51
|
Tavares WR, Jiménez IA, Oliveira L, Kuhtinskaja M, Vaher M, Rosa JS, Seca AML, Bazzocchi IL, Barreto MDC. Macaronesian Plants as Promising Biopesticides against the Crop Pest Ceratitis capitata. PLANTS (BASEL, SWITZERLAND) 2023; 12:4122. [PMID: 38140449 PMCID: PMC10747946 DOI: 10.3390/plants12244122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
Ceratitis capitata is responsible for significant economic losses in the fruit production industry, and the market lacks biopesticides that are effective but also cheaper and less contaminating, with fewer negative impacts on the environment. In this regard, the present study suggests as potential options ethanolic extracts from several Macaronesian plants, which inhibit the oviposition and are toxic to C. capitata, and whose preparation involve a non-toxic solvent (i.e., ethanol), low energy expenditure and cheap apparatus (i.e., maceration at room temperature). Among the evaluated species, the extracts of Hedychium gardnerianum, Cistus symphytifolius and Salvia canariensis are the most active (50 mg/mL), revealing an increase in C. capitata adults' mortality from 21.15% to 27.41% after 72 h, a value statistically identical to azadirachtin (25.93%) at the recommended concentration (0.88 mg/mL). Considering the quantity and biomass available to prepare a biopesticide in the future, and the level of activity, the ethanolic extract of H. gardnerianum was fractionated and each fraction tested. The water fraction at 50 mg/mL proved to be more effective than the original extract, both in terms of mortality (57.69%), with LT50 = 72.5 h, and oviposition deterrence (83.43%), values statistically higher than those obtained by azadirachtin at 0.88 mg/mL. Analysis of this fraction by HPLC-MS/MS showed that it is mainly composed of glycosylated derivatives of quercetin and myricetin in addition to some triterpenes. These findings highlight some Macaronesian species, and in particular, the more polar fraction of H. gardnerianum ethanolic extract, as promising and ecological alternatives to conventional insecticides, for use in the integrated management of the C. capitata pest.
Collapse
Affiliation(s)
- Wilson R. Tavares
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Azorean Biodiversity Group & Global Change and Sustainability Institute (CHANGE), Faculty of Sciences and Technology, University of the Azores, 9501-321 Ponta Delgada, Portugal; (W.R.T.); (A.M.L.S.)
| | - Ignacio A. Jiménez
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain
| | - Luísa Oliveira
- CBA—Biotechnology Centre of Azores, Faculty of Sciences and Technology, University of the Azores, 9501-321 Ponta Delgada, Portugal; (L.O.)
| | - Maria Kuhtinskaja
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia; (M.K.); (M.V.)
| | - Merike Vaher
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia; (M.K.); (M.V.)
| | - José S. Rosa
- CBA—Biotechnology Centre of Azores, Faculty of Sciences and Technology, University of the Azores, 9501-321 Ponta Delgada, Portugal; (L.O.)
| | - Ana M. L. Seca
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Azorean Biodiversity Group & Global Change and Sustainability Institute (CHANGE), Faculty of Sciences and Technology, University of the Azores, 9501-321 Ponta Delgada, Portugal; (W.R.T.); (A.M.L.S.)
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Isabel L. Bazzocchi
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain
| | - Maria do Carmo Barreto
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Azorean Biodiversity Group & Global Change and Sustainability Institute (CHANGE), Faculty of Sciences and Technology, University of the Azores, 9501-321 Ponta Delgada, Portugal; (W.R.T.); (A.M.L.S.)
