51
|
Telomeric G-Quadruplexes: From Human to Tetrahymena Repeats. J Nucleic Acids 2017; 2017:9170371. [PMID: 29445544 PMCID: PMC5763100 DOI: 10.1155/2017/9170371] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 11/11/2017] [Accepted: 12/05/2017] [Indexed: 11/26/2022] Open
Abstract
The human telomeric and protozoal telomeric sequences differ only in one purine base in their repeats; TTAGGG in telomeric sequences; and TTGGGG in protozoal sequences. In this study, the relationship between G-quadruplexes formed from these repeats and their derivatives is analyzed and compared. The human telomeric DNA sequence G3(T2AG3)3 and related sequences in which each adenine base has been systematically replaced by a guanine were investigated; the result is Tetrahymena repeats. The substitution does not affect the formation of G-quadruplexes but may cause differences in topology. The results also show that the stability of the substituted derivatives increased in sequences with greater number of substitutions. In addition, most of the sequences containing imperfections in repeats which were analyzed in this study also occur in human and Tetrahymena genomes. Generally, the presence of G-quadruplex structures in any organism is a source of limitations during the life cycle. Therefore, a fuller understanding of the influence of base substitution on the structural variability of G-quadruplexes would be of considerable scientific value.
Collapse
|
52
|
Telomerase activity is required for the telomere G-overhang structure in Trypanosoma brucei. Sci Rep 2017; 7:15983. [PMID: 29167542 PMCID: PMC5700094 DOI: 10.1038/s41598-017-16182-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/08/2017] [Indexed: 01/24/2023] Open
Abstract
Trypanosoma brucei causes fatal human African trypanosomiasis and evades the host immune response by regularly switching its major surface antigen, VSG, which is expressed exclusively from subtelomeric loci. Telomere length and telomere proteins play important roles in regulating VSG silencing and switching. T. brucei telomerase plays a key role in maintaining telomere length, and T. brucei telomeres terminate in a single-stranded 3′ G-rich overhang. Understanding the detailed structure of the telomere G-overhang and its maintenance will contribute greatly to better understanding telomere maintenance mechanisms. Using an optimized adaptor ligation assay, we found that most T. brucei telomere G-overhangs end in 5′ TTAGGG 3′, while a small portion of G-overhangs end in 5′ TAGGGT 3′. Additionally, the protein and the RNA components of the telomerase (TbTERT and TbTR) and TbKu are required for telomere G-overhangs that end in 5′ TTAGGG 3′ but do not significantly affect the 5′ TAGGGT 3′-ending overhangs, indicating that telomerase-mediated telomere synthesis is important for the telomere G-overhang structure. Furthermore, using telomere oligo ligation-mediated PCR, we showed for the first time that the T. brucei telomere 5′ end sequence – an important feature of the telomere terminal structure – is not random but preferentially 5′ CCTAAC 3′.
Collapse
|
53
|
Lai TP, Zhang N, Noh J, Mender I, Tedone E, Huang E, Wright WE, Danuser G, Shay JW. A method for measuring the distribution of the shortest telomeres in cells and tissues. Nat Commun 2017; 8:1356. [PMID: 29116081 PMCID: PMC5676791 DOI: 10.1038/s41467-017-01291-z] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 09/07/2017] [Indexed: 01/23/2023] Open
Abstract
Improved methods to measure the shortest (not just average) telomere lengths (TLs) are needed. We developed Telomere Shortest Length Assay (TeSLA), a technique that detects telomeres from all chromosome ends from <1 kb to 18 kb using small amounts of input DNA. TeSLA improves the specificity and efficiency of TL measurements that is facilitated by user friendly image-processing software to automatically detect and annotate band sizes, calculate average TL, as well as the percent of the shortest telomeres. Compared with other TL measurement methods, TeSLA provides more information about the shortest telomeres. The length of telomeres was measured longitudinally in peripheral blood mononuclear cells during human aging, in tissues during colon cancer progression, in telomere-related diseases such as idiopathic pulmonary fibrosis, as well as in mice and other organisms. The results indicate that TeSLA is a robust method that provides a better understanding of the shortest length of telomeres. Short telomeres are a hallmark of senescence and can result in genomic instability as well as cancer progression. Here, the authors present TeSLA, a technique to accurately detect telomeres under 1 kb in length.
