biologic agents are DNA based vaccines or gene therapy products and to a lesser extent genetically engineered live vaccines or delivery vehicles. The use of antibiotic-based selection, frequently associated with genetic manipulation of microorganism is currently undergoing a profound metamorphosis with the implementation and diversification of alternative selection means. This short review will present examples of alternatives to antibiotic selection and their context of application to highlight their ineluctable invasion of the bio-therapeutic world.
Collapse
Affiliation(s)
- Charlotte Mignon
- Technology Research Institute Bioaster, 317 avenue Jean-Jaurés, 69007 Lyon, France.
| | - Régis Sodoyer
- Technology Research Institute Bioaster, 317 avenue Jean-Jaurés, 69007 Lyon, France.
| | - Bettina Werle
- Technology Research Institute Bioaster, 317 avenue Jean-Jaurés, 69007 Lyon, France.
| |
Collapse
|
52
|
Zariri A, van der Ley P. Biosynthetically engineered lipopolysaccharide as vaccine adjuvant. Expert Rev Vaccines 2015; 14:861-76. [PMID: 25797360 DOI: 10.1586/14760584.2015.1026808] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Lipopolysaccharide (LPS), a dominant component of the Gram-negative bacterial outer membrane, is a strong activator of the innate immune system, and thereby an important determinant in the adaptive immune response following bacterial infection. This adjuvant activity can be harnessed following immunization with bacteria-derived vaccines that naturally contain LPS, and when LPS or molecules derived from it are added to purified vaccine antigens. However, the downside of the strong biological activity of LPS is its ability to contribute to vaccine reactogenicity. Modification of the LPS structure allows triggering of a proper immune response needed in a vaccine against a particular pathogen while at the same time lowering its toxicity. Extensive modifications to the basic structure are possible by using our current knowledge of bacterial genes involved in LPS biosynthesis and modification. This review focuses on biosynthetic engineering of the structure of LPS and implications of these modifications for generation of safe adjuvants.
Collapse
Affiliation(s)
- Afshin Zariri
- Institute for Translational Vaccinology (InTraVacc), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | | |
Collapse
|
53
|
Abstract
This chapter reviews papers mostly written since 2005 that report results using live attenuated bacterial vectors to deliver after administration through mucosal surfaces, protective antigens, and DNA vaccines, encoding protective antigens to induce immune responses and/or protective immunity to pathogens that colonize on or invade through mucosal surfaces. Papers that report use of such vaccine vector systems for parenteral vaccination or to deal with nonmucosal pathogens or do not address induction of mucosal antibody and/or cellular immune responses are not reviewed.
Collapse
|
54
|
Roos K, Werner E, Loessner H. Multicopy integration of mini-Tn7 transposons into selected chromosomal sites of a Salmonella vaccine strain. Microb Biotechnol 2014; 8:177-87. [PMID: 25488129 PMCID: PMC4321384 DOI: 10.1111/1751-7915.12187] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/23/2014] [Indexed: 01/08/2023] Open
Abstract
Chromosomal integration of expression modules for transgenes is an important aspect for the development of novel Salmonella vectors. Mini-Tn7 transposons have been used for the insertion of one such module into the chromosomal site attTn7, present only once in most Gram-negative bacteria. However, integration of multiple mini-Tn7 copies might be suitable for expression of appropriate amounts of antigen or combination of different modules. Here we demonstrate that integration of a 9.6 kb mini-Tn7 harbouring the luciferase luxCDABE (lux) occurs at the natural attTn7 site and simultaneously other locations of the Salmonella chromosome, which were engineered using λ-Red recombinase to contain one or two additional artificial attTn7 sites (a-attTn7). Multicopy integration even at closely spaced attTn7 sites was unexpected in light of the previously reported distance-dependent Tn7 target immunity. Integration of multiple copies of a mini-Tn7 containing a gfp cassette resulted in increasing green fluorescence of bacteria. Stable consecutive integration of two mini-Tn7 encoding lacZ and lux was achieved by initial transposition of lacZ-mini-Tn7, subsequent chromosomal insertion of a-attTn7 and a second round of transposition with lux-mini-Tn7. Mini-Tn7 thus constitutes a versatile method for multicopy integration of expression cassettes into the chromosome of Salmonella and possibly other bacteria.
