51
|
Mechanisms of antibiotics inhibiting bacterial RNA polymerase. Biochem Soc Trans 2019; 47:339-350. [PMID: 30647141 DOI: 10.1042/bst20180499] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 12/21/2022]
Abstract
Transcription, the first phase of gene expression, is performed by the multi-subunit RNA polymerase (RNAP). Bacterial RNAP is a validated target for clinical antibiotics. Many natural and synthetic compounds are now known to target RNAP, inhibiting various stages of the transcription cycle. However, very few RNAP inhibitors are used clinically. A detailed knowledge of inhibitors and their mechanisms of action (MOA) is vital for the future development of efficacious antibiotics. Moreover, inhibitors of RNAP are often useful tools with which to dissect RNAP function. Here, we review the MOA of antimicrobial transcription inhibitors.
Collapse
|
52
|
Structural mechanism of transcription inhibition by lasso peptides microcin J25 and capistruin. Proc Natl Acad Sci U S A 2019; 116:1273-1278. [PMID: 30626643 PMCID: PMC6347699 DOI: 10.1073/pnas.1817352116] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Many bacteria produce antimicrobial peptides for survival under stressful conditions. Some of these antimicrobial peptides are lasso peptides, which have a unique lasso-like topology and have generated great interest as a result of their stability in harsh conditions and amenability to functional engineering. In this study, we determined crystal structures of two lasso peptides, microcin J25 and capistruin, bound to their natural enzymatic target, the bacterial RNA polymerase (RNAP). The structures define peptide inhibitor–RNAP interactions that are important for inhibition and provide detailed insight into how the peptides inhibit RNAP function. This work provides a structural basis to guide the design of more potent lasso peptide antimicrobial approaches. We report crystal structures of the antibacterial lasso peptides microcin J25 (MccJ25) and capistruin (Cap) bound to their natural enzymatic target, the bacterial RNA polymerase (RNAP). Both peptides bind within the RNAP secondary channel, through which NTP substrates enter the RNAP active site, and sterically block trigger-loop folding, which is essential for efficient catalysis by the RNAP. MccJ25 binds deep within the secondary channel in a manner expected to interfere with NTP substrate binding, explaining the partial competitive mechanism of inhibition with respect to NTPs found previously [Mukhopadhyay J, Sineva E, Knight J, Levy RM, Ebright RH (2004) Mol Cell 14:739–751]. The Cap binding determinant on RNAP overlaps, but is not identical to, that of MccJ25. Cap binds further from the RNAP active site and does not sterically interfere with NTP binding, and we show that Cap inhibition is partially noncompetitive with respect to NTPs. This work lays the groundwork for structure determination of other lasso peptides that target the bacterial RNAP and provides a structural foundation to guide lasso peptide antimicrobial engineering approaches.
Collapse
|
53
|
Bellecourt MJ, Ray-Soni A, Harwig A, Mooney RA, Landick R. RNA Polymerase Clamp Movement Aids Dissociation from DNA but Is Not Required for RNA Release at Intrinsic Terminators. J Mol Biol 2019; 431:696-713. [PMID: 30630008 DOI: 10.1016/j.jmb.2019.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/31/2018] [Accepted: 01/02/2019] [Indexed: 10/27/2022]
Abstract
In bacteria, disassembly of elongating transcription complexes (ECs) can occur at intrinsic terminators in a 2- to 3-nucleotide window after transcription of multiple kilobase pairs of DNA. Intrinsic terminators trigger pausing on weak RNA-DNA hybrids followed by formation of a strong, GC-rich stem-loop in the RNA exit channel of RNA polymerase (RNAP), inactivating nucleotide addition and inducing dissociation of RNA and RNAP from DNA. Although the movements of RNA and DNA during intrinsic termination have been studied extensively leading to multiple models, the effects of RNAP conformational changes remain less well defined. RNAP contains a clamp domain that closes around the nucleic acid scaffold during transcription initiation and can be displaced by either swiveling or opening motions. Clamp opening is proposed to promote termination by releasing RNAP-nucleic acid contacts. We developed a cysteine crosslinking assay to constrain clamp movements and study effects on intrinsic termination. We found that biasing the clamp into different conformations perturbed termination efficiency, but that perturbations were due primarily to changes in elongation rate, not the competing rate at which ECs commit to termination. After commitment, however, inhibiting clamp movements slowed release of DNA but not of RNA from the EC. We also found that restricting trigger-loop movements with the RNAP inhibitor microcin J25 prior to commitment inhibits termination, in agreement with a recently proposed multistate-multipath model of intrinsic termination. Together our results support views that termination commitment and DNA release are separate steps and that RNAP may remain associated with DNA after termination.
Collapse
Affiliation(s)
- Michael J Bellecourt
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ananya Ray-Soni
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Alex Harwig
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Rachel Anne Mooney
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
54
|
Mazaheri Tehrani M, Erfani M, Amirmozafari N, Nejadsattari T. Synthesis of a Peptide Derivative of MicrocinJ25 and Evaluation of Antibacterial and Biological Activities. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2019; 18:1264-1276. [PMID: 32641937 PMCID: PMC6934971 DOI: 10.22037/ijpr.2019.1100750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
MicrocinJ25 (MccJ25) is a small ribosomally synthesized antimicrobial peptide that is produced by Enterobacteriacea family especially E. coli. The present study focuses on preparation and evaluation of in-vitro antimicrobial and biological properties of a new peptide derived from MccJ25. We prepared a MccJ25-derived peptide containing 14 amino acids and a single intra-molecular disulfide bond according to solid phase synthesis strategy. The purified peptide was characterized by Liquid chromatography-mass spectrometry (LC-MS) and Fourier Transform Infrared (FTIR) spectroscopy. 96-well microdilution plate assay was exerted for determination of minimum inhibitory concentration (MIC) of peptide against different bacterial strains. Cytotoxicity of the peptide derivative on HT-29 cell line assayed using MTT test. The final peptide successfully was prepared with purity more than 99.8% as determined by analytical HPLC. The evaluation of antibacterial activity of the peptide against Gram-positive and Gram- negative bacteria revealed that the peptide was very effective against E. coli 35218 with minimum inhibitory concentration (MIC) at dose 3.9 µM. The hemolytic activity toward human erythrocytes was very minimal below 0.3%. The cell viability percentage of HT-29 cell line after 24 h of contact with the peptide was more than 83%. The high sensitivity of E. coli strain to this new peptide derived from MccJ25 and through minimal toxicity to cancerous cell, suggesting that above synthesized peptide could be considered as a bioactive compound for further investigations.
Collapse
Affiliation(s)
- Maryam Mazaheri Tehrani
- Department of Microbiology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Mostafa Erfani
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran.
| | - Nour Amirmozafari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Taher Nejadsattari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
55
|
Abdel Monaim SAH, Somboro AM, El-Faham A, de la Torre BG, Albericio F. Bacteria Hunt Bacteria through an Intriguing Cyclic Peptide. ChemMedChem 2018; 14:24-51. [PMID: 30394699 DOI: 10.1002/cmdc.201800597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/10/2018] [Indexed: 12/15/2022]
Abstract
In the last few decades, peptides have been victorious over small molecules as therapeutics due to their broad range of applications, high biological activity, and high specificity. However, the main challenges to overcome if peptides are to become effective drugs is their low oral bioavailability and instability under physiological conditions. Cyclic peptides play a vital role in this context because they show higher stability under physiological conditions, higher membrane permeability, and greater oral bioavailability than that of their corresponding linear analogues. In this regard, cyclic antimicrobial peptides (AMPs) have gained considerable attention in the field of novel antibiotic development. Bacterial strains produce cyclic AMPs through two pathways: ribosomal and nonribosomal. This review provides an overview of the chemical classification of cyclic AMPs isolated from bacteria, and provides a description of their biological activity and mode of action.
Collapse
Affiliation(s)
- Shimaa A H Abdel Monaim
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa.,Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Anou M Somboro
- Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Ayman El-Faham
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.,Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria, 12321, Egypt
| | - Beatriz G de la Torre
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Fernando Albericio
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4001, South Africa.,Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.,CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, and Department of Organic Chemistry, University of Barcelona, Barcelona, 08028, Spain
| |
Collapse
|
56
|
Ritter SC, Yang ML, Kaznessis YN, Hackel BJ. Multispecies activity screening of microcin J25 mutants yields antimicrobials with increased specificity toward pathogenic Salmonella species relative to human commensal Escherichia coli. Biotechnol Bioeng 2018; 115:2394-2404. [PMID: 29940080 DOI: 10.1002/bit.26772] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/05/2018] [Accepted: 06/18/2018] [Indexed: 12/13/2022]
Abstract
Modern large-scale agricultural practices that incorporate high density farming with subtherapeutic antibiotic dosing are considered a major contributor to the rise of antibiotic-resistant bacterial infections of humans with species of Salmonella being a leading agriculture-based bacterial infection. Microcin J25, a potent and highly stable antimicrobial peptide active against Enterobacteriaceae, is a candidate antimicrobial against multiple Salmonella species. Emerging evidence supports the hypothesis that the composition of the microbiota of the gastrointestinal tract prevents a variety of diseases by preventing infectious agents from proliferating. Reducing clearance of off-target bacteria may decrease susceptibility to secondary infection. Of the Enterobacteriaceae susceptible to microcin J25, Escherichia coli are the most abundant within the human gut. To explore the modulation of specificity, a collection of 207 mutants encompassing 12 positions in both the ring and loop of microcin J25 was built and tested for activity against Salmonella and E. coli strains. As has been found previously, mutational tolerance of ring residues was lower than loop residues, with 22% and 51% of mutations, respectively, retaining activity toward at least one target within the target organism test panel. The multitarget screening elucidated increased mutational tolerance at position G2, G3, and G14 than previously identified in panels composed of single targets. Multiple mutations conferred differential response between the different targets. Examination of specificity differences between mutants found that 30% showed significant improvements to specificity toward any of the targets. Generation and testing of a combinatorial library designed from the point-mutant study revealed that microcin J25I13T reduces off-target activity toward commensal human-derived E. coli isolates by 81% relative to Salmonella enterica serovar Enteritidis. These in vitro specificity improvements are likely to improve in vivo treatment efficacy by reducing clearance of commensal bacteria in the gastrointestinal tract of hosts.