Collapse
Affiliation(s)
- Tsung-Po Lai
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Ning Zhang
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA.,Department of Bioinformatics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Jungsik Noh
- Department of Bioinformatics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Ilgen Mender
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Enzo Tedone
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Ejun Huang
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Woodring E Wright
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Gaudenz Danuser
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA.,Department of Bioinformatics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA.
| |
Collapse
|
54
|
Lim CJ, Zaug AJ, Kim HJ, Cech TR. Reconstitution of human shelterin complexes reveals unexpected stoichiometry and dual pathways to enhance telomerase processivity. Nat Commun 2017; 8:1075. [PMID: 29057866 PMCID: PMC5651854 DOI: 10.1038/s41467-017-01313-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/07/2017] [Indexed: 01/24/2023] Open
Abstract
The human shelterin proteins associate with telomeric DNA to confer telomere protection and length regulation. They are thought to form higher-order protein complexes for their functions, but studies of shelterin proteins have been mostly limited to pairs of proteins. Here we co-express various human shelterin proteins and find that they form defined multi-subunit complexes. A complex harboring both TRF2 and POT1 has the strongest binding affinity to telomeric DNA substrates comprised of double-stranded DNA with a 3′ single-stranded extension. TRF2 interacts with TIN2 with an unexpected 2:1 stoichiometry in the context of shelterin (RAP12:TRF22:TIN21:TPP11:POT11). Tethering of TPP1 to the telomere either via TRF2–TIN2 or via POT1 gives equivalent enhancement of telomerase processivity. We also identify a peptide region from TPP1 that is both critical and sufficient for TIN2 interaction. Our findings reveal new information about the architecture of human shelterin and how it performs its functions at telomeres. The human shelterin complex protects telomere ends from being recognized as damaged DNA sites and regulates telomere length in conjunction with telomerase. Here the authors establish the stoichiometries of human shelterin complexes of various compositions and show shelterin provides dual pathways to stimulate telomerase processivity.
Collapse
Affiliation(s)
- Ci Ji Lim
- Howard Hughes Medical Institute, University of Colorado BioFrontiers Institute, Boulder, CO, 80309, USA.,Department of Chemistry & Biochemistry, University of Colorado, Boulder, CO, 80309, USA
| | - Arthur J Zaug
- Howard Hughes Medical Institute, University of Colorado BioFrontiers Institute, Boulder, CO, 80309, USA.,Department of Chemistry & Biochemistry, University of Colorado, Boulder, CO, 80309, USA
| | - Hee Jin Kim
- Howard Hughes Medical Institute, University of Colorado BioFrontiers Institute, Boulder, CO, 80309, USA.,Department of Chemistry & Biochemistry, University of Colorado, Boulder, CO, 80309, USA
| | - Thomas R Cech
- Howard Hughes Medical Institute, University of Colorado BioFrontiers Institute, Boulder, CO, 80309, USA. .,Department of Chemistry & Biochemistry, University of Colorado, Boulder, CO, 80309, USA.
| |
Collapse
|
55
|
Rap1 and Cdc13 have complementary roles in preventing exonucleolytic degradation of telomere 5' ends. Sci Rep 2017; 7:8729. [PMID: 28821750 PMCID: PMC5562816 DOI: 10.1038/s41598-017-08663-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/11/2017] [Indexed: 11/23/2022] Open
Abstract
Telomere DNA ends with a single-stranded 3′ overhang. Long 3′ overhangs may cause aberrant DNA damage responses and accelerate telomere attrition, which is associated with cancer and aging, respectively. Genetic studies have indicated several important players in preventing 5′ end hyper-resection, yet detailed knowledge about the molecular mechanism in which they act is still lacking. Here, we use an in vitro DNA 5′ end protection assay, to study how N. castellii Cdc13 and Rap1 protect against 5′ exonucleolytic degradation by λ-exonuclease. The homogeneous telomeric repeat sequence of N. castellii allows us to study their protection ability at exact binding sites relative to the 5′ end. We find efficient protection by both Cdc13 and Rap1 when bound close to the 5′ end. Notably, Rap1 provides protection when binding dsDNA at a distance from the 5′ end. The DNA binding domain of Rap1 is sufficient for 5′ end protection, and its wrapping loop region is essential. Intriguingly, Rap1 facilitates protection also when its binding site contains 2 nt of ssDNA, thus spanning across the ds-ss junction. These results highlight a role of Rap1 in 5′ end protection and indicate that Cdc13 and Rap1 have complementary roles in maintaining proper 3′ overhang length.