| |
Collapse
|
52
|
Silberbush A, Halabi M, Shteindel N, Gerchman Y, Azaizeh H, Shahar B, Kurzbaum E. Olive Mill Wastewater Extract as a Potential Mosquito Larvicide. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2023; 48:141-144. [PMID: 37843457 DOI: 10.52707/1081-1710-48.2.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Affiliation(s)
- Alon Silberbush
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa - Oranim, Israel,
| | - Maram Halabi
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa - Oranim, Israel
| | - Nimrod Shteindel
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa - Oranim, Israel
| | - Yoram Gerchman
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa - Oranim, Israel
| | - Hassan Azaizeh
- Institute of Applied Research, The Galilee Society, Shefa-Amr 20200, Israel
- Tel Hai College, Department of Environmental Science, Upper Galilee 12208, Israel
- Department of Natural Resources & Environmental Management, University of Haifa, Haifa, 3498838, Israel
| | - Ben Shahar
- Shamir Research Institute, University of Haifa, Qatzrin, Israel
| | - Eyal Kurzbaum
- Tel Hai College, Department of Environmental Science, Upper Galilee 12208, Israel
- Shamir Research Institute, University of Haifa, Qatzrin, Israel
- Department of Geography and Environmental Studies, University of Haifa, Mount Carmel, Haifa 3498838, Israel
| |
Collapse
|
53
|
Navinraj S, Boopathi NM, Balasubramani V, Nakkeeran S, Raghu R, Gnanam R, Saranya N, Santhanakrishnan VP. Molecular Docking of Nimbolide Extracted from Leaves of Azadirachta indica with Protein Targets to Confirm the Antifungal, Antibacterial and Insecticidal Activity. Indian J Microbiol 2023; 63:494-512. [PMID: 38031617 PMCID: PMC10682360 DOI: 10.1007/s12088-023-01104-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 09/08/2023] [Indexed: 12/01/2023] Open
Abstract
Nimbolide, a tetranortriterpenoid (limonoid) compound isolated from the leaves of Azadirachta indica, was screened both in vitro and in silico for its antimicrobial activity against Fusarium oxysporum f. sp. cubense, Macrophomina phaseolina, Pythium aphanidermatum, Xanthomonas oryzae pv. oryzae, and insecticidal activity against Plutella xylostella. Nimbolide exhibited a concentration-dependent, broad spectrum of antimicrobial and insecticidal activity. P. aphanidermatum (82.77%) was more highly inhibited than F. oxysporum f. sp. cubense (64.46%) and M. phaseolina (43.33%). The bacterium X. oryzae pv. oryzae forms an inhibition zone of about 20.20 mm, and P. xylostella showed about 66.66% mortality against nimbolide. The affinity of nimbolide for different protein targets in bacteria, fungi, and insects was validated by in silico approaches. The 3D structure of chosen protein molecules was built by homology modelling in the SWISS-MODEL server, and molecular docking was performed with the SwissDock server. Docking of homology-modelled protein structures shows most of the chosen target proteins have a higher affinity for the furan ring of nimbolide. Additionally, the stability of the best-docked protein-ligand complex was confirmed using molecular dynamic simulation. Thus, the present in vitro and in silico studies confirm the bioactivity of nimbolide and provide a strong basis for the formulation of nimbolide-based biological pesticides. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-023-01104-6.
Collapse
Affiliation(s)
- S. Navinraj
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003 India
| | - N. Manikanda Boopathi
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003 India
| | - V. Balasubramani
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003 India
| | - S. Nakkeeran
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003 India
| | - R. Raghu
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003 India
| | - R. Gnanam
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003 India
| | - N. Saranya
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003 India
| | - V. P. Santhanakrishnan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003 India
| |
Collapse
|
54
|
Qi YT, Wang JZ, Zhang JW, Fei C, Yuan YK, Du SS. Assessment of Contact Toxicity and Repellent Effects of Essential Oils from Piper Plants Piper yunnanense and Piper boehmeriifolium against Three Stored-Product Insects. Chem Biodivers 2023; 20:e202301206. [PMID: 37840218 DOI: 10.1002/cbdv.202301206] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/15/2023] [Accepted: 10/15/2023] [Indexed: 10/17/2023]
Abstract
Storage is a crucial part during grain production for the massive spoilage caused by stored product insects. Essential oils (EOs) of plant origin have been highly recommended to combating insects which are biodegradable and safe mode of action. Hence, to make the fullest use of natural resources, essential oils of different parts from Piper yunnanense (the whole part, PYW; fruits, PYF; leaves, PYL) and Piper boehmeriifolium (leaves, PBL) were extracted by steam distillation method in the present study. Gas chromatography-mass spectrometry (GC-MS) characterization revealed bicyclogermacrene (PYW), γ-muurolene (PYF), δ-cadinene (PYL) and methyl 4,7,10,13,16,19-docosahexaenoate (PBL) as the principal compound of each essential oil. Sesquiterpene hydrocarbons were also recognized as the richest class accounting for 56.3 %-94.9 % of the total oil. Three storage pests, Tribolium castaneum, Lasioderma serricorne and Liposceis bostrychophila, were exposed to different concentrations of EOs to determine their insecticidal effects. All tested samples performed modest contact toxicity in contrast to a bioactive ingredient pyrethrin, among which the most substantial effects were observed in PYF EOs against T. castaneum (35.84 μg/adult), PBL EOs against L. serricorne (15.76 μg/adult) and PYW EOs against L. bostrychophila (57.70 μg/cm2 ). In terms of repellency tests, essential oils of PYF at 78.63 nL/cm2 demonstrated to have a remarkable repellence against T. castaneum at 2h and 4h post-exposure. The investigations indicate diverse variations in the chemical profiles and insecticidal efficacies of P. yunnanense and P. boehmeriifolium EOs, providing more experimental evidence for the use of the Piper plants.