Collapse
Affiliation(s)
- Seth C Ritter
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Mike L Yang
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Yiannis N Kaznessis
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Benjamin J Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| |
Collapse
|
57
|
Bioinspired Designs, Molecular Premise and Tools for Evaluating the Ecological Importance of Antimicrobial Peptides. Pharmaceuticals (Basel) 2018; 11:ph11030068. [PMID: 29996512 PMCID: PMC6161137 DOI: 10.3390/ph11030068] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/06/2018] [Accepted: 07/07/2018] [Indexed: 02/07/2023] Open
Abstract
This review article provides an overview of recent developments in antimicrobial peptides (AMPs), summarizing structural diversity, potential new applications, activity targets and microbial killing responses in general. The use of artificial and natural AMPs as templates for rational design of peptidomimetics are also discussed and some strategies are put forward to curtail cytotoxic effects against eukaryotic cells. Considering the heat-resistant nature, chemical and proteolytic stability of AMPs, we attempt to summarize their molecular targets, examine how these macromolecules may contribute to potential environmental risks vis-à-vis the activities of the peptides. We further point out the evolutional characteristics of the macromolecules and indicate how they can be useful in designing target-specific peptides. Methods are suggested that may help to assess toxic mechanisms of AMPs and possible solutions are discussed to promote the development and application of AMPs in medicine. Even if there is wide exposure to the environment like in the hospital settings, AMPs may instead contribute to prevent healthcare-associated infections so long as ecotoxicological aspects are considered.
Collapse
|
58
|
Ahmed TAE, Hammami R. Recent insights into structure-function relationships of antimicrobial peptides. J Food Biochem 2018; 43:e12546. [PMID: 31353490 DOI: 10.1111/jfbc.12546] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 12/23/2022]
Abstract
The application of antimicrobial peptides (AMPs) in food preservation presents a promising alternative and offers many benefits, such as reducing the use of chemical preservatives, reducing food losses due to spoilage, and development of health-promoting food supplements. The biological activity of AMPs largely dependent on several physicochemical features including charge, the degree of helicity, hydrophobicity, and sequence. The present review provides an overview of the structural classification of AMPs emphasizing the importance of their structural features for biological activity, followed by the description of some antimicrobial mechanism of action. Despite the several hurdles that must be overcome for the exploitation of food-derived AMPs in drug discovery and food systems, the developments discussed in this review offer a taste of future trends in food and pharmaceutical applications of these intriguing molecules. PRACTICAL APPLICATIONS: Numerous AMPs have been reported in recent years as naturally present or released from food proteins upon enzymatic digestion during food processing, fermentation, or gastrointestinal transit. Particularly, food-released AMPs is a promising alternative to satisfy consumer demands for safe, ready-to-eat, extended shelf-life, fresh-tasting, and minimally processed foods, without chemical additives. The potential of several AMPs to inhibit foodborne pathogens is increasingly studied in various food matrices including dairy products, meat, fruits, and beverages. Although extensive progress has been made with respect to our understanding of AMPs structure/function, additional thorough investigation of the factors influencing peptide activity is required. The time has now come for the development of nutraceuticals and pharmaceutical products containing food-derived AMPs. Despite the several hurdles that must be overcome for the exploitation of AMPs, the features and developments discussed in this review offer a taste of future trends in food and pharmaceutical applications of these intriguing molecules.
Collapse
Affiliation(s)
- Tamer A E Ahmed
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technology Applications (SRTA-City), Alexandria, Egypt
| | - Riadh Hammami
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
59
|
Liu C, Shan B, Qi J, Ma Y. Systemic Responses of Multidrug-Resistant Pseudomonas aeruginosa and Acinetobacter baumannii Following Exposure to the Antimicrobial Peptide Cathelicidin-BF Imply Multiple Intracellular Targets. Front Cell Infect Microbiol 2017; 7:466. [PMID: 29164074 PMCID: PMC5681922 DOI: 10.3389/fcimb.2017.00466] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/20/2017] [Indexed: 12/04/2022] Open
Abstract
Cathelicidin-BF, derived from the banded krait (Bungarus fasciatus), is a typically cationic, amphiphilic and α-helical antimicrobial peptide (AMP) with 30 amino acids that exerts powerful effects on multidrug-resistant (MDR) clinical isolates, including Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae, but whether it targets plasma membranes or intracellular targets to kill bacteria is still controversial. In the present study, we demonstrated that the disruption of bacterial membranes with high concentrations of cathelicidin-BF was the cause of bacterial death, as with conventional antibiotics at high concentrations. At lower concentrations, cathelicidin-BF did not cause bacterial plasma membrane disruption, but it was able to cross the membrane and aggregate at the nucleoid regions. Functional proteins of the transcription processes of P. aeruginosa and A. baumannii were affected by sublethal doses of cathelicidin-BF, as demonstrated by comparative proteomics using isobaric tags for relative and absolute quantification and subsequent gene ontology (GO) analysis. Analysis using the Kyoto Encyclopedia of Genes and Genomes showed that cathelicidin-BF mainly interferes with metabolic pathways related to amino acid synthesis, metabolism of cofactors and vitamins, metabolism of purine and energy supply, and other processes. Although specific targets of cathelicidin-BF must still be validated, our study offers strong evidence that cathelicidin-BF may act upon intracellular targets to kill superbugs, which may be helpful for further efforts to discover novel antibiotics to fight against them.
Collapse
Affiliation(s)
- Cunbao Liu
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Bin Shan
- Department of Clinical Lab, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jialong Qi
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Yanbing Ma
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| |
Collapse
|
60
|
Fields RN, Roy H. Deciphering the tRNA-dependent lipid aminoacylation systems in bacteria: Novel components and structural advances. RNA Biol 2017; 15:480-491. [PMID: 28816600 PMCID: PMC6103681 DOI: 10.1080/15476286.2017.1356980] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
tRNA-dependent addition of amino acids to lipids on the outer surface of the bacterial membrane results in decreased effectiveness of antimicrobials such as cationic antimicrobial peptides (CAMPs) that target the membrane, and increased virulence of several pathogenic species. After a brief introduction to CAMPs and the various bacterial resistance mechanisms used to counteract these compounds, this review focuses on recent advances in tRNA-dependent pathways for lipid modification in bacteria. Phenotypes associated with amino acid lipid modifications and regulation of their expression will also be discussed.
Collapse
Affiliation(s)
- Rachel N Fields
- a Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida , Orlando , Florida , United States of America
| | - Hervé Roy
- a Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida , Orlando , Florida , United States of America
| |
Collapse
|
61
|
Galván AE, Chalón MC, Schurig-Briccio LA, Salomón RA, Minahk CJ, Gennis RB, Bellomio A. Cytochromes bd-I and bo 3 are essential for the bactericidal effect of microcin J25 on Escherichia coli cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1859:110-118. [PMID: 29107655 DOI: 10.1016/j.bbabio.2017.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 10/04/2017] [Accepted: 10/27/2017] [Indexed: 02/02/2023]
Abstract
Microcin J25 has two targets in sensitive bacteria, the RNA polymerase, and the respiratory chain through inhibition of cellular respiration. In this work, the effect of microcin J25 in E. coli mutants that lack the terminal oxidases cytochrome bd-I and cytochrome bo3 was analyzed. The mutant strains lacking cytochrome bo3 or cytochrome bd-I were less sensitive to the peptide. In membranes obtained from the strain that only expresses cytochrome bd-I a great ROS overproduction was observed in the presence of microcin J25. Nevertheless, the oxygen consumption was less inhibited in this strain, probably because the oxygen is partially reduced to superoxide. There was no overproduction of ROS in membranes isolated from the mutant strain that only express cytochrome bo3 and the inhibition of the cellular respiration was similar to the wild type. It is concluded that both cytochromes bd-I and bo3 are affected by the peptide. The results establish for the first time a relationship between the terminal oxygen reductases and the mechanism of action of microcin J25.