Collapse
|
56
|
Cluckey TG, Nieto NC, Rodoni BM, Traustadóttir T. Preliminary evidence that age and sex affect exercise-induced hTERT expression. Exp Gerontol 2017; 96:7-11. [PMID: 28587932 DOI: 10.1016/j.exger.2017.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/04/2017] [Accepted: 06/02/2017] [Indexed: 12/22/2022]
Abstract
The ability to repair cellular damage is reduced with aging, resulting in cellular senescence. Telomeres shorten as cells divide but the rate of telomere attrition is modulated by telomerase, an enzyme that adds nucleotides to the chromosome. Shelterin is a protein complex that acts as a negative regulator of telomerase. The aim of the present study was to investigate age-related differences in telomerase and shelterin responses to acute exercise. We hypothesized that acute exercise would stimulate an increased activity of telomerase (measured by telomerase reverse transcriptase, hTERT) without an increase in activity of shelterin (measured by telomeric repeat binding factor 2, TRF2) in both young and older individuals and that hTERT response would be attenuated in older individuals. Young (22±2y, n=11) and older (60±2y, n=8) men and women performed 30min of cycling. Blood was collected pre-exercise and 30, 60, and 90-min post-exercise. The trial induced a significant hTERT response in the cohort as a whole (p<0.05) with greater increases in the young as compared to the older group (time-by-group interaction p<0.05). As expected, TRF2 did not change in response to the trial, however older individuals had a higher TRF2 response at 60min (p<0.05). There was an unexpected sex difference, regardless of age, where men had significantly greater hTERT and TRF2 responses to the acute exercise as compared to women (p<0.05). These data support the hypothesis that aging is associated with attenuated telomerase activation in response to high-intensity exercise; however, this was only evident in men.
Collapse
Affiliation(s)
- Travis G Cluckey
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, United States
| | - Nathan C Nieto
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, United States
| | - Bridger M Rodoni
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, United States
| | - Tinna Traustadóttir
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, United States.
| |
Collapse
|
57
|
Abstract
Genome duplication is carried out by pairs of replication forks that assemble at origins of replication and then move in opposite directions. DNA replication ends when converging replication forks meet. During this process, which is known as replication termination, DNA synthesis is completed, the replication machinery is disassembled and daughter molecules are resolved. In this Review, we outline the steps that are likely to be common to replication termination in most organisms, namely, fork convergence, synthesis completion, replisome disassembly and decatenation. We briefly review the mechanism of termination in the bacterium Escherichia coli and in simian virus 40 (SV40) and also focus on recent advances in eukaryotic replication termination. In particular, we discuss the recently discovered E3 ubiquitin ligases that control replisome disassembly in yeast and higher eukaryotes, and how their activity is regulated to avoid genome instability.
Collapse
|
58
|
Boccardi V, Paolisso G, Mecocci P. Nutrition and lifestyle in healthy aging: the telomerase challenge. Aging (Albany NY) 2016; 8:12-5. [PMID: 26826704 PMCID: PMC4761710 DOI: 10.18632/aging.100886] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nutrition and lifestyle, known to modulate aging process and age-related diseases, might also affect telomerase activity. Short and dysfunctional telomeres rather than average telomere length are associated with longevity in animal models, and their rescue by telomerase maybe sufficient to restore cell and organismal viability. Improving telomerase activation in stem cells and potentially in other cells by diet and lifestyle interventions may represent an intriguing way to promote health-span in humans.