Collapse
Affiliation(s)
- Yuan-Tong Qi
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Haidian District, Beijing 100875, China
| | - Jia-Zhu Wang
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Haidian District, Beijing 100875, China
| | - Jia-Wei Zhang
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Haidian District, Beijing 100875, China
| | - Chao Fei
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Haidian District, Beijing 100875, China
| | - Yi-Kai Yuan
- Pu'er Traditional Ethnomedicine Institute, No.123, Zhenxing Street, Pu,er, 665000, China
| | - Shu-Shan Du
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Haidian District, Beijing 100875, China
| |
Collapse
|
55
|
Mbula JP, Andres MF, Kitete EM, Kasiama NG, Tshilanda DD, Ngbolua KN, Tshibangu DST, Onautshu O, González-Coloma A, Mpiana PT. Valorization of the essential oil from Drypetes gossweileri S. Moore (Putranjivaceae): in vitro, in vivo, and in silico nematicidal activity. FRONTIERS IN PLANT SCIENCE 2023; 14:1260360. [PMID: 38098790 PMCID: PMC10720977 DOI: 10.3389/fpls.2023.1260360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/30/2023] [Indexed: 12/17/2023]
Abstract
The chemical composition, insect antifeedant, in vtro/in vivo nematicidal activity, phytotoxicity, and in silico nematicidal activity of the essential oil (EO) of the African medicinal plant Drypetes gossweileri were studied. Chemical analysis using GC/MS indicated that benzyl isothiocyanate (96.23%) was the major compound, followed by benzyl cyanide (1.38%). The biocidal effects of this oil were tested against insect pests and root-knot nematodes. All the insect species tested were significantly affected by the oil according to their feeding adaptations (Spodoptera littoralis and Myzus persicae were less affected than Rhopalosiphum padi) with efficient doses (EC50) of 29.4 8.3 μg/cm2, 14.744 8.3 μg/cm2, and 8.3 μg/cm2, respectively. The oil was highly effective against juveniles J2 of the nematode Meloidogyne javanica, with LC50-LC90 values of 0.007 mg/mL-0.0113 mg/mL. D. gossweileri EO at minimum lethal concentrations (MLC) and below strongly inhibited egg hatching in vitro, whereas soil treatment caused a strong suppression of nematode population, infection frequency, and multiplication rate. The EO inhibited ryegrass (Lolium perenne) germination at 0.4 mg/mL, while at 0.1 mg/mL, its effects on germination, root and leaf growth were moderate (32.4%, 8.4%, and 18.3%, respectively). The tomato (Solanum lycopersicum) germination was not affected by the EO, but the root growth was reduced (56% at 0.1 mg/mL) at a dose 10 times higher than the LD50 calculated for M. javanica J2 mortality. Molecular docking of the nematicidal effects of the oil using PyRx revealed a strong interaction between potassium chloride transporting KCC3 (PDB ID: 7D90) and benzyl cyanide at a distance of 2.20 A° with GLN C:350, followed by benzyl isothiocyanate at a distance of 2.78 A° with ARG B:294. The in vivo nematicidal effects of D. gossweileri EO on M. javanica penetration and reproduction in tomato roots further support the potential of this EO as a nematicidal agent with insect antifeedant effects, which could be used by local farmers for crop protection.
Collapse
Affiliation(s)
- Jean Pierre Mbula
- Faculté des Sciences, Université de Kisangani, Kisangani, Democratic Republic of Congo
| | - Maria Fe Andres
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Emmanuel M. Kitete
- Faculté des Sciences, Université de Kinshasa, Kinshasa, Democratic Republic of Congo
| | - N. G. Kasiama
- Faculté des Sciences, Université de Kinshasa, Kinshasa, Democratic Republic of Congo
| | - D. D. Tshilanda
- Faculté des Sciences, Université de Kinshasa, Kinshasa, Democratic Republic of Congo
| | - K. N. Ngbolua
- Faculté des Sciences, Université de Kinshasa, Kinshasa, Democratic Republic of Congo
| | - D. S. T. Tshibangu
- Faculté des Sciences, Université de Kinshasa, Kinshasa, Democratic Republic of Congo
| | - O. Onautshu
- Faculté des Sciences, Université de Kisangani, Kisangani, Democratic Republic of Congo
| | - Azucena González-Coloma
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Pius T. Mpiana
- Faculté des Sciences, Université de Kinshasa, Kinshasa, Democratic Republic of Congo
| |
Collapse
|
56
|
Wu D, Wang L, Li W, Li X. Identifying a New Target for BtOBP8: Discovery of a Small Amino Ketone Molecule Containing Benzothiazole Fragments. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17635-17645. [PMID: 37651643 DOI: 10.1021/acs.jafc.3c02594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Insects rely on odorant-binding proteins (OBPs) for chemical perception, making OBPs a promising target for studying attractants and repellents of pests, such as Bemisia tabaci. However, no reports have reported using B. tabaci OBPs (BtOBPs) as pesticide screening targets. To fill this gap, we obtained BtOBP8 through prokaryotic expression and purification. Then, we confirmed its identity using western blotting and mass spectrometry. Next, we used the sitting drop and hanging drop methods to screen its crystal conditions. Using microscale thermophoresis and isothermal titration calorimetry, we identified the highest affinity ligand, 3l, from 30 compounds. Furthermore, point mutation techniques identified Val119 as a key amino acid residue in binding 31 to BtOBP8. Finally, we tested the bioactivity of B. tabaci Mediterranean and found that 3l more effectively inhibits the bioactivity of B. tabaci MED than imidacloprid. This study presents a new approach for developing green insecticides specific to B. tabaci MED by targeting OBPs. Conclusively, identifying and targeting specific OBPs can create more targeted and effective pest control strategies without relying on toxic chemicals.