Collapse
Affiliation(s)
- A E Galván
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, T4000ILI San Miguel de Tucumán, Argentina
| | - M C Chalón
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, T4000ILI San Miguel de Tucumán, Argentina
| | | | - R A Salomón
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, T4000ILI San Miguel de Tucumán, Argentina
| | - C J Minahk
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, T4000ILI San Miguel de Tucumán, Argentina
| | - R B Gennis
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| | - A Bellomio
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, T4000ILI San Miguel de Tucumán, Argentina.
| |
Collapse
|
62
|
Lopes R, Cerdeira L, Tavares GS, Ruiz JC, Blom J, Horácio ECA, Mantovani HC, Queiroz MVD. Genome analysis reveals insights of the endophytic Bacillus toyonensis BAC3151 as a potentially novel agent for biocontrol of plant pathogens. World J Microbiol Biotechnol 2017; 33:185. [DOI: 10.1007/s11274-017-2347-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 09/19/2017] [Indexed: 02/02/2023]
|
63
|
Dabrowski-Tumanski P, Sulkowska JI. To Tie or Not to Tie? That Is the Question. Polymers (Basel) 2017; 9:E454. [PMID: 30965758 PMCID: PMC6418553 DOI: 10.3390/polym9090454] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 12/18/2022] Open
Abstract
In this review, we provide an overview of entangled proteins. Around 6% of protein structures deposited in the PBD are entangled, forming knots, slipknots, lassos and links. We present theoretical methods and tools that enabled discovering and classifying such structures. We discuss the advantages and disadvantages of the non-trivial topology in proteins, based on available data about folding, stability, biological properties and evolutionary conservation. We also formulate intriguing and challenging questions on the border of biophysics, bioinformatics, biology and mathematics, which arise from the discovery of an entanglement in proteins. Finally, we discuss possible applications of entangled proteins in medicine and nanotechnology, such as the chance to design super stable proteins, whose stability could be controlled by chemical potential.
Collapse
Affiliation(s)
- Pawel Dabrowski-Tumanski
- Centre of New Technologies, University of Warsaw, Warsaw 02-097, Poland.
- Faculty of Chemistry, University of Warsaw, Warsaw 02-093, Poland.
| | - Joanna I Sulkowska
- Centre of New Technologies, University of Warsaw, Warsaw 02-097, Poland.
- Faculty of Chemistry, University of Warsaw, Warsaw 02-093, Poland.
| |
Collapse
|
64
|
Lai PK, Kaznessis YN. Free Energy Calculations of Microcin J25 Variants Binding to the FhuA Receptor. J Chem Theory Comput 2017; 13:3413-3423. [PMID: 28622469 PMCID: PMC9481273 DOI: 10.1021/acs.jctc.7b00417] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Computer simulations were performed to study the antimicrobial peptide microcin J25 (MJ25), a 21-mer peptide with an unusual lasso structure and high activity against Gram-negative bacteria. MJ25 has intracellular targets. The initial step of MJ25 acquisition in bacterial cells is binding to the outer-membrane receptor FhuA. Molecular dynamics simulations were implemented to study the binding mechanism of MJ25 to FhuA and to search for important binding residues. The absolute binding free energy calculated from combined free energy perturbation and thermodynamic integration methods agrees well with experimental data. In addition, computational mutation analysis revealed that His5 is the key residue responsible for MJ25 and FhuA association. We found that the number of hydrogen bonds is essential for binding of MJ25 to FhuA. This atomistic, quantitative insight sheds light on the mechanism of action of MJ25 and may pave a path for designing active MJ25 analogues.
Collapse
Affiliation(s)
- Pin-Kuang Lai
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE, Minneapolis, MN 55455
| | - Yiannis N. Kaznessis
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE, Minneapolis, MN 55455
| |
Collapse
|
65
|
Wang B, Sexton RE, Feig M. Kinetics of nucleotide entry into RNA polymerase active site provides mechanism for efficiency and fidelity. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2017; 1860:482-490. [PMID: 28242207 PMCID: PMC5393355 DOI: 10.1016/j.bbagrm.2017.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/29/2017] [Accepted: 02/15/2017] [Indexed: 10/20/2022]
Abstract
During transcription, RNA polymerase II elongates RNA by adding nucleotide triphosphates (NTPs) complementary to a DNA template. Structural studies have suggested that NTPs enter and exit the active site via the narrow secondary pore but details have remained unclear. A kinetic model is presented that integrates molecular dynamics simulations with experimental data. Previous simulations of trigger loop dynamics and the dynamics of matched and mismatched NTPs in and near the active site were combined with new simulations describing NTP exit from the active site via the secondary pore. Markov state analysis was applied to identify major states and estimate kinetic rates for transitions between those states. The kinetic model predicts elongation and misincorporation rates in close agreement with experiment and provides mechanistic hypotheses for how NTP entry and exit via the secondary pore is feasible and a key feature for achieving high elongation and low misincorporation rates during RNA elongation.
Collapse
Affiliation(s)
- Beibei Wang
- Department of Biochemistry & Molecular Biology, 603 Wilson Rd., Room 218 BCH, Michigan State University, East Lansing, MI 48824, USA.
| | - Rachel E Sexton
- Department of Biochemistry & Molecular Biology, 603 Wilson Rd., Room 218 BCH, Michigan State University, East Lansing, MI 48824, USA.
| | - Michael Feig
- Department of Biochemistry & Molecular Biology, 603 Wilson Rd., Room 218 BCH, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
66
|
Abstract
Antimicrobial peptides (AMPs) are expressed in various living organisms as first-line host defenses against potential harmful encounters in their surroundings. AMPs are short polycationic peptides exhibiting various antimicrobial activities. The principal antibacterial activity is attributed to the membrane-lytic mechanism which directly interferes with the integrity of the bacterial cell membrane and cell wall. In addition, a number of AMPs form a transmembrane channel in the membrane by self-aggregation or polymerization, leading to cytoplasm leakage and cell death. However, an increasing body of evidence has demonstrated that AMPs are able to exert intracellular inhibitory activities as the primary or supportive mechanisms to achieve efficient killing. In this review, we focus on the major intracellular targeting activities reported in AMPs, which include nucleic acids and protein biosynthesis and protein-folding, protease, cell division, cell wall biosynthesis, and lipopolysaccharide inhibition. These multifunctional AMPs could serve as the potential lead peptides for the future development of novel antibacterial agents with improved therapeutic profiles.
Collapse
|
67
|
Mousa WK, Athar B, Merwin NJ, Magarvey NA. Antibiotics and specialized metabolites from the human microbiota. Nat Prod Rep 2017; 34:1302-1331. [DOI: 10.1039/c7np00021a] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human microbiota associated with each body site produce specialized molecules to kill human pathogens. Advanced bioinformatics tools will help to discover unique microbiome chemistry.
Collapse
Affiliation(s)
- Walaa K. Mousa
- Departments of Biochemistry and Biomedical Sciences & Chemistry and Chemical Biology
- M. G. DeGroote Institute for Infectious Disease Research
- McMaster University
- Hamilton
- Canada L8S 4K1
| | - Bilal Athar
- Departments of Biochemistry and Biomedical Sciences & Chemistry and Chemical Biology
- M. G. DeGroote Institute for Infectious Disease Research
- McMaster University
- Hamilton
- Canada L8S 4K1
| | - Nishanth J. Merwin
- Departments of Biochemistry and Biomedical Sciences & Chemistry and Chemical Biology
- M. G. DeGroote Institute for Infectious Disease Research
- McMaster University
- Hamilton
- Canada L8S 4K1
| | - Nathan A. Magarvey
- Departments of Biochemistry and Biomedical Sciences & Chemistry and Chemical Biology
- M. G. DeGroote Institute for Infectious Disease Research
- McMaster University
- Hamilton
- Canada L8S 4K1
| |
Collapse
|
68
|
Lee J, Borukhov S. Bacterial RNA Polymerase-DNA Interaction-The Driving Force of Gene Expression and the Target for Drug Action. Front Mol Biosci 2016; 3:73. [PMID: 27882317 PMCID: PMC5101437 DOI: 10.3389/fmolb.2016.00073] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/24/2016] [Indexed: 11/17/2022] Open
Abstract
DNA-dependent multisubunit RNA polymerase (RNAP) is the key enzyme of gene expression and a target of regulation in all kingdoms of life. It is a complex multifunctional molecular machine which, unlike other DNA-binding proteins, engages in extensive and dynamic interactions (both specific and nonspecific) with DNA, and maintains them over a distance. These interactions are controlled by DNA sequences, DNA topology, and a host of regulatory factors. Here, we summarize key recent structural and biochemical studies that elucidate the fine details of RNAP-DNA interactions during initiation. The findings of these studies help unravel the molecular mechanisms of promoter recognition and open complex formation, initiation of transcript synthesis and promoter escape. We also discuss most current advances in the studies of drugs that specifically target RNAP-DNA interactions during transcription initiation and elongation.