Collapse
Affiliation(s)
- Virginia Boccardi
- Institute of Gerontology and Geriatrics, Department of Medicine, University of Perugia, Perugia, Italy
| | - Giuseppe Paolisso
- Department of Medical, Surgical, Neurological, Aging and Metabolic Sciences, Second University of Naples, Naples, Italy
| | - Patrizia Mecocci
- Institute of Gerontology and Geriatrics, Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
59
|
Lloyd NR, Dickey TH, Hom RA, Wuttke DS. Tying up the Ends: Plasticity in the Recognition of Single-Stranded DNA at Telomeres. Biochemistry 2016; 55:5326-40. [PMID: 27575340 PMCID: PMC5656232 DOI: 10.1021/acs.biochem.6b00496] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Telomeres terminate nearly exclusively in single-stranded DNA (ssDNA) overhangs comprised of the G-rich 3' end. This overhang varies widely in length from species to species, ranging from just a few bases to several hundred nucleotides. These overhangs are not merely a remnant of DNA replication but rather are the result of complex further processing. Proper management of the telomeric overhang is required both to deter the action of the DNA damage machinery and to present the ends properly to the replicative enzyme telomerase. This Current Topic addresses the biochemical and structural features used by the proteins that manage these variable telomeric overhangs. The Pot1 protein tightly binds the single-stranded overhang, preventing DNA damage sensors from binding. Pot1 also orchestrates the access of telomerase to that same substrate. The remarkable plasticity of the binding interface exhibited by the Schizosaccharomyces pombe Pot1 provides mechanistic insight into how these roles may be accomplished, and disease-associated mutations clustered around the DNA-binding interface in the hPOT1 highlight the importance of this function. The budding yeast Cdc13-Stn1-Ten1, a telomeric RPA complex closely associated with telomere function, also interacts with ssDNA in a fashion that allows degenerate sequences to be recognized. A related human complex composed of hCTC1, hSTN1, and hTEN1 has recently emerged with links to both telomere maintenance and general DNA replication and also exhibits mutations associated with telomere pathologies. Overall, these sequence-specific ssDNA binders exhibit a range of recognition properties that allow them to perform their unique biological functions.
Collapse
Affiliation(s)
- Neil R. Lloyd
- Department of Chemistry and Biochemistry, 596 UCB, University of Colorado Boulder, Boulder, CO 80309-0596, USADepartment of Chemistry and Biochemistry, 596 UCB, University of Colorado Boulder, Boulder, CO 80309, USA
| | | | - Robert A. Hom
- Department of Chemistry and Biochemistry, 596 UCB, University of Colorado Boulder, Boulder, CO 80309-0596, USADepartment of Chemistry and Biochemistry, 596 UCB, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Deborah S. Wuttke
- Department of Chemistry and Biochemistry, 596 UCB, University of Colorado Boulder, Boulder, CO 80309-0596, USADepartment of Chemistry and Biochemistry, 596 UCB, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
60
|
Abstract
Aging is a complex process not only influenced by inherited but also by several environmental factors. It is characterized by a progressive loss of function in multiple tissues, which leads to an increased probability of death. On the other hand, several morphological and histological changes are registered in aged skin that is mostly dependent on the cumulative exposure in environmental aging promoters, such as ultraviolet radiation. Understanding of individual pathogenesis and introduction of preventive measurements require objective assessment, i.e., the administration of biomarkers. Because of the complexity of skin aging, the exact definition of biomarkers is a major research challenge. In this article, we summarize the basic knowledge involving skin aging and its biomarkers.