Collapse
Affiliation(s)
- Danxia Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Li Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Wei Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xiangyang Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
57
|
da Costa RA, da Costa ADSS, da Rocha JAP, Lima MRDC, da Rocha ECM, Nascimento FCDA, Gomes AJB, do Rego JDAR, Brasil DDSB. Exploring Natural Alkaloids from Brazilian Biodiversity as Potential Inhibitors of the Aedes aegypti Juvenile Hormone Enzyme: A Computational Approach for Vector Mosquito Control. Molecules 2023; 28:6871. [PMID: 37836714 PMCID: PMC10574778 DOI: 10.3390/molecules28196871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/26/2023] [Accepted: 09/02/2023] [Indexed: 10/15/2023] Open
Abstract
This study explores the potential inhibitory activity of alkaloids, a class of natural compounds isolated from Brazilian biodiversity, against the mJHBP enzyme of the Aedes aegypti mosquito. This mosquito is a significant vector of diseases such as dengue, zika, and chikungunya. The interactions between the ligands and the enzyme at the molecular level were evaluated using computational techniques such as molecular docking, molecular dynamics (MD), and molecular mechanics with generalized Born surface area (MMGBSA) free energy calculation. The findings suggest that these compounds exhibit a high binding affinity with the enzyme, as confirmed by the binding free energies obtained in the simulation. Furthermore, the specific enzyme residues that contribute the most to the stability of the complex with the compounds were identified: specifically, Tyr33, Trp53, Tyr64, and Tyr129. Notably, Tyr129 residues were previously identified as crucial in the enzyme inhibition process. This observation underscores the significance of the research findings and the potential of the evaluated compounds as natural insecticides against Aedes aegypti mosquitoes. These results could stimulate the development of new vector control agents that are more efficient and environmentally friendly.
Collapse
Affiliation(s)
- Renato Araújo da Costa
- Laboratory of Biosolutions and Bioplastics of the Amazon, Graduate Program in Science and Environment, Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (A.d.S.S.d.C.); (F.C.d.A.N.); (J.d.A.R.d.R.); (D.d.S.B.B.)
- Laboratory of Molecular Biology, Evolution and Microbiology, Federal Institute of Education, Science and Technology of Pará (IFPA) Campus Abaetetuba, Abaetetuba 68440-000, PA, Brazil; (M.R.d.C.L.); (A.J.B.G.)
| | - Andréia do Socorro Silva da Costa
- Laboratory of Biosolutions and Bioplastics of the Amazon, Graduate Program in Science and Environment, Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (A.d.S.S.d.C.); (F.C.d.A.N.); (J.d.A.R.d.R.); (D.d.S.B.B.)
| | - João Augusto Pereira da Rocha
- Graduate Program in Chemistry, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (J.A.P.d.R.); (E.C.M.d.R.)
| | - Marlon Ramires da Costa Lima
- Laboratory of Molecular Biology, Evolution and Microbiology, Federal Institute of Education, Science and Technology of Pará (IFPA) Campus Abaetetuba, Abaetetuba 68440-000, PA, Brazil; (M.R.d.C.L.); (A.J.B.G.)
| | | | - Fabiana Cristina de Araújo Nascimento
- Laboratory of Biosolutions and Bioplastics of the Amazon, Graduate Program in Science and Environment, Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (A.d.S.S.d.C.); (F.C.d.A.N.); (J.d.A.R.d.R.); (D.d.S.B.B.)