Collapse
Affiliation(s)
- Karen Roos
- Bacterial Vaccines and Immune Sera, Department of Veterinary Medicine, Paul Ehrlich Institute, Langen, 63225, Germany
| | | | | |
Collapse
|
55
|
Application of Molecular Approaches for Understanding Foodborne Salmonella Establishment in Poultry Production. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/813275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Salmonellosis in the United States is one of the most costly foodborne diseases. Given that Salmonella can originate from a wide variety of environments, reduction of this organism at all stages of poultry production is critical. Salmonella species can encounter various environmental stress conditions which can dramatically influence their survival and colonization. Current knowledge of Salmonella species metabolism and physiology in relation to colonization is traditionally based on studies conducted primarily with tissue culture and animal infection models. Consequently, while there is some information about environmental signals that control Salmonella growth and colonization, much still remains unknown. Genetic tools for comprehensive functional genomic analysis of Salmonella offer new opportunities for not only achieving a better understanding of Salmonella pathogens but also designing more effective intervention strategies. Now the function(s) of each single gene in the Salmonella genome can be directly assessed and previously unknown genetic factors that are required for Salmonella growth and survival in the poultry production cycle can be elucidated. In particular, delineating the host-pathogen relationships involving Salmonella is becoming very helpful for identifying optimal targeted gene mutagenesis strategies to generate improved vaccine strains. This represents an opportunity for development of novel vaccine approaches for limiting Salmonella establishment in early phases of poultry production. In this review, an overview of Salmonella issues in poultry, a general description of functional genomic technologies, and their specific application to poultry vaccine developments are discussed.
Collapse
|
56
|
Dougan G, Baker S. Salmonella entericaSerovar Typhi and the Pathogenesis of Typhoid Fever. Annu Rev Microbiol 2014; 68:317-36. [DOI: 10.1146/annurev-micro-091313-103739] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Gordon Dougan
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom;
| | - Stephen Baker
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Program, Oxford University, Clinical Research Unit, Ho Chi Minh City, Vietnam;
- Centre for Tropical Medicine, Oxford University, Oxford OX3 7FZ, United Kingdom
- The London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| |
Collapse
|
57
|
Workalemahu G, Wang H, Puan KJ, Nada MH, Kuzuyama T, Jones BD, Jin C, Morita CT. Metabolic engineering of Salmonella vaccine bacteria to boost human Vγ2Vδ2 T cell immunity. THE JOURNAL OF IMMUNOLOGY 2014; 193:708-21. [PMID: 24943221 DOI: 10.4049/jimmunol.1302746] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Human Vγ2Vδ2 T cells monitor isoprenoid metabolism by recognizing foreign (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), a metabolite in the 2-C-methyl-D-erythritol-4-phosphate pathway used by most eubacteria and apicomplexan parasites, and self isopentenyl pyrophosphate, a metabolite in the mevalonate pathway used by humans. Whereas microbial infections elicit prolonged expansion of memory Vγ2Vδ2 T cells, immunization with prenyl pyrophosphates or aminobisphosphonates elicit short-term Vγ2Vδ2 expansion with rapid anergy and deletion upon subsequent immunizations. We hypothesized that a live, attenuated bacterial vaccine that overproduces HMBPP would elicit long-lasting Vγ2Vδ2 T cell immunity by mimicking a natural infection. Therefore, we metabolically engineered the avirulent aroA(-) Salmonella enterica serovar Typhimurium SL7207 strain by deleting the gene for LytB (the downstream enzyme from HMBPP) and functionally complementing for this loss with genes encoding mevalonate pathway enzymes. LytB(-) Salmonella SL7207 had high HMBPP levels, infected human cells as efficiently as did the wild-type bacteria, and stimulated large ex vivo expansions of Vγ2Vδ2 T cells from human donors. Importantly, vaccination of a rhesus monkey with live lytB(-) Salmonella SL7207 stimulated a prolonged expansion of Vγ2Vδ2 T cells without significant side effects or anergy induction. These studies provide proof-of-principle that metabolic engineering can be used to derive live bacterial vaccines that boost Vγ2Vδ2 T cell immunity. Similar engineering of metabolic pathways to produce lipid Ags or B vitamin metabolite Ags could be used to derive live bacterial vaccine for other unconventional T cells that recognize nonpeptide Ags.