Collapse
Affiliation(s)
- Theodora Kanaki
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Auenweg 38, 06847, Dessau, Germany
| | - Evgenia Makrantonaki
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Auenweg 38, 06847, Dessau, Germany
- Department of Dermatology and Allergology, University Ulm, Ulm, Germany
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Auenweg 38, 06847, Dessau, Germany.
| |
Collapse
|
61
|
Abstract
Telomerase is the eukaryotic solution to the ‘end-replication problem’ of linear chromosomes by synthesising the highly repetitive DNA constituent of telomeres, the nucleoprotein cap that protects chromosome termini. Functioning as a ribonucleoprotein (RNP) enzyme, telomerase is minimally composed of the highly conserved catalytic telomerase reverse transcriptase (TERT) and essential telomerase RNA (TR) component. Beyond merely providing the template for telomeric DNA synthesis, TR is an innate telomerase component and directly facilitates enzymatic function. TR accomplishes this by having evolved structural elements for stable assembly with the TERT protein and the regulation of the telomerase catalytic cycle. Despite its prominence and prevalence, TR has profoundly diverged in length, sequence, and biogenesis pathway among distinct evolutionary lineages. This diversity has generated numerous structural and mechanistic solutions for ensuring proper RNP formation and high fidelity telomeric DNA synthesis. Telomerase provides unique insights into RNA and protein coevolution within RNP enzymes.
Collapse
Affiliation(s)
- Joshua D Podlevsky
- a School of Molecular Sciences, Arizona State University , Tempe , AZ , USA
| | - Julian J-L Chen
- a School of Molecular Sciences, Arizona State University , Tempe , AZ , USA
| |
Collapse
|
62
|
Takai H, Jenkinson E, Kabir S, Babul-Hirji R, Najm-Tehrani N, Chitayat DA, Crow YJ, de Lange T. A POT1 mutation implicates defective telomere end fill-in and telomere truncations in Coats plus. Genes Dev 2016; 30:812-26. [PMID: 27013236 PMCID: PMC4826397 DOI: 10.1101/gad.276873.115] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/02/2016] [Indexed: 11/24/2022]
Abstract
Coats plus (CP) can be caused by mutations in the CTC1 component of CST, which promotes polymerase α (polα)/primase-dependent fill-in throughout the genome and at telomeres. The cellular pathology relating to CP has not been established. We identified a homozygous POT1 S322L substitution (POT1(CP)) in two siblings with CP. POT1(CP)induced a proliferative arrest that could be bypassed by telomerase. POT1(CP)was expressed at normal levels, bound TPP1 and telomeres, and blocked ATR signaling. POT1(CP)was defective in regulating telomerase, leading to telomere elongation rather than the telomere shortening observed in other telomeropathies. POT1(CP)was also defective in the maintenance of the telomeric C strand, causing extended 3' overhangs and stochastic telomere truncations that could be healed by telomerase. Consistent with shortening of the telomeric C strand, metaphase chromosomes showed loss of telomeres synthesized by leading strand DNA synthesis. We propose that CP is caused by a defect in POT1/CST-dependent telomere fill-in. We further propose that deficiency in the fill-in step generates truncated telomeres that halt proliferation in cells lacking telomerase, whereas, in tissues expressing telomerase (e.g., bone marrow), the truncations are healed. The proposed etiology can explain why CP presents with features distinct from those associated with telomerase defects (e.g., dyskeratosis congenita).