| | - Anderson José Baia Gomes
- Laboratory of Molecular Biology, Evolution and Microbiology, Federal Institute of Education, Science and Technology of Pará (IFPA) Campus Abaetetuba, Abaetetuba 68440-000, PA, Brazil; (M.R.d.C.L.); (A.J.B.G.)
| | - José de Arimatéia Rodrigues do Rego
- Laboratory of Biosolutions and Bioplastics of the Amazon, Graduate Program in Science and Environment, Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (A.d.S.S.d.C.); (F.C.d.A.N.); (J.d.A.R.d.R.); (D.d.S.B.B.)
| | - Davi do Socorro Barros Brasil
- Laboratory of Biosolutions and Bioplastics of the Amazon, Graduate Program in Science and Environment, Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (A.d.S.S.d.C.); (F.C.d.A.N.); (J.d.A.R.d.R.); (D.d.S.B.B.)
| |
Collapse
|
58
|
Almeida AR, Oliveira ND, Pinheiro FASD, Morais WAD, Ferreira LDS. Challenges encountered by natural repellents: Since obtaining until the final product. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105538. [PMID: 37666610 DOI: 10.1016/j.pestbp.2023.105538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 09/06/2023]
Abstract
Vector-borne diseases, particularly the arboviruses dengue, Zika, chikungunya, and yellow fever caused by the Aedes aegypti mosquito, have been driving the use of repellents worldwide. The most representative synthetic repellent, DEET stands out as the market's oldest and most efficient repellent. It is considered a reference standard but presents considerable toxicity, not recommended for children up to 6 months old and pregnant women. For this reason, alternatives have been sought, and natural repellents derived mainly from essential oils have been studied, highlighting the essential oils of lemon (Corymbia citriodora), citronella (Cympobogon sp.), Andiroba (Carapa guianensis). However, the development and commercialization of products containing natural repellents are significantly lower when compared to DEET and other synthetic repellents. In order to understand the reasons, aspects related to safety, mechanism of action, efficacy as well development and complexity of the products were evaluated. It is concluded that, as for safety, there is lacking information in the literature regarding the effects on non-target organisms and robust toxicity data. The mechanism of action is based on theories, with less information on the exact mode of action, molecular targets, and interaction with the olfactory and taste receptors of insects. Despite being a current trend to search for actives from natural sources highly present in essential oils, however they reduced action time because due to rapid evaporation after application to the skin, thus requiring repellent vehicles. The development and complexity related to these products bring challenging aspects, beginning on the plant cultivation and extraction processes to produce essential oils with a more homogeneous chemical composition towards the formulation stabilization processes due to fast evaporation and short action time, with the use of pharmaceutical technology such as encapsulation techniques.
Collapse
Affiliation(s)
- Addison Ribeiro Almeida
- Department of Pharmacy, Laboratório de Farmacotécnica, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil; Department of Pharmacy, Laboratory of Quality Control of Medicines (LCQMed), Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil.
| | - Nicolas Dantas Oliveira
- Department of Pharmacy, Laboratório de Farmacotécnica, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil; Department of Pharmacy, Laboratory of Quality Control of Medicines (LCQMed), Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | | | - Waldenice Alencar de Morais
- Department of Pharmacy, Laboratório de Farmacotécnica, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil.
| | - Leandro De Santis Ferreira
- Department of Pharmacy, Laboratory of Quality Control of Medicines (LCQMed), Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil.
| |
Collapse
|
59
|
Yuan C, Hao X. Antibacterial mechanism of action and in silico molecular docking studies of Cupressus funebris essential oil against drug resistant bacterial strains. Heliyon 2023; 9:e18742. [PMID: 37636470 PMCID: PMC10458342 DOI: 10.1016/j.heliyon.2023.e18742] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/10/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
The primary objective of this research work was to study the antibacterial effects of Cupressus funebris essential oil (EO) against various drug resistant bacterial pathogens along with studying the molecular docking interactions of the major components of the EO with the key bacterial proteins/enzymes. Gas chromatography-mass spectrometry was used to analyse the chemical composition of the Cupressus funebris EO. The initial antibacterial screening was performed by using disc diffusion and microdilution methods. Scanning electron microscopy was also performed in order to study effects of the EO on bacterial cell morphology. Further, molecular docking studies were performed using Autodock Vina and results were visualised by BIOVIA Discovery Studio. The chemical composition of the EO showed the presence of 15 components with citronellal, terpinene-4-ol, α-phellandrene and 1,8-cineole as the major components of the EO. Results indicated that the EO of Cupressus funebris exhibited dose-dependent as well as time dependent antibacterial effects. The scanning electron microscopy indicated that the Cupressus funebris EO led to membrane rupture and permeabilization of the bacterial cells. Molecular docking studies indicated that the major compounds of the EO (citronellal and terpinene-4ol) showed strong interactions with the active site of the bacterial DNA gyrase enzyme explaining the antibacterial mode of action of the EO. Ciprofloxacin was also used for docking which showed stronger interactions with the target protein than citronellal or terpinene-4-ol. In conclusion, the major findings of the current study were that the EO of Cupressus funebris causes bacterial membrane rupture and permeabilization, shows time-dependent and dose-dependent antibacterial action, along with interacting with crucial bacterial enzyme viz., DNA gyrase as indicated by molecular docking studies.