Collapse
Affiliation(s)
- Jookyung Lee
- Department of Cell Biology, Rowan University School of Osteopathic Medicine Stratford, NJ, USA
| | - Sergei Borukhov
- Department of Cell Biology, Rowan University School of Osteopathic Medicine Stratford, NJ, USA
| |
Collapse
|
69
|
Zhao X, Kuipers OP. Identification and classification of known and putative antimicrobial compounds produced by a wide variety of Bacillales species. BMC Genomics 2016; 17:882. [PMID: 27821051 PMCID: PMC5100339 DOI: 10.1186/s12864-016-3224-y] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 10/27/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Gram-positive bacteria of the Bacillales are important producers of antimicrobial compounds that might be utilized for medical, food or agricultural applications. Thanks to the wide availability of whole genome sequence data and the development of specific genome mining tools, novel antimicrobial compounds, either ribosomally- or non-ribosomally produced, of various Bacillales species can be predicted and classified. Here, we provide a classification scheme of known and putative antimicrobial compounds in the specific context of Bacillales species. RESULTS We identify and describe known and putative bacteriocins, non-ribosomally synthesized peptides (NRPs), polyketides (PKs) and other antimicrobials from 328 whole-genome sequenced strains of 57 species of Bacillales by using web based genome-mining prediction tools. We provide a classification scheme for these bacteriocins, update the findings of NRPs and PKs and investigate their characteristics and suitability for biocontrol by describing per class their genetic organization and structure. Moreover, we highlight the potential of several known and novel antimicrobials from various species of Bacillales. CONCLUSIONS Our extended classification of antimicrobial compounds demonstrates that Bacillales provide a rich source of novel antimicrobials that can now readily be tapped experimentally, since many new gene clusters are identified.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, Groningen, 9747AG, The Netherlands.,School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Oscar P Kuipers
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, Groningen, 9747AG, The Netherlands.
| |
Collapse
|
70
|
Assrir N, Pavelkova A, Dazzoni R, Ducasse R, Morellet N, Guittet E, Rebuffat S, Zirah S, Li Y, Lescop E. Initial Molecular Recognition Steps of McjA Precursor during Microcin J25 Lasso Peptide Maturation. Chembiochem 2016; 17:1851-1858. [DOI: 10.1002/cbic.201600306] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Nadine Assrir
- Institut de Chimie des Substances Naturelles; CNRS UPR 2301; Université Paris-Sud; Université Paris-Saclay; 1 avenue de la Terrasse 91190 Gif-sur-Yvette France
| | - Anna Pavelkova
- Institut de Chimie des Substances Naturelles; CNRS UPR 2301; Université Paris-Sud; Université Paris-Saclay; 1 avenue de la Terrasse 91190 Gif-sur-Yvette France
| | - Régine Dazzoni
- Institut de Chimie des Substances Naturelles; CNRS UPR 2301; Université Paris-Sud; Université Paris-Saclay; 1 avenue de la Terrasse 91190 Gif-sur-Yvette France
| | - Rémi Ducasse
- Molécules de Communication et Adaptation des Microorganismes; UMR 7245 CNRS; Muséum National d'Histoire Naturelle; Sorbonne Universités; CP 54; 57 rue Cuvier 75005 Paris France
| | - Nelly Morellet
- Institut de Chimie des Substances Naturelles; CNRS UPR 2301; Université Paris-Sud; Université Paris-Saclay; 1 avenue de la Terrasse 91190 Gif-sur-Yvette France
| | - Eric Guittet
- Institut de Chimie des Substances Naturelles; CNRS UPR 2301; Université Paris-Sud; Université Paris-Saclay; 1 avenue de la Terrasse 91190 Gif-sur-Yvette France
| | - Sylvie Rebuffat
- Molécules de Communication et Adaptation des Microorganismes; UMR 7245 CNRS; Muséum National d'Histoire Naturelle; Sorbonne Universités; CP 54; 57 rue Cuvier 75005 Paris France
| | - Séverine Zirah
- Molécules de Communication et Adaptation des Microorganismes; UMR 7245 CNRS; Muséum National d'Histoire Naturelle; Sorbonne Universités; CP 54; 57 rue Cuvier 75005 Paris France
| | - Yanyan Li
- Molécules de Communication et Adaptation des Microorganismes; UMR 7245 CNRS; Muséum National d'Histoire Naturelle; Sorbonne Universités; CP 54; 57 rue Cuvier 75005 Paris France
| | - Ewen Lescop
- Institut de Chimie des Substances Naturelles; CNRS UPR 2301; Université Paris-Sud; Université Paris-Saclay; 1 avenue de la Terrasse 91190 Gif-sur-Yvette France
| |
Collapse
|
71
|
Jeanne Dit Fouque K, Lavanant H, Zirah S, Steinmetz V, Rebuffat S, Maître P, Afonso C. IRMPD Spectroscopy: Evidence of Hydrogen Bonding in the Gas Phase Conformations of Lasso Peptides and their Branched-Cyclic Topoisomers. J Phys Chem A 2016; 120:3810-6. [DOI: 10.1021/acs.jpca.6b04496] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kevin Jeanne Dit Fouque
- Normandie Univ, COBRA, UMR 6014, FR 3038; Univ Rouen; INSA Rouen; CNRS, 1 Rue Tesnière, 76821 Mont-Saint-Aignan Cedex, France
| | - Hélène Lavanant
- Normandie Univ, COBRA, UMR 6014, FR 3038; Univ Rouen; INSA Rouen; CNRS, 1 Rue Tesnière, 76821 Mont-Saint-Aignan Cedex, France
| | - Séverine Zirah
- Muséum national d’Histoire naturelle, Sorbonne Universités, Centre national de la Recherche scientifique, Laboratoire Molécules de Communication et Adaptation des Microorganismes, UMR 7245 CNRS-MNHN, CP 54, 57 rue Cuvier, 75005 Paris, France
| | - Vincent Steinmetz
- Laboratoire de Chimie Physique, Université Paris Sud, UMR 8000 CNRS, Faculté des Sciences, Bât. 349, 91405 Orsay Cedex, France
| | - Sylvie Rebuffat
- Muséum national d’Histoire naturelle, Sorbonne Universités, Centre national de la Recherche scientifique, Laboratoire Molécules de Communication et Adaptation des Microorganismes, UMR 7245 CNRS-MNHN, CP 54, 57 rue Cuvier, 75005 Paris, France
| | - Philippe Maître
- Laboratoire de Chimie Physique, Université Paris Sud, UMR 8000 CNRS, Faculté des Sciences, Bât. 349, 91405 Orsay Cedex, France
| | - Carlos Afonso
- Normandie Univ, COBRA, UMR 6014, FR 3038; Univ Rouen; INSA Rouen; CNRS, 1 Rue Tesnière, 76821 Mont-Saint-Aignan Cedex, France
| |
Collapse
|
72
|
Ho YH, Shah P, Chen YW, Chen CS. Systematic Analysis of Intracellular-targeting Antimicrobial Peptides, Bactenecin 7, Hybrid of Pleurocidin and Dermaseptin, Proline-Arginine-rich Peptide, and Lactoferricin B, by Using Escherichia coli Proteome Microarrays. Mol Cell Proteomics 2016; 15:1837-47. [PMID: 26902206 DOI: 10.1074/mcp.m115.054999] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Indexed: 01/12/2023] Open
Abstract
Antimicrobial peptides (AMPs) act either through membrane lysis or by attacking intracellular targets. Intracellular targeting AMPs are a resource for antimicrobial agent development. Several AMPs have been identified as intracellular targeting peptides; however, the intracellular targets of many of these peptides remain unknown. In the present study, we used an Escherichia coli proteome microarray to systematically identify the protein targets of three intracellular targeting AMPs: bactenecin 7 (Bac7), a hybrid of pleurocidin and dermaseptin (P-Der), and proline-arginine-rich peptide (PR-39). In addition, we also included the data of lactoferricin B (LfcinB) from our previous study for a more comprehensive analysis. We analyzed the unique protein hits of each AMP in the Kyoto Encyclopedia of Genes and Genomes. The results indicated that Bac7 targets purine metabolism and histidine kinase, LfcinB attacks the transcription-related activities and several cellular carbohydrate biosynthetic processes, P-Der affects several catabolic processes of small molecules, and PR-39 preferentially recognizes proteins involved in RNA- and folate-metabolism-related cellular processes. Moreover, both Bac7 and LfcinB target purine metabolism, whereas LfcinB and PR-39 target lipopolysaccharide biosynthesis. This suggested that LfcinB and Bac7 as well as LfcinB and PR-39 have a synergistic effect on antimicrobial activity, which was validated through antimicrobial assays. Furthermore, common hits of all four AMPs indicated that all of them target arginine decarboxylase, which is a crucial enzyme for Escherichia coli survival in extremely acidic environments. Thus, these AMPs may display greater inhibition to bacterial growth in extremely acidic environments. We have also confirmed this finding in bacterial growth inhibition assays. In conclusion, this comprehensive identification and systematic analysis of intracellular targeting AMPs reveals crucial insights into the intracellular mechanisms of the action of AMPs.