Collapse
Affiliation(s)
- Hiroyuki Takai
- The Rockefeller University, New York, New York 10065, USA
| | - Emma Jenkinson
- Manchester Centre for Genomic Medicine, Institute of Human Development, Faculty of Medical and Human Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Shaheen Kabir
- The Rockefeller University, New York, New York 10065, USA
| | - Riyana Babul-Hirji
- Department of Pediatrics, Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario M5G 1Z5, Canada
| | - Nasrin Najm-Tehrani
- Department of Pediatrics, Division of Opthalmology and Visions Sciences, The Hospital for Sick Children, University of Toronto, Toronto, Ontario M5G 1Z5, Canada
| | - David A Chitayat
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario M5G 1X5, Canada; Department of Paediatrics, Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario M5G 1Z5, Canada
| | - Yanick J Crow
- Manchester Centre for Genomic Medicine, Institute of Human Development, Faculty of Medical and Human Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9PT, United Kingdom; UMR 1163, Institut National de la Santé et de la Recherche Médicale, Laboratory of Neurogenetics and Neuroinflammation, Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Hôpital Necker, Paris 75015, France
| | - Titia de Lange
- The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
63
|
Martínez P, Blasco MA. Replicating through telomeres: a means to an end. Trends Biochem Sci 2015; 40:504-15. [PMID: 26188776 DOI: 10.1016/j.tibs.2015.06.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/08/2015] [Accepted: 06/12/2015] [Indexed: 02/07/2023]
Abstract
Proper replication of the telomeric DNA at chromosome ends is critical for preserving genome integrity. Yet, telomeres present challenges for the replication machinery, such as their repetitive and heterochromatic nature and their potential to form non-Watson-Crick structures as well as the fact that they are transcribed. Numerous telomere-bound proteins are required to facilitate progression of the replication fork throughout telomeric DNA. In particular, shelterin plays crucial functions in telomere length regulation, protection of telomeres from nuclease degradation, control of DNA damage response at telomeres, and the recruitment of associated factors required for telomere DNA processing and replication. In this review we discuss the recently uncovered functions of mammalian telomere-specific and telomere-associated proteins that facilitate proper telomere replication.
Collapse
Affiliation(s)
- Paula Martínez
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid E-28029, Spain
| | - Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid E-28029, Spain.
| |
Collapse
|
64
|
Boccardi V, Pelini L, Ercolani S, Ruggiero C, Mecocci P. From cellular senescence to Alzheimer's disease: The role of telomere shortening. Ageing Res Rev 2015; 22:1-8. [PMID: 25896211 DOI: 10.1016/j.arr.2015.04.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 04/13/2015] [Accepted: 04/15/2015] [Indexed: 11/17/2022]
Abstract
The old age population is increasing worldwide as well as age related diseases, including neurodegenerative disorders, such as Alzheimer's disease (AD), which negatively impacts on the health care systems. Aging represents per se a risk factor for AD. Thus, the study and identification of pathways within the biology of aging represent an important end point for the development of novel and effective disease-modifying drugs to treat, delay, or prevent AD. Cellular senescence and telomere shortening represent suitable and promising targets. Several studies show that cellular senescence is tightly interconnected to aging and AD, while the role of telomere dynamic and stability in AD pathogenesis is still unclear. This review will focus on the linking mechanisms between cellular senescence, telomere shortening, and AD.
Collapse
Affiliation(s)
- Virginia Boccardi
- Institute of Gerontology and Geriatrics, Department of Medicine, University of Perugia, Perugia, Italy.
| | - Luca Pelini
- Institute of Gerontology and Geriatrics, Department of Medicine, University of Perugia, Perugia, Italy
| | - Sara Ercolani
- Institute of Gerontology and Geriatrics, Department of Medicine, University of Perugia, Perugia, Italy
| | - Carmelinda Ruggiero
- Institute of Gerontology and Geriatrics, Department of Medicine, University of Perugia, Perugia, Italy
| | - Patrizia Mecocci
- Institute of Gerontology and Geriatrics, Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
65
|
Bugaut A, Alberti P. Understanding the stability of DNA G-quadruplex units in long human telomeric strands. Biochimie 2015; 113:125-33. [PMID: 25888167 DOI: 10.1016/j.biochi.2015.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/03/2015] [Indexed: 10/23/2022]
Abstract
Human telomeric DNA is composed of GGGTTA repeats. The presence of consecutive guanines makes the telomeric G-strand prone to fold into contiguous (or tandem) G-quadruplexes (G4s). The aim of this study was to provide a clarified picture of the stability of telomeric tandem G4 structures as a function of the number of G4 units and of boundary sequences, and an understanding of the diversity of their melting behaviors in terms of the single G4 units composing them. To this purpose we undertook an UV-spectroscopic investigation of the structure and stability of telomeric repeats potentially able to fold into up to four contiguous G4s, flanked or not by TTA sequences at their 5' and 3' extremities. We explain why the stability of (GGGTTA)4m-1GGG structures (m = 2, 3, 4 …) decreases with increasing the number m of G4 units, whereas the stability of TTA-(GGGTTA)4m-1GGG-TTA structures does not. Our results support that the inner G4 units have similar stabilities, whereas the stabilities of the terminal G4 units are modulated by their flanking nucleotides: in a TTA-(GGGTTA)4m-1GGG-TTA tandem context, the terminal G4 units are roughly as stable as the inner G4 units; while in a (GGGTTA)4m-1GGG tandem context, the G4 at the 5' extremity is more stable than the G4 at the 3' extremity, which in turn is more stable than an inner G4. Our study provides new information about the global and local stability of telomeric tandem G4 structures under near physiological conditions.