Collapse
Affiliation(s)
- Caixin Yuan
- Department of Supply Room, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang City, Hebei Province, 050011, PR China
| | - Xiuqiao Hao
- Department of Hematology, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang City, Hebei Province, 050011, PR China
| |
Collapse
|
60
|
Qi F, Liu X, Deng Z, Lu Y, Chen Y, Geng H, Zhang Q, Rao Q, Song W. Effects of Thiamethoxam and Fenvalerate Residue Levels on Light-Stable Isotopes of Leafy Vegetables. Foods 2023; 12:2655. [PMID: 37509747 PMCID: PMC10378639 DOI: 10.3390/foods12142655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Accurate identification of the rational and standardized use of pesticides is important for the sustainable development of agriculture while maintaining a high quality. The insecticides thiamethoxam and fenvalerate and the vegetables spinach, cabbage, and lettuce were used here as study objects. Descriptive analysis and primary reaction kinetic equations were used to analyze the changes in metabolic residues of the two insecticides after different numbers of application in three vegetables. The effects of pesticide residue levels on the δ13C, δ15N, δ2H, and δ18O values of vegetables were analyzed by one-way analysis of variance and correlation analysis. Partial least squares discriminant analysis (PLS-DA) was applied to build discrimination models of the vegetables with different pesticide residues based on stable isotopes. The results showed that the first degradation residues of thiamethoxam and fenvalerate in spinach, cabbage, and lettuce conformed to primary reaction kinetic equations, but the degradation half-lives were long, and accumulation occurred in the second application. The differences in the four stable isotope ratios in the control group of the three vegetables were statistically significant, and two-thirds of the stable isotope ratios in the three vegetables with different numbers of pesticide applications were significantly different. The δ13C and δ15N values of spinach, the δ13C, δ15N, and δ2H values of cabbage, and the δ13C, δ15N, δ2H, and δ18O values of lettuce were significantly correlated with different residues of thiamethoxam and/or fenvalerate applications. The control groups of the three vegetables, spinach-thiamethoxam-first, spinach-thiamethoxam-second, cabbage-thiamethoxam-second, cabbage-fenvalerate-first, and lettuce-thiamethoxam-first, were fully identified by PLS-DA models, while the identification models of other vegetables containing pesticide residues still need to be further improved. The results provide technical support for identifying the rational use of pesticides in vegetables and provide a reference method for guaranteeing the authenticity of green and organic vegetables.
Collapse
Affiliation(s)
- Fang Qi
- Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- College of Food Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Xing Liu
- Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Shanghai Service Platform of Agro-Products Quality and Safety Evaluation Technology, Shanghai 201403, China
| | - Zhongsheng Deng
- Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Shanghai Service Platform of Agro-Products Quality and Safety Evaluation Technology, Shanghai 201403, China
| | - Yangyang Lu
- Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Shanghai Service Platform of Agro-Products Quality and Safety Evaluation Technology, Shanghai 201403, China
| | - Yijiao Chen
- Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Shanghai Service Platform of Agro-Products Quality and Safety Evaluation Technology, Shanghai 201403, China
| | - Hao Geng
- Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Shanghai Service Platform of Agro-Products Quality and Safety Evaluation Technology, Shanghai 201403, China
| | - Qicai Zhang
- Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Shanghai Service Platform of Agro-Products Quality and Safety Evaluation Technology, Shanghai 201403, China
| | - Qinxiong Rao
- Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Shanghai Service Platform of Agro-Products Quality and Safety Evaluation Technology, Shanghai 201403, China
| | - Weiguo Song
- Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Shanghai Service Platform of Agro-Products Quality and Safety Evaluation Technology, Shanghai 201403, China
| |
Collapse
|
61
|
Civolani S, Boselli M, Radicetti E, Bernacchia G. Efficacy and Selectivity of Potassium Bicarbonate Salts against Cacopsylla pyri on Pears. INSECTS 2023; 14:491. [PMID: 37367307 DOI: 10.3390/insects14060491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023]
Abstract
In recent years, the control of pear psyllid in northern Italy has not been particularly problematic, due to the presence of two insecticides (abamectin and spirotetramat) specifically for this pest, and due to the adoption of integrated pest management. However, the withdrawal of these two specific insecticides is imminent and, therefore, it has become necessary to find alternative control tools. More recently, potassium bicarbonate, known for its fungistatic activity against many phytopathogenic fungi, has also shown some activity against some insect pests. In the present study, the efficacy and possible phytotoxicity of potassium bicarbonate were tested in two field trials on second generation Cacopsylla pyri by spraying two different salt concentrations (5 and 7 kg ha-1), with or without polyethylene glycol as an adjuvant. Spirotetramat was used as a commercial reference. The results showed that potassium bicarbonate could positively control the number of juvenile forms (with a mortality percentage of up to 89% at the infestation peak), even though spirotetramat was still more effective. Therefore, potassium bicarbonate appears to be a sustainable integrated tool for psyllid control, especially in the wake of the imminent withdrawal of spirotetramat and other insecticides currently used on this pest.