Collapse
Affiliation(s)
- Yu-Hsuan Ho
- From the ‡Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli 32001, Taiwan; §Department of Biomedical Science and Engineering, National Central University, Jhongli 32001, Taiwan
| | - Pramod Shah
- From the ‡Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli 32001, Taiwan; §Department of Biomedical Science and Engineering, National Central University, Jhongli 32001, Taiwan
| | - Yi-Wen Chen
- From the ‡Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli 32001, Taiwan; §Department of Biomedical Science and Engineering, National Central University, Jhongli 32001, Taiwan
| | - Chien-Sheng Chen
- From the ‡Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli 32001, Taiwan; §Department of Biomedical Science and Engineering, National Central University, Jhongli 32001, Taiwan
| |
Collapse
|
73
|
Shah P, Hsiao FSH, Ho YH, Chen CS. The proteome targets of intracellular targeting antimicrobial peptides. Proteomics 2016; 16:1225-37. [PMID: 26648572 DOI: 10.1002/pmic.201500380] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 10/30/2015] [Accepted: 12/03/2015] [Indexed: 01/28/2023]
Abstract
Antimicrobial peptides have been considered well-deserving candidates to fight the battle against microorganisms due to their broad-spectrum antimicrobial activities. Several studies have suggested that membrane disruption is the basic mechanism of AMPs that leads to killing or inhibiting microorganisms. Also, AMPs have been reported to interact with macromolecules inside the microbial cells such as nucleic acids (DNA/RNA), protein synthesis, essential enzymes, membrane septum formation and cell wall synthesis. Proteins are associated with many intracellular mechanisms of cells, thus protein targets may be specifically involved in mechanisms of action of AMPs. AMPs like pyrrhocoricin, drosocin, apidecin and Bac 7 are documented to have protein targets, DnaK and GroEL. Moreover, the intracellular targeting AMPs are reported to influence more than one protein targets inside the cell, suggesting for the multiple modes of actions. This complex mechanism of intracellular targeting AMPs makes them more difficult for the development of resistance. Herein, we have summarized the current status of AMPs in terms of their mode of actions, entry to cytoplasm and inhibition of macromolecules. To reveal the mechanism of action, we have focused on AMPs with intracellular protein targets. We have also included the use of high-throughput proteome microarray to determine the unidentified AMP protein targets in this review.
Collapse
Affiliation(s)
- Pramod Shah
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli, Taiwan.,Department of Biomedical Science and Engineering, National Central University, Jhongli, Taiwan
| | - Felix Shih-Hsiang Hsiao
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli, Taiwan.,Department of Biomedical Science and Engineering, National Central University, Jhongli, Taiwan
| | - Yu-Hsuan Ho
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli, Taiwan.,Department of Biomedical Science and Engineering, National Central University, Jhongli, Taiwan
| | - Chien-Sheng Chen
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli, Taiwan.,Department of Biomedical Science and Engineering, National Central University, Jhongli, Taiwan
| |
Collapse
|
74
|
Bacterial Transcription as a Target for Antibacterial Drug Development. Microbiol Mol Biol Rev 2016; 80:139-60. [PMID: 26764017 DOI: 10.1128/mmbr.00055-15] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Transcription, the first step of gene expression, is carried out by the enzyme RNA polymerase (RNAP) and is regulated through interaction with a series of protein transcription factors. RNAP and its associated transcription factors are highly conserved across the bacterial domain and represent excellent targets for broad-spectrum antibacterial agent discovery. Despite the numerous antibiotics on the market, there are only two series currently approved that target transcription. The determination of the three-dimensional structures of RNAP and transcription complexes at high resolution over the last 15 years has led to renewed interest in targeting this essential process for antibiotic development by utilizing rational structure-based approaches. In this review, we describe the inhibition of the bacterial transcription process with respect to structural studies of RNAP, highlight recent progress toward the discovery of novel transcription inhibitors, and suggest additional potential antibacterial targets for rational drug design.
Collapse
|
75
|
Zhang L, Silva DA, Pardo-Avila F, Wang D, Huang X. Structural Model of RNA Polymerase II Elongation Complex with Complete Transcription Bubble Reveals NTP Entry Routes. PLoS Comput Biol 2015; 11:e1004354. [PMID: 26134169 PMCID: PMC4489626 DOI: 10.1371/journal.pcbi.1004354] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 05/22/2015] [Indexed: 12/27/2022] Open
Abstract
The RNA polymerase II (Pol II) is a eukaryotic enzyme that catalyzes the synthesis of the messenger RNA using a DNA template. Despite numerous biochemical and biophysical studies, it remains elusive whether the “secondary channel” is the only route for NTP to reach the active site of the enzyme or if the “main channel” could be an alternative. On this regard, crystallographic structures of Pol II have been extremely useful to understand the structural basis of transcription, however, the conformation of the unpaired non-template DNA part of the full transcription bubble (TB) is still unknown. Since diffusion routes of the nucleoside triphosphate (NTP) substrate through the main channel might overlap with the TB region, gaining structural information of the full TB is critical for a complete understanding of Pol II transcription process. In this study, we have built a structural model of Pol II with a complete transcription bubble based on multiple sources of existing structural data and used Molecular Dynamics (MD) simulations together with structural analysis to shed light on NTP entry pathways. Interestingly, we found that although both channels have enough space to allow NTP loading, the percentage of MD conformations containing enough space for NTP loading through the secondary channel is twice higher than that of the main channel. Further energetic study based on MD simulations with NTP loaded in the channels has revealed that the diffusion of the NTP through the main channel is greatly disfavored by electrostatic repulsion between the NTP and the highly negatively charged backbones of nucleotides in the non-template DNA strand. Taken together, our results suggest that the secondary channel is the major route for NTP entry during Pol II transcription. In eukaryotic cells, the RNA polymerase II (Pol II) is a central enzyme that reads the genetic information encoded in the DNA template to synthetize a messenger RNA. To perform its function, Pol II needs to have the substrate nucleoside triphosphate (NTP) diffuse into its deeply buried active site. Despite numerous efforts, the NTP entry routes remain elusive: NTP could diffuse only through the secondary channel, or also via the main channel. The structural information of the transcription bubble is essential to study this process, however, the unpaired non-template DNA of the transcription bubble is absent in the available X-ray crystal structures. In this regard, we have built a structural model of the Pol II elongation complex with reconstructed transcription bubble using existing experimental data. We then performed Molecular Dynamics (MD) simulations and applied structural analysis to study the routes of NTP diffusion. We found that sterically the probability of NTP loading through the secondary channel is more than twice that of the main channel. Further analysis of the non-bonded energetic contributions to NTP diffusion suggests that NTP diffusion through the main channel is greatly disfavored by the electrostatic repulsion between the substrate and negatively charged backbones of nucleotides in the non-template strand of the transcription bubble. Altogether, our findings suggest that the secondary channel is the more favorable NTP diffusion route for Pol II transcription elongation.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Chemistry and State Key Laboratory of Molecular Neuroscience, Center for System Biology and Human Health, School of Science and IAS, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Daniel-Adriano Silva
- Department of Chemistry and State Key Laboratory of Molecular Neuroscience, Center for System Biology and Human Health, School of Science and IAS, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Fátima Pardo-Avila
- Department of Chemistry and State Key Laboratory of Molecular Neuroscience, Center for System Biology and Human Health, School of Science and IAS, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Dong Wang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Xuhui Huang
- Department of Chemistry and State Key Laboratory of Molecular Neuroscience, Center for System Biology and Human Health, School of Science and IAS, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
- * E-mail:
| |
Collapse
|
76
|
The antimicrobial peptide microcin J25 stabilizes the gel phase of bacterial model membranes. Colloids Surf B Biointerfaces 2015; 129:183-90. [DOI: 10.1016/j.colsurfb.2015.03.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/19/2015] [Accepted: 03/20/2015] [Indexed: 01/22/2023]
|
77
|
Wang G, Mishra B, Lau K, Lushnikova T, Golla R, Wang X. Antimicrobial peptides in 2014. Pharmaceuticals (Basel) 2015; 8:123-50. [PMID: 25806720 PMCID: PMC4381204 DOI: 10.3390/ph8010123] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 12/13/2022] Open
Abstract
This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms.
Collapse
Affiliation(s)
- Guangshun Wang
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA.
| | - Biswajit Mishra
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - Kyle Lau
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - Tamara Lushnikova
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - Radha Golla
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - Xiuqing Wang
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
- Institute of Clinical Laboratory, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
78
|
Site-specific incorporation of probes into RNA polymerase by unnatural-amino-acid mutagenesis and Staudinger-Bertozzi ligation. Methods Mol Biol 2015; 1276:101-31. [PMID: 25665560 PMCID: PMC4677679 DOI: 10.1007/978-1-4939-2392-2_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A three-step procedure comprising (1) unnatural-amino-acid mutagenesis with 4-azido-phenylalanine, (2) Staudinger-Bertozzi ligation with a probe-phosphine derivative, and (3) in vitro reconstitution of RNA polymerase (RNAP) enables the efficient site-specific incorporation of a fluorescent probe, a spin label, a cross-linking agent, a cleaving agent, an affinity tag, or any other biochemical or biophysical probe, at any site of interest in RNAP. Straightforward extensions of the procedure enable the efficient site-specific incorporation of two or more different probes in two or more different subunits of RNAP. We present protocols for synthesis of probe-phosphine derivatives, preparation of RNAP subunits and the transcription initiation factor σ, unnatural amino acid mutagenesis of RNAP subunits and σ, Staudinger ligation with unnatural-amino-acid-containing RNAP subunits and σ, quantitation of labelling efficiency and labelling specificity, and reconstitution of RNAP.