Collapse
Affiliation(s)
- Anthony Bugaut
- Muséum National d'Histoire Naturelle, Sorbonne Universités, 57 rue Cuvier, CP 26, 75005 Paris, France; CNRS UMR 7196, 57 rue Cuvier, CP 26, 75005 Paris, France; Inserm U 1154, 57 rue Cuvier, CP 26, 75005 Paris, France
| | - Patrizia Alberti
- Muséum National d'Histoire Naturelle, Sorbonne Universités, 57 rue Cuvier, CP 26, 75005 Paris, France; CNRS UMR 7196, 57 rue Cuvier, CP 26, 75005 Paris, France; Inserm U 1154, 57 rue Cuvier, CP 26, 75005 Paris, France.
| |
Collapse
|
66
|
Trochet D, Mergui X, Ivkovic I, Porreca RM, Gerbault-Seureau M, Sidibe A, Richard F, Londono-Vallejo A, Perret M, Aujard F, Riou JF. Telomere regulation during ageing and tumorigenesis of the grey mouse lemur. Biochimie 2015; 113:100-10. [PMID: 25882681 DOI: 10.1016/j.biochi.2015.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/03/2015] [Indexed: 01/01/2023]
Abstract
Telomere erosion leading to replicative senescence has been well documented in human and anthropoid primates, and provides a clue against tumorigenesis. In contrast, other mammals, such as laboratory mice, with short lifespan and low body weight mass have different telomere biology without replicative senescence. We analyzed telomere biology in the grey mouse lemur, a small prosimian model with a relative long lifespan currently used in ageing research. We report an average telomere length by telomere restriction fragment (TRF) among the longest reported so far for a primate species (25-30 kb), but without detectable overall telomere shortening with ageing on blood samples. However, we demonstrate using universal STELA (Single Telomere Length Amplification) the existence of short telomeres, the increase of which, while correlating with ageing might be related to another mechanism than replicative senescence. We also found a low stringency of telomerase restriction in tissues and an ease to immortalize fibroblasts in vitro upon spontaneous telomerase activation. Finally, we describe the first grey mouse lemur cancer cell line showing a dramatic telomere shortening and high telomerase activity associated with polyploidy. Our overall results suggest that telomere biology in grey mouse lemur is an exception among primates, with at best a physiologically limited replicative telomere ageing and closest to that observed in small rodents.