Collapse
Affiliation(s)
- Stefano Civolani
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Borsari 46, 44121 Ferrara, Italy
| | - Mauro Boselli
- Independent Researcher in Applied Entomology, Pianoro, 40065 Bologna, Italy
| | - Emanuele Radicetti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Borsari 46, 44121 Ferrara, Italy
| | - Giovanni Bernacchia
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Borsari 46, 44121 Ferrara, Italy
| |
Collapse
|
62
|
Taglienti A, Donati L, Dragone I, Ferretti L, Gentili A, Araniti F, Sapienza F, Astolfi R, Fiorentino S, Vecchiarelli V, Papalini C, Ragno R, Bertin S. In Vivo Antiphytoviral and Aphid Repellency Activity of Essential Oils and Hydrosols from Mentha suaveolens and Foeniculum vulgare to Control Zucchini Yellow Mosaic Virus and Its Vector Aphis gossypii. PLANTS (BASEL, SWITZERLAND) 2023; 12:1078. [PMID: 36903936 PMCID: PMC10005592 DOI: 10.3390/plants12051078] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
In recent years, natural compounds have gained attention in many fields due to their wide-range biological activity. In particular, essential oils and their associated hydrosols are being screened to control plant pests, exerting antiviral, antimycotic and antiparasitic actions. They are more quickly and cheaply produced and are generally considered safer for the environment and non-target organisms than conventional pesticides. In this study, we report the evaluation of the biological activity of two essential oils and their corresponding hydrosols obtained from Mentha suaveolens and Foeniculum vulgare in the control of zucchini yellow mosaic virus and its vector, Aphis gossypii, in Cucurbita pepo plants. The control of the virus was ascertained with treatments applied either concurrently with or after virus infection; choice tests were performed to verify repellency activity against the aphid vector. The results indicated that treatments could decrease virus titer as measured using real-time RT-PCR, while the experiments on the vector showed that the compounds effectively repelled aphids. The extracts were also chemically characterized using gas chromatography-mass spectrometry. Mentha suaveolens and Foeniculum vulgare hydrosol extracts mainly comprised fenchone and decanenitrile, respectively, while essential oils analysis returned a more complex composition, as expected.
Collapse
Affiliation(s)
- Anna Taglienti
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and Economics, 00156 Rome, Italy
| | - Livia Donati
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and Economics, 00156 Rome, Italy
| | - Immacolata Dragone
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and Economics, 00156 Rome, Italy
| | - Luca Ferretti
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and Economics, 00156 Rome, Italy
| | - Andrea Gentili
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and Economics, 00156 Rome, Italy
| | - Fabrizio Araniti
- Department of Agricultural and Environmental Science, University of Milan, 20122 Milan, Italy
| | - Filippo Sapienza
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University of Rome, 00185 Rome, Italy
| | - Roberta Astolfi
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University of Rome, 00185 Rome, Italy
| | - Simona Fiorentino
- Centro Appenninico del Terminillo “Carlo Jucci”, Perugia University, 02100 Rieti, Italy
| | - Valerio Vecchiarelli
- Centro Appenninico del Terminillo “Carlo Jucci”, Perugia University, 02100 Rieti, Italy
| | - Claudia Papalini
- ARSIAL Regional Agency for the Development and Innovation of Agriculture of Lazio, 00162 Rome, Italy
| | - Rino Ragno
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University of Rome, 00185 Rome, Italy
| | - Sabrina Bertin
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and Economics, 00156 Rome, Italy
| |
Collapse
|
63
|
Chinnasamy R, Chinnaperumal K, Venkatesan M, Jogikalmat K, Cherian T, Willie P, Malafaia G. Eco-friendly synthesis of Ag-NPs using Endostemon viscosus (Lamiaceae): Antibacterial, antioxidant, larvicidal, photocatalytic dye degradation activity and toxicity in zebrafish embryos. ENVIRONMENTAL RESEARCH 2023; 218:114946. [PMID: 36493805 DOI: 10.1016/j.envres.2022.114946] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Nanotechnology is a multidisciplinary area of study that has grown significantly in serving many functions and impacting human society. New fields of science have been facilitated by the clean, non-toxic, and biocompatible nature of plant-derived nanoparticles. The present study deals with the first green synthesis of