Collapse
|
79
|
Al Toma RS, Kuthning A, Exner MP, Denisiuk A, Ziegler J, Budisa N, Süssmuth RD. Site-Directed and Global Incorporation of Orthogonal and Isostructural Noncanonical Amino Acids into the Ribosomal Lasso Peptide Capistruin. Chembiochem 2014; 16:503-9. [DOI: 10.1002/cbic.201402558] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Indexed: 02/01/2023]
|
80
|
Hammami R, Bédard F, Gomaa A, Subirade M, Biron E, Fliss I. Lasso-inspired peptides with distinct antibacterial mechanisms. Amino Acids 2014; 47:417-28. [PMID: 25466905 DOI: 10.1007/s00726-014-1877-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 11/17/2014] [Indexed: 11/25/2022]
Abstract
Microcin J25 (MccJ25) is an antibacterial peptide with a peculiar molecular structure consisting of 21 amino acids and a unique lasso topology that makes it highly stable. We synthesized various MccJ25-derived peptides that retained some of the inhibitory activity of the native molecule against Salmonella enterica and Escherichia coli. Of the tested peptides, C1, 7-21C and WK_7-21 were the most inhibitory peptides (MIC = 1-250 µM), but all three were less potent than MccJ25. While MccJ25 was not active against Gram-positive bacteria, the three derived peptides were slightly inhibitory to Gram-positive bacteria (MIC ≥ 250 µM). At 5 µM, C1, 7-21C and WK_7-21 reduced E. coli RNA polymerase activity by respectively, 23.4, 37.4 and 65.0 %. The MccJ25 and its derived peptides all appeared to affect the respiratory apparatus of S. enterica. Based on circular dichroism and FTIR spectroscopy, the peptides also interact with bacterial membrane phospholipids. These results suggest the possibility of producing potent MccJ25-derived peptides lacking the lasso structure.
Collapse
Affiliation(s)
- Riadh Hammami
- STELA Dairy Research Centre, Institute of Nutrition and Functional Foods, Université Laval, Québec, QC, G1V 0A6, Canada,
| | | | | | | | | | | |
Collapse
|
81
|
Piscotta FJ, Tharp JM, Liu WR, Link AJ. Expanding the chemical diversity of lasso peptide MccJ25 with genetically encoded noncanonical amino acids. Chem Commun (Camb) 2014; 51:409-12. [PMID: 25407838 DOI: 10.1039/c4cc07778d] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Using the amber suppression approach, four noncanonical amino acids (ncAAs) were used to replace existing amino acids at four positions in lasso peptide microcin J25 (MccJ25). The lasso peptide biosynthesis enzymes tolerated all four ncAAs and produced antibiotics with efficacy equivalent to wild-type in some cases. Given the rapid expansion of the genetically encoded ncAA pool, this study is the first to demonstrate an expedient method to significantly increase the chemical diversity of lasso peptides.
Collapse
Affiliation(s)
- Frank J Piscotta
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.
| | | | | | | |
Collapse
|
82
|
Gust A, Zander A, Gietl A, Holzmeister P, Schulz S, Lalkens B, Tinnefeld P, Grohmann D. A starting point for fluorescence-based single-molecule measurements in biomolecular research. Molecules 2014; 19:15824-65. [PMID: 25271426 PMCID: PMC6271140 DOI: 10.3390/molecules191015824] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/17/2014] [Accepted: 09/17/2014] [Indexed: 01/24/2023] Open
Abstract
Single-molecule fluorescence techniques are ideally suited to provide information about the structure-function-dynamics relationship of a biomolecule as static and dynamic heterogeneity can be easily detected. However, what type of single-molecule fluorescence technique is suited for which kind of biological question and what are the obstacles on the way to a successful single-molecule microscopy experiment? In this review, we provide practical insights into fluorescence-based single-molecule experiments aiming for scientists who wish to take their experiments to the single-molecule level. We especially focus on fluorescence resonance energy transfer (FRET) experiments as these are a widely employed tool for the investigation of biomolecular mechanisms. We will guide the reader through the most critical steps that determine the success and quality of diffusion-based confocal and immobilization-based total internal reflection fluorescence microscopy. We discuss the specific chemical and photophysical requirements that make fluorescent dyes suitable for single-molecule fluorescence experiments. Most importantly, we review recently emerged photoprotection systems as well as passivation and immobilization strategies that enable the observation of fluorescently labeled molecules under biocompatible conditions. Moreover, we discuss how the optical single-molecule toolkit has been extended in recent years to capture the physiological complexity of a cell making it even more relevant for biological research.
Collapse
Affiliation(s)
- Alexander Gust
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, Braunschweig 38106, Germany
| | - Adrian Zander
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, Braunschweig 38106, Germany
| | - Andreas Gietl
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, Braunschweig 38106, Germany
| | - Phil Holzmeister
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, Braunschweig 38106, Germany
| | - Sarah Schulz
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, Braunschweig 38106, Germany
| | - Birka Lalkens
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, Braunschweig 38106, Germany
| | - Philip Tinnefeld
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, Braunschweig 38106, Germany
| | - Dina Grohmann
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, Braunschweig 38106, Germany.
| |
Collapse
|
83
|
Degen D, Feng Y, Zhang Y, Ebright KY, Ebright YW, Gigliotti M, Vahedian-Movahed H, Mandal S, Talaue M, Connell N, Arnold E, Fenical W, Ebright RH. Transcription inhibition by the depsipeptide antibiotic salinamide A. eLife 2014; 3:e02451. [PMID: 24843001 PMCID: PMC4029172 DOI: 10.7554/elife.02451] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 04/18/2014] [Indexed: 12/12/2022] Open
Abstract
We report that bacterial RNA polymerase (RNAP) is the functional cellular target of the depsipeptide antibiotic salinamide A (Sal), and we report that Sal inhibits RNAP through a novel binding site and mechanism. We show that Sal inhibits RNA synthesis in cells and that mutations that confer Sal-resistance map to RNAP genes. We show that Sal interacts with the RNAP active-center 'bridge-helix cap' comprising the 'bridge-helix N-terminal hinge', 'F-loop', and 'link region'. We show that Sal inhibits nucleotide addition in transcription initiation and elongation. We present a crystal structure that defines interactions between Sal and RNAP and effects of Sal on RNAP conformation. We propose that Sal functions by binding to the RNAP bridge-helix cap and preventing conformational changes of the bridge-helix N-terminal hinge necessary for nucleotide addition. The results provide a target for antibacterial drug discovery and a reagent to probe conformation and function of the bridge-helix N-terminal hinge.DOI: http://dx.doi.org/10.7554/eLife.02451.001.
Collapse
Affiliation(s)
- David Degen
- Waksman Institute, Rutgers University, Piscataway, United States
| | - Yu Feng
- Waksman Institute, Rutgers University, Piscataway, United States
| | - Yu Zhang
- Waksman Institute, Rutgers University, Piscataway, United States
| | | | - Yon W Ebright
- Waksman Institute, Rutgers University, Piscataway, United States
| | | | | | - Sukhendu Mandal
- Waksman Institute, Rutgers University, Piscataway, United States
| | - Meliza Talaue
- Center for Biodefense, New Jersey Medical School, Rutgers University, Newark, United States
| | - Nancy Connell
- Center for Biodefense, New Jersey Medical School, Rutgers University, Newark, United States
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, United States
| | - William Fenical
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, United States
| | | |
Collapse
|
84
|
Zhang Y, Degen D, Ho MX, Sineva E, Ebright KY, Ebright YW, Mekler V, Vahedian-Movahed H, Feng Y, Yin R, Tuske S, Irschik H, Jansen R, Maffioli S, Donadio S, Arnold E, Ebright RH. GE23077 binds to the RNA polymerase 'i' and 'i+1' sites and prevents the binding of initiating nucleotides. eLife 2014; 3:e02450. [PMID: 24755292 PMCID: PMC3994528 DOI: 10.7554/elife.02450] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Using a combination of genetic, biochemical, and structural approaches, we show that the cyclic-peptide antibiotic GE23077 (GE) binds directly to the bacterial RNA polymerase (RNAP) active-center ‘i’ and ‘i+1’ nucleotide binding sites, preventing the binding of initiating nucleotides, and thereby preventing transcription initiation. The target-based resistance spectrum for GE is unusually small, reflecting the fact that the GE binding site on RNAP includes residues of the RNAP active center that cannot be substituted without loss of RNAP activity. The GE binding site on RNAP is different from the rifamycin binding site. Accordingly, GE and rifamycins do not exhibit cross-resistance, and GE and a rifamycin can bind simultaneously to RNAP. The GE binding site on RNAP is immediately adjacent to the rifamycin binding site. Accordingly, covalent linkage of GE to a rifamycin provides a bipartite inhibitor having very high potency and very low susceptibility to target-based resistance. DOI:http://dx.doi.org/10.7554/eLife.02450.001 As increasing numbers of bacteria become resistant to antibiotics, new drugs are needed to fight bacterial infections. To develop new antibacterial drugs, researchers need to understand how existing antibiotics work. There are many ways to kill bacteria, but one of the most effective is to target an enzyme called bacterial RNA polymerase. If bacterial RNA polymerase is prevented from working, bacteria cannot synthesize RNA and cannot survive. GE23077 (GE for short) is an antibiotic produced by bacteria found in soil. Although GE stops bacterial RNA polymerase from working, and thereby kills bacteria, it does not affect mammalian RNA polymerases, and so does not kill mammalian cells. Understanding how GE works could help with the development of new antibacterial drugs. Zhang et al. present results gathered from a range of techniques to show how GE inhibits bacterial RNA polymerase. These show that GE works by binding to a site on RNA polymerase that is different from the binding sites of previously characterized antibacterial drugs. The mechanism used to inhibit the RNA polymerase is also different. The newly identified binding site has several features that make it an unusually attractive target for development of antibacterial compounds. Bacteria can become resistant to an antibiotic if genetic mutations lead to changes in the site the antibiotic binds to. However, the site that GE binds to on RNA polymerase is essential for RNA polymerase to function and so cannot readily be changed without crippling the enzyme. Therefore, this type of antibiotic resistance is less likely to develop. In addition, the newly identified binding site for GE on RNA polymerase is located next to the binding site for a current antibacterial drug, rifampin. Zhang et al. therefore linked GE and rifampin to form a two-part (‘bipartite’) compound designed to bind simultaneously to the GE and the rifampin binding sites. This compound was able to inhibit drug-resistant RNA polymerases tens to thousands of times more potently than GE or rifampin alone. DOI:http://dx.doi.org/10.7554/eLife.02450.002
Collapse
Affiliation(s)
- Yu Zhang
- Waksman Institute, Rutgers University, Piscataway, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Maksimov MO, Link AJ. Prospecting genomes for lasso peptides. ACTA ACUST UNITED AC 2014; 41:333-44. [DOI: 10.1007/s10295-013-1357-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 09/23/2013] [Indexed: 10/26/2022]
Abstract
Abstract
Genome mining has unlocked a veritable treasure chest of natural compounds. However, each family of natural products requires a genome-mining approach tailored to its unique features to be successful. Lasso peptides are ribosomally synthesized and posttranslationally modified products with a unique three-dimensional structure. Advances in the understanding of these molecules have informed the design of strategies to identify new members of the class in sequenced genomes. This review presents the bioinformatic methods used to discover novel lasso peptides and describes how such analyses have afforded insights into the biosynthesis and evolution of this peptide class.