Collapse
Affiliation(s)
- Grefachew Workalemahu
- Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242; Department of Veterans Affairs, Iowa City Health Care System, Iowa City, IA 52246
| | - Hong Wang
- Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242; Department of Veterans Affairs, Iowa City Health Care System, Iowa City, IA 52246
| | - Kia-Joo Puan
- Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242; Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648
| | - Mohanad H Nada
- Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242; Department of Veterans Affairs, Iowa City Health Care System, Iowa City, IA 52246; Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - Tomohisa Kuzuyama
- Biotechnology Research Center, The University of Tokyo, Tokyo 113-8657, Japan
| | - Bradley D Jones
- Department of Microbiology, University of Iowa Carver College of Medicine, Iowa City, IA 52242; Interdisciplinary Graduate Program in Genetics, University of Iowa Carver College of Medicine, Iowa City, IA 52242; and Inflammation Program, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - Chenggang Jin
- Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242; Department of Veterans Affairs, Iowa City Health Care System, Iowa City, IA 52246
| | - Craig T Morita
- Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242; Department of Veterans Affairs, Iowa City Health Care System, Iowa City, IA 52246; Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242;
| |
Collapse
|
58
|
Brophy JAN, Voigt CA. Principles of genetic circuit design. Nat Methods 2014; 11:508-20. [PMID: 24781324 DOI: 10.1038/nmeth.2926] [Citation(s) in RCA: 617] [Impact Index Per Article: 56.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/18/2014] [Indexed: 12/17/2022]
Abstract
Cells navigate environments, communicate and build complex patterns by initiating gene expression in response to specific signals. Engineers seek to harness this capability to program cells to perform tasks or create chemicals and materials that match the complexity seen in nature. This Review describes new tools that aid the construction of genetic circuits. Circuit dynamics can be influenced by the choice of regulators and changed with expression 'tuning knobs'. We collate the failure modes encountered when assembling circuits, quantify their impact on performance and review mitigation efforts. Finally, we discuss the constraints that arise from circuits having to operate within a living cell. Collectively, better tools, well-characterized parts and a comprehensive understanding of how to compose circuits are leading to a breakthrough in the ability to program living cells for advanced applications, from living therapeutics to the atomic manufacturing of functional materials.
Collapse
Affiliation(s)
- Jennifer A N Brophy
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Christopher A Voigt
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
59
|
Abstract
Attenuated Salmonella vaccines can be administered orally to deliver recombinant antigens to mucosal surfaces inducing a protective immune response against a variety of targeted pathogens. A number of exciting new approaches and technologies for attenuated Salmonella vaccines have been developed recently. However, a disconnect remains between results obtained with mice in preclinical studies and results obtained in human clinical trials. This is due to an incomplete understanding of Salmonella Typhi interactions with human hosts and inadequate animal models available for study. In this review, the authors describe recent progress in identifying important differences underlying S. Typhi-host interactions, the development of novel approaches to vaccine design and six recent clinical trials evaluating Salmonella-vectored vaccines.
Collapse
Affiliation(s)
- Kenneth L Roland
- The Biodesign Institute, Arizona State University, 1001 S. McAllister Avenue, Tempe, AZ 85287-5401, USA
| | | |
Collapse
|
60
|
Wynosky-Dolfi MA, Snyder AG, Philip NH, Doonan PJ, Poffenberger MC, Avizonis D, Zwack EE, Riblett AM, Hu B, Strowig T, Flavell RA, Jones RG, Freedman BD, Brodsky IE. Oxidative metabolism enables Salmonella evasion of the NLRP3 inflammasome. ACTA ACUST UNITED AC 2014; 211:653-68. [PMID: 24638169 PMCID: PMC3978275 DOI: 10.1084/jem.20130627] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Salmonella lacking the TCA enzyme aconitase trigger NLRP3 inflammasome activation in infected macrophages, leading to elevated inflammatory responses and reduced virulence. Microbial infection triggers assembly of inflammasome complexes that promote caspase-1–dependent antimicrobial responses. Inflammasome assembly is mediated by members of the nucleotide binding domain leucine-rich repeat (NLR) protein family that respond to cytosolic bacterial products or disruption of cellular processes. Flagellin injected into host cells by invading Salmonella induces inflammasome activation through NLRC4, whereas NLRP3 is required for inflammasome activation in response to multiple stimuli, including microbial infection, tissue damage, and metabolic dysregulation, through mechanisms that remain poorly understood. During systemic infection, Salmonella avoids NLRC4 inflammasome activation by down-regulating flagellin expression. Macrophages exhibit delayed NLRP3 inflammasome activation after Salmonella infection, suggesting that Salmonella may evade or prevent the rapid activation of the NLRP3 inflammasome. We therefore screened a Salmonella Typhimurium transposon library to identify bacterial factors that limit NLRP3 inflammasome activation. Surprisingly, absence of the Salmonella TCA enzyme aconitase induced rapid NLRP3 inflammasome activation. This inflammasome activation correlated with elevated levels of bacterial citrate, and required mitochondrial reactive oxygen species and bacterial citrate synthase. Importantly, Salmonella lacking aconitase displayed NLRP3- and caspase-1/11–dependent attenuation of virulence, and induced elevated serum IL-18 in wild-type mice. Together, our data link Salmonella genes controlling oxidative metabolism to inflammasome activation and suggest that NLRP3 inflammasome evasion promotes systemic Salmonella virulence.
Collapse
Affiliation(s)
- Meghan A Wynosky-Dolfi
- Department of Pathobiology, School of Veterinary Medicine; and 2 Immunology Graduate Group and 3 Cell and Molecular Biology Graduate Group, University of Pennsylvania, Kennett Square, PA 19104
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Abstract
Streptococcus pneumoniae still causes severe morbidity and mortality worldwide, especially in young children and the elderly. Much effort has been dedicated to developing protein-based universal vaccines to conquer the current shortcomings of capsular vaccines and capsular conjugate vaccines, such as serotype replacement, limited coverage and high costs. A recombinant live vector vaccine delivering protective antigens is a promising way to achieve this goal. In this review, we discuss the researches using live recombinant vaccines, mainly live attenuated Salmonella and lactic acid bacteria, to deliver pneumococcal antigens. We also discuss both the limitations and the future of these vaccines.