silver nanoparticles (Ag-NPs) using Endostemon viscosus, and their synthesized Ag NPs were characterized by different spectral methods (UV-vis Spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction Spectroscopy (XRD), Transmission Electron Microscopy (TEM) and Energy dispersive X-ray Spectroscopy (EDAX). The change initially observed the production of Ag-NPs in color from green to ash and then confirmed by SPR band at 435 nm in UV-vis spectral analysis. The FTIR findings indicate that many functional groups belong to the pharmaceutically useful phytochemicals, which interact as reducing, capping, and stabilizing agents in synthesizing silver nanoparticles. The predominant peaks in the XRD pattern belong to the planes 210°, 111°, 200°, 241°, and 311° and thus demonstrated the Ag-NPs FCC crystal structure. TEM analysis exhibited spherical-shaped particles with an average size of 13 nm, and the EDAX band showed a distinctive metallic silver peak at 3.0 keV. The antibacterial activity of Ag-NPs tested to show a maximum zone of inhibition of 19 mm for Staphylococcus aureus and 15 mm for Escherichia coli at 100 μg/mL, respectively. Bio-fabricated Ag-NPs were assessed for antioxidant activity (DPPH with % inhibition 57.54% and FRAP with % inhibition 70.89%). The biosynthesized Ag-NPs demonstrated potential larvicidal efficacy against Aedes aegypti with more than 90% at 250 μg/mL. Histological profiles were altered while treating with Ag-NPs at 250 μg/mL. The photocatalytic activity of synthesized E. viscosus Ag-NPs was tested against methylene blue (MB) and crystal violet (CV), and the maximum degradation efficiency was found as 90 and 94%, respectively. Furthermore, the toxicity test on zebrafish embryos demonstrated that aberrations have only been induced at concentrations higher than 500 μg/mL. We conclude that the greenly produced Ag-NPs may find use in biomedical applications based on bacteria and cost-effective industrial wastewater treatment.
Collapse
Affiliation(s)
- Ragavendran Chinnasamy
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 600 077, India
| | - Kamaraj Chinnaperumal
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research and Virtual Education, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Chennai, 603203, Tamil Nadu, India
| | - Manigandan Venkatesan
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Krithikadatta Jogikalmat
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 600 077, India
| | - Tijo Cherian
- Department of Ocean Studies and Marine Biology, Pondicherry University, Port Blair Campus, Brookshabad, Port Blair, Andamans, 744112, India
| | - Peijnenburg Willie
- Leiden University, Institute of Environmental Sciences (CML), P.O. Box 9518, 2300 RA, Leiden, the Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, P.O. Box 1, Bilthoven, the Netherlands
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
64
|
Lin F, Mao Y, Zhao F, Idris AL, Liu Q, Zou S, Guan X, Huang T. Towards Sustainable Green Adjuvants for Microbial Pesticides: Recent Progress, Upcoming Challenges, and Future Perspectives. Microorganisms 2023; 11:microorganisms11020364. [PMID: 36838328 PMCID: PMC9965284 DOI: 10.3390/microorganisms11020364] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Microbial pesticides can be significantly improved by adjuvants. At present, microbial pesticide formulations are mainly wettable powders and suspension concentrations, which are usually produced with adjuvants such as surfactants, carriers, protective agents, and nutritional adjuvants. Surfactants can improve the tension between liquid pesticides and crop surfaces, resulting in stronger permeability and wettability of the formulations. Carriers are inert components of loaded or diluted pesticides, which can control the release of active components at appropriate times. Protective agents are able to help microorganisms to resist in adverse environments. Nutritional adjuvants are used to provide nutrients for microorganisms in microbial pesticides. Most of the adjuvants used in microbial pesticides still refer to those of chemical pesticides. However, some adjuvants may have harmful effects on non-target organisms and ecological environments. Herein, in order to promote research and improvement of microbial pesticides, the types of microbial pesticide formulations were briefly reviewed, and research progress of adjuvants and their applications in microbial pesticides were highlighted, the challenges and the future perspectives towards sustainable green adjuvants of microbial pesticides were also discussed in this review.
Collapse
|