Collapse
Affiliation(s)
- Mikhail O Maksimov
- grid.16750.35 0000000120975006 207 Hoyt Laboratory, Department of Chemical and Biological Engineering Princeton University 08544 Princeton NJ USA
| | - A James Link
- grid.16750.35 0000000120975006 207 Hoyt Laboratory, Department of Chemical and Biological Engineering Princeton University 08544 Princeton NJ USA
- grid.16750.35 0000000120975006 Department of Molecular Biology Princeton University Princeton NJ USA
| |
Collapse
|
86
|
Antibiotic streptolydigin requires noncatalytic Mg2+ for binding to RNA polymerase. Antimicrob Agents Chemother 2013; 58:1420-4. [PMID: 24342645 PMCID: PMC3957892 DOI: 10.1128/aac.02248-13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multisubunit RNA polymerase, an enzyme that accomplishes transcription in all living organisms, is a potent target for antibiotics. The antibiotic streptolydigin inhibits RNA polymerase by sequestering the active center in a catalytically inactive conformation. Here, we show that binding of streptolydigin to RNA polymerase strictly depends on a noncatalytic magnesium ion which is likely chelated by the aspartate of the bridge helix of the active center. Substitutions of this aspartate may explain different sensitivities of bacterial RNA polymerases to streptolydigin. These results provide the first evidence for the role of noncatalytic magnesium ions in the functioning of RNA polymerase and suggest new routes for the modification of existing and the design of new inhibitors of transcription.
Collapse
|
87
|
|
88
|
Maksimov MO, Link AJ. Discovery and Characterization of an Isopeptidase That Linearizes Lasso Peptides. J Am Chem Soc 2013; 135:12038-47. [DOI: 10.1021/ja4054256] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mikhail O. Maksimov
- Departments of Chemical and Biological Engineering and ‡Molecular Biology, Princeton University, Princeton, New Jersey 08544,
United States
| | - A. James Link
- Departments of Chemical and Biological Engineering and ‡Molecular Biology, Princeton University, Princeton, New Jersey 08544,
United States
| |
Collapse
|
89
|
Abstract
Probably the oldest and most widespread antimicrobial strategy in living organisms is the use of antimicrobial peptides. Bacteria secrete such defence peptides, termed bacteriocins, that they use for microbial competitions. Microcins are bacteriocins of less than 10 kDa produced by Escherichia coli and related enterobacteria through the ribosomal pathway. They are synthesized as linear precursors, which can further undergo complex post-translational modifications resulting from dedicated maturation enzymes encoded in the microcin gene clusters, and are processed by proteolytic cleavage. Microcins exert potent bactericidal activities that use subtle and clever mechanisms to cross outer and inner membranes of Gram-negative bacteria. To cross the outer membrane, siderophore-microcins hijack receptors involved in iron acquisition. The lasso-peptide microcin J25, which is characterized by a knotted arrangement where the C-terminal tail is threaded through an N-terminal macrolactam ring, uses a hydroxamate siderophore receptor and the inner-membrane protein SbmA for import in sensitive bacteria, where it inhibits bacterial transcription through binding to RNAP (RNA polymerase). Microcin C produced as a heptapeptide adenylate, requires an outer-membrane porin and an inner-membrane ABC (ATP-binding-cassette) transporter to reach the cytoplasm of target bacteria, where it is processed by proteases into a non-hydrolysable aspartyl-adenylate analogue. Therefore, despite showing different killing mechanisms and the absence of any structural homology, microcins have the common characteristic to use Trojan horse strategies to destroy their competitors. They offer new and promising tracks for further design and engineering of novel efficient antibiotics.
Collapse
|
90
|
Hüsecken K, Negri M, Fruth M, Boettcher S, Hartmann RW, Haupenthal J. Peptide-based investigation of the Escherichia coli RNA polymerase σ(70):core interface as target site. ACS Chem Biol 2013; 8:758-66. [PMID: 23330640 DOI: 10.1021/cb3005758] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The number of bacterial strains that are resistant against antibiotics increased dramatically during the past decades. This fact stresses the urgent need for the development of new antibacterial agents with novel modes of action targeting essential enzymes such as RNA polymerase (RNAP). Bacterial RNAP is a large multi-subunit complex consisting of a core enzyme (subunits: α(2)ββ'ω) and a dissociable sigma factor (σ(70); holo enzyme: α(2)ββ'ωσ(70)) that is responsible for promoter recognition and transcription initiation. The interface between core RNAP and σ(70) represents a promising binding site. Nevertheless, detailed studies investigating its druggability are rare. Compounds binding to this region could inhibit this protein-protein interaction and thus holo enzyme formation, resulting in inhibition of transcription initiation. Sixteen peptides covering different regions of the Escherichia coli σ(70):core interface were designed; some of them-all derived from σ(70) 2.2 region-led to a strong RNAP inhibition. Indeed, an ELISA-based experiment confirmed the most active peptide P07 to inhibit the σ(70):core interaction. Furthermore, an abortive transcription assay revealed that P07 impedes transcription initiation. In order to study the mechanism of action of P07 in more detail, molecular dynamics simulations and a rational amino acid replacement study were performed, leading to the conclusion that P07 binds to the coiled-coil region in β' and that its flexible N-terminus inhibits the enzyme by interaction with the β' lid-rudder-system (LRS). This work revisits the β' coiled-coil as a hot spot for the protein-protein interaction inhibition and expands it by introduction of the LRS as target site.
Collapse
Affiliation(s)
- Kristina Hüsecken
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Department
of Drug Design and Optimization and ‡Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2_3, D-66123
Saarbrücken, Germany
| | - Matthias Negri
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Department
of Drug Design and Optimization and ‡Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2_3, D-66123
Saarbrücken, Germany
| | - Martina Fruth
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Department
of Drug Design and Optimization and ‡Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2_3, D-66123
Saarbrücken, Germany
| | - Stefan Boettcher
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Department
of Drug Design and Optimization and ‡Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2_3, D-66123
Saarbrücken, Germany
| | - Rolf W. Hartmann
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Department
of Drug Design and Optimization and ‡Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2_3, D-66123
Saarbrücken, Germany
| | - Joerg Haupenthal
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Department
of Drug Design and Optimization and ‡Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2_3, D-66123
Saarbrücken, Germany
| |
Collapse
|
91
|
Artsimovitch I, Seddon J, Sears P. Fidaxomicin is an inhibitor of the initiation of bacterial RNA synthesis. Clin Infect Dis 2012; 55 Suppl 2:S127-31. [PMID: 22752861 PMCID: PMC3388026 DOI: 10.1093/cid/cis358] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Fidaxomicin was recently approved for the treatment of Clostridium difficile infection. It inhibits transcription by bacterial RNA polymerase. Because transcription is a multistep process, experiments were conducted in which fidaxomicin was added at different stages of transcriptional initiation to identify the blocked step. DNA footprinting experiments were also conducted to further elucidate the stage inhibited. Fidaxomicin blocks initiation only if added before the formation of the “open promoter complex,” in which the template DNA strands have separated but RNA synthesis has not yet begun. Binding of fidaxomicin precludes the initial separation of DNA strands that is prerequisite to RNA synthesis. These studies show that it has a mechanism distinct from that of elongation inhibitors, such as streptolydigin, and from the transcription initiation inhibitors myxopyronin and the rifamycins.