Collapse
|
62
|
Łaniewski P, Kuczkowski M, Chrząstek K, Woźniak A, Wyszyńska A, Wieliczko A, Jagusztyn-Krynicka EK. Evaluation of the immunogenicity of Campylobacter jejuni CjaA protein delivered by Salmonella enterica sv. Typhimurium strain with regulated delayed attenuation in chickens. World J Microbiol Biotechnol 2014; 30:281-92. [PMID: 23913025 PMCID: PMC3880472 DOI: 10.1007/s11274-013-1447-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/19/2013] [Indexed: 12/17/2022]
Abstract
Campylobacter spp. are regarded as the most common bacterial cause of gastroenteritis worldwide, and consumption of chicken meat contaminated by Campylobacter is considered to be one of the most frequent sources of human infection in developed countries. Here we evaluated the immunogenicity and protective efficacy of Salmonella Typhimurium χ9718 producing the Campylobacter jejuni CjaA protein as a chicken anti-Campylobacter vaccine. In this study chickens were orally immunized with a new generation S. Typhimurium strain χ9718 with regulated delayed attenuation in vivo and displaying delayed antigen expression. The immunization with the S. Typhimurium χ9718 strain producing C. jejuni CjaA antigen induced strong immune responses against CjaA in both serum IgY and intestinal IgA, however, it did not result in the significant reduction of intestinal colonization by Campylobacter strain. The low level of protection might arise due to a lack of T cell response. Our results demonstrated that a Salmonella strain with regulated delayed attenuation and displaying regulated delayed antigen expression might be an efficient vector to induce immune response against Campylobacter. It seems that an efficient anti-Campylobacter subunit vaccine should be multicomponent. Since S. Typhimurium χ9718 contains two compatible balanced-lethal plasmids, it can provide the opportunity of cloning several Campylobacter genes encoding immunodominant proteins. It may also be used as a delivery vector of eukaryotic genes encoding immunostimulatory molecules to enhance or modulate functioning of chicken immune system.
Collapse
Affiliation(s)
- Paweł Łaniewski
- Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Maciej Kuczkowski
- Department of Epizootiology and Clinic for Birds and Exotic Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 45, 50-366 Wroclaw, Poland
| | - Klaudia Chrząstek
- Department of Epizootiology and Clinic for Birds and Exotic Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 45, 50-366 Wroclaw, Poland
| | - Anna Woźniak
- Department of Epizootiology and Clinic for Birds and Exotic Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 45, 50-366 Wroclaw, Poland
| | - Agnieszka Wyszyńska
- Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Alina Wieliczko
- Department of Epizootiology and Clinic for Birds and Exotic Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 45, 50-366 Wroclaw, Poland
| | | |
Collapse
|
63
|
A colanic acid operon deletion mutation enhances induction of early antibody responses by live attenuated Salmonella vaccine strains. Infect Immun 2013; 81:3148-62. [PMID: 23774599 DOI: 10.1128/iai.00097-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Colanic acid (CA) is a common exopolysaccharide produced by many genera in the Enterobacteriaceae. It is critical for biofilm formation on HEp-2 cells and on chicken intestinal tissue by Salmonella. In this study, we generated different CA synthesis gene mutants and evaluated the immune responses induced by these mutants. One of these mutations, Δ(wza-wcaM)8, which deleted the whole operon for CA synthesis, was introduced into two Salmonella vaccine strains attenuated by auxotrophic traits or by the regulated delayed attenuation strategy (RDAS). The mice immunized with the auxotrophic Salmonella vaccine strain with the deletion mutation Δ(wza-wcaM)8 developed higher vaginal IgA titers against the heterologous protective antigen and higher levels of antigen-specific IgA secretion cells in lungs. In Salmonella vaccine strains with RDAS, the strain with the Δ(wza-wcaM)8 mutation resulted in higher levels of protective antigen production during in vitro growth. Mice immunized with this strain developed higher serum IgG and mucosal IgA antibody responses at 2 weeks. This strain also resulted in better gamma interferon (IFN-γ) responses than the strain without this deletion at doses of 10(8) and 10(9) CFU. Thus, the mutation Δ(wza-wcaM)8 will be included in various recombinant attenuated Salmonella vaccine (RASV) strains with RDAS derived from Salmonella enterica serovar Paratyphi A and Salmonella enterica serovar Typhi to induce protective immunity against bacterial pathogens.
Collapse
|