Collapse
Affiliation(s)
- Irina Artsimovitch
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
92
|
Wiesler SC, Burrows PC, Buck M. A dual switch controls bacterial enhancer-dependent transcription. Nucleic Acids Res 2012; 40:10878-92. [PMID: 22965125 PMCID: PMC3505966 DOI: 10.1093/nar/gks844] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 08/13/2012] [Accepted: 08/13/2012] [Indexed: 12/31/2022] Open
Abstract
Bacterial RNA polymerases (RNAPs) are targets for antibiotics. Myxopyronin binds to the RNAP switch regions to block structural rearrangements needed for formation of open promoter complexes. Bacterial RNAPs containing the major variant σ(54) factor are activated by enhancer-binding proteins (bEBPs) and transcribe genes whose products are needed in pathogenicity and stress responses. We show that (i) enhancer-dependent RNAPs help Escherichia coli to survive in the presence of myxopyronin, (ii) enhancer-dependent RNAPs partially resist inhibition by myxopyronin and (iii) ATP hydrolysis catalysed by bEBPs is obligatory for functional interaction of the RNAP switch regions with the transcription start site. We demonstrate that enhancer-dependent promoters contain two barriers to full DNA opening, allowing tight regulation of transcription initiation. bEBPs engage in a dual switch to (i) allow propagation of nucleated DNA melting from an upstream DNA fork junction and (ii) complete the formation of the transcription bubble and downstream DNA fork junction at the RNA synthesis start site, resulting in switch region-dependent RNAP clamp closure and open promoter complex formation.
Collapse
Affiliation(s)
- Simone C. Wiesler
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK
| | | | - Martin Buck
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK
| |
Collapse
|
93
|
Chakraborty A, Wang D, Ebright YW, Korlann Y, Kortkhonjia E, Kim T, Chowdhury S, Wigneshweraraj S, Irschik H, Jansen R, Nixon BT, Knight J, Weiss S, Ebright RH. Opening and closing of the bacterial RNA polymerase clamp. Science 2012; 337:591-5. [PMID: 22859489 DOI: 10.1126/science.1218716] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Using single-molecule fluorescence resonance energy transfer, we have defined bacterial RNA polymerase (RNAP) clamp conformation at each step in transcription initiation and elongation. We find that the clamp predominantly is open in free RNAP and early intermediates in transcription initiation but closes upon formation of a catalytically competent transcription initiation complex and remains closed during initial transcription and transcription elongation. We show that four RNAP inhibitors interfere with clamp opening. We propose that clamp opening allows DNA to be loaded into and unwound in the RNAP active-center cleft, that DNA loading and unwinding trigger clamp closure, and that clamp closure accounts for the high stability of initiation complexes and the high stability and processivity of elongation complexes.
Collapse
Affiliation(s)
- Anirban Chakraborty
- Howard Hughes Medical Institute, Waksman Institute, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Maksimov MO, Pan SJ, James Link A. Lasso peptides: structure, function, biosynthesis, and engineering. Nat Prod Rep 2012; 29:996-1006. [PMID: 22833149 DOI: 10.1039/c2np20070h] [Citation(s) in RCA: 208] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lasso peptides are a class of ribosomally-synthesized and posttranslationally-modified natural products with diverse bioactivities. This review describes the structure and function of all known lasso peptides (as of mid-2012) and covers our current knowledge about the biosynthesis of those molecules. The isolation and characterization of lasso peptides are also covered as are bioinformatics strategies for the discovery of new lasso peptides from genomic sequence data. Several studies on the engineering of new or improved function into lasso peptides are highlighted, and unanswered questions in the field are also described.
Collapse
Affiliation(s)
- Mikhail O Maksimov
- Department of Chemical and Biological Engineering, Princeton University, NJ 08544, USA
| | | | | |
Collapse
|
95
|
Ducasse R, Yan KP, Goulard C, Blond A, Li Y, Lescop E, Guittet E, Rebuffat S, Zirah S. Sequence Determinants Governing the Topology and Biological Activity of a Lasso Peptide, Microcin J25. Chembiochem 2012; 13:371-80. [DOI: 10.1002/cbic.201100702] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Indexed: 11/08/2022]
|
96
|
Xie X, Marahiel MA. NMR as an Effective Tool for the Structure Determination of Lasso Peptides. Chembiochem 2012; 13:621-5. [DOI: 10.1002/cbic.201100754] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Indexed: 11/08/2022]
|
97
|
Inhibition of Mycobacterium tuberculosis RNA polymerase by binding of a Gre factor homolog to the secondary channel. J Bacteriol 2011; 194:1009-17. [PMID: 22194445 DOI: 10.1128/jb.06128-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Because of its essential nature, each step of transcription, viz., initiation, elongation, and termination, is subjected to elaborate regulation. A number of transcription factors modulate the rates of transcription at these different steps, and several inhibitors shut down the process. Many modulators, including small molecules and proteinaceous inhibitors, bind the RNA polymerase (RNAP) secondary channel to control transcription. We describe here the first small protein inhibitor of transcription in Mycobacterium tuberculosis. Rv3788 is a homolog of the Gre factors that binds near the secondary channel of RNAP to inhibit transcription. The factor also affected the action of guanosine pentaphosphate (pppGpp) on transcription and abrogated Gre action, indicating its function in the modulation of the catalytic center of RNAP. Although it has a Gre factor-like domain organization with the conserved acidic residues in the N terminus and retains interaction with RNAP, the factor did not show any transcript cleavage stimulatory activity. Unlike Rv3788, another Gre homolog from Mycobacterium smegmatis, MSMEG_6292 did not exhibit transcription-inhibitory activities, hinting at the importance of the former in influencing the lifestyle of M. tuberculosis.
Collapse
|
98
|
Kuznedelov K, Semenova E, Knappe TA, Mukhamedjarov D, Srivastava A, Chatterjee S, Ebright RH, Marahiel M, Severinov K. The antibacterial threaded-lasso peptide capistruin inhibits bacterial RNA polymerase. J Mol Biol 2011; 412:842-8. [PMID: 21396375 PMCID: PMC3143284 DOI: 10.1016/j.jmb.2011.02.060] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 02/26/2011] [Accepted: 02/28/2011] [Indexed: 11/24/2022]
Abstract
Capistruin, a ribosomally synthesized, post-translationally modified peptide produced by Burkholderia thailandensis E264, efficiently inhibits growth of Burkholderia and closely related Pseudomonas strains. The functional target of capistruin is not known. Capistruin is a threaded-lasso peptide (lariat peptide) consisting of an N-terminal ring of nine amino acids and a C-terminal tail of 10 amino acids threaded through the ring. The structure of capistruin is similar to that of microcin J25 (MccJ25), a threaded-lasso antibacterial peptide that is produced by some strains of Escherichia coli and targets DNA-dependent RNA polymerase (RNAP). Here, we show that capistruin, like MccJ25, inhibits wild type E. coli RNAP but not mutant, MccJ25-resistant, E. coli RNAP. We show further that an E. coli strain resistant to MccJ25, as a result of a mutation in an RNAP subunit gene, exhibits resistance to capistruin. The results indicate that the structural similarity of capistruin and MccJ25 reflects functional similarity and suggest that the functional target of capistruin, and possibly other threaded-lasso peptides, is bacterial RNAP.
Collapse
Affiliation(s)
- Konstantin Kuznedelov
- Department of Biochemistry and Molecular Biology and Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Ekaterina Semenova
- Department of Biochemistry and Molecular Biology and Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Thomas A. Knappe
- Philipps-Universität Marburg, Department of Chemistry, Marburg, Germany
| | - Damir Mukhamedjarov
- Department of Biochemistry and Molecular Biology and Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Aashish Srivastava
- Department of Chemistry, Waksman Institute of Microbiology, and Howard Hughes Medical Institute, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Sujoy Chatterjee
- Department of Chemistry, Waksman Institute of Microbiology, and Howard Hughes Medical Institute, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Richard H. Ebright
- Department of Chemistry, Waksman Institute of Microbiology, and Howard Hughes Medical Institute, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Mohamed Marahiel
- Philipps-Universität Marburg, Department of Chemistry, Marburg, Germany
| | - Konstantin Severinov
- Department of Biochemistry and Molecular Biology and Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
- Institutes of Gene Biology and Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
99
|
Muschielok A, Michaelis J. Application of the nano-positioning system to the analysis of fluorescence resonance energy transfer networks. J Phys Chem B 2011; 115:11927-37. [PMID: 21888382 DOI: 10.1021/jp2060377] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Single-molecule fluorescence resonance energy transfer (sm-FRET) has been recently applied to distance and position estimation in macromolecular complexes. Here, we generalize the previously published Nano-Positioning System (NPS), a probabilistic method to analyze data obtained in such experiments, which accounts for effects of restricted rotational freedom of fluorescent dyes, as well as for limited knowledge of the exact dye positions due to attachment via flexible linkers. In particular we show that global data analysis of complete FRET networks is beneficial and that the measurement of FRET anisotropies in addition to FRET efficiencies can be used to determine accurately both position and orientation of the dyes. This measurement scheme improves localization accuracy substantially, and we can show that the improvement is a consequence of the more precise information about the transition dipole moment orientation of the dyes obtained by FRET anisotropy measurements. We discuss also rigid body docking of different macromolecules by means of NPS, which can be used to study the structure of macromolecular complexes. Finally, we combine our approach with common FRET analysis methods to determine the number of states of a macromolecule.
Collapse
Affiliation(s)
- Adam Muschielok
- Chemistry Department, Ludwig-Maximilians-University Munich, Butenandtstrasse 11, 81377 Munich, Germany
| | | |
Collapse
|
100
|
Dupuy F, Morero R. Microcin J25 membrane interaction: Selectivity toward gel phase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1764-71. [DOI: 10.1016/j.bbamem.2011.02.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 02/14/2011] [Accepted: 02/22/2011] [Indexed: 10/18/2022]
|