Collapse
Affiliation(s)
- Delphine Trochet
- Structure et Instabilité des Génomes, Sorbonne Universités, Muséum National d'Histoire Naturelle, Inserm U 1154, CNRS UMR 7196, CP26, 57 rue Cuvier, 75005 Paris, France
| | - Xénia Mergui
- Structure et Instabilité des Génomes, Sorbonne Universités, Muséum National d'Histoire Naturelle, Inserm U 1154, CNRS UMR 7196, CP26, 57 rue Cuvier, 75005 Paris, France
| | - Ivana Ivkovic
- Structure et Instabilité des Génomes, Sorbonne Universités, Muséum National d'Histoire Naturelle, Inserm U 1154, CNRS UMR 7196, CP26, 57 rue Cuvier, 75005 Paris, France
| | - Rosa Maria Porreca
- Telomeres and Cancer Laboratory, CNRS UMR 3244, Institut Curie, 26 rue d'Ulm, 75248 Paris, France; UPMC Univ. Paris 06, 75005 Paris, France
| | - Michèle Gerbault-Seureau
- Institut de Systématique, Evolution, Biodiversité, Sorbonne Universités, Muséum National d'Histoire Naturelle, UMR 7205 CNRS, UPMC Univ. Paris 06, EPHE, 57 rue Cuvier, 75005 Paris, France
| | - Assitan Sidibe
- Structure et Instabilité des Génomes, Sorbonne Universités, Muséum National d'Histoire Naturelle, Inserm U 1154, CNRS UMR 7196, CP26, 57 rue Cuvier, 75005 Paris, France
| | - Florence Richard
- Institut de Systématique, Evolution, Biodiversité, Sorbonne Universités, Muséum National d'Histoire Naturelle, UMR 7205 CNRS, UPMC Univ. Paris 06, EPHE, 57 rue Cuvier, 75005 Paris, France
| | - Arturo Londono-Vallejo
- Telomeres and Cancer Laboratory, CNRS UMR 3244, Institut Curie, 26 rue d'Ulm, 75248 Paris, France; UPMC Univ. Paris 06, 75005 Paris, France
| | - Martine Perret
- Mécanismes Adaptatifs et Evolution, Muséum National d'Histoire Naturelle, Sorbonne Universités, UMR 7179 CNRS, 1 Avenue du Petit Château, 91800 Brunoy, France
| | - Fabienne Aujard
- Mécanismes Adaptatifs et Evolution, Muséum National d'Histoire Naturelle, Sorbonne Universités, UMR 7179 CNRS, 1 Avenue du Petit Château, 91800 Brunoy, France
| | - Jean-François Riou
- Structure et Instabilité des Génomes, Sorbonne Universités, Muséum National d'Histoire Naturelle, Inserm U 1154, CNRS UMR 7196, CP26, 57 rue Cuvier, 75005 Paris, France.
| |
Collapse
|
67
|
Diotti R, Kalan S, Matveyenko A, Loayza D. DNA-Directed Polymerase Subunits Play a Vital Role in Human Telomeric Overhang Processing. Mol Cancer Res 2014; 13:402-10. [PMID: 25519149 DOI: 10.1158/1541-7786.mcr-14-0381] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
UNLABELLED Telomeres consist of TTAGGG repeats bound by the shelterin complex and end with a 3' overhang. In humans, telomeres shorten at each cell division, unless telomerase (TERT) is expressed and able to add telomeric repeats. For effective telomere maintenance, the DNA strand complementary to that made by telomerase must be synthesized. Recent studies have discovered a link between different activities necessary to process telomeres in the S phase of the cell cycle to reform a proper overhang. Notably, the human CST complex (CTC1/STN1/TEN1), known to interact functionally with the polymerase complex (POLA/primase), was shown to be important for telomere processing. Here, focus was paid to the catalytic (POLA1/p180) and accessory (POLA2/p68) subunits of the polymerase, and their mechanistic roles at telomeres. We were able to detect p68 and p180 at telomeres in S-phase using chromatin immunoprecipitation. We could also show that the CST, shelterin, and polymerase complexes interact, revealing contacts occurring at telomeres. We found that the polymerase complex could associate with telomerase activity. Finally, depletion of p180 by siRNA led to increased overhang amounts at telomeres. These data support a model in which the polymerase complex is important for proper telomeric overhang processing through fill-in synthesis, during S phase. These results shed light on important events necessary for efficient telomere maintenance and protection. IMPLICATIONS This study describes the interplay between DNA replication components with proteins that associate with chromosome ends, and telomerase. These interactions are proposed to be important for the processing and protection of chromosome ends.
Collapse
Affiliation(s)
- Raffaella Diotti
- Department of Biological Sciences, Hunter College and CUNY Graduate Center, New York, New York
| | - Sampada Kalan
- Department of Biological Sciences, Hunter College and CUNY Graduate Center, New York, New York
| | - Anastasiya Matveyenko
- Department of Biological Sciences, Hunter College and CUNY Graduate Center, New York, New York
| | - Diego Loayza
- Department of Biological Sciences, Hunter College and CUNY Graduate Center, New York, New York.
| |
Collapse
|
68
|
Gilchrist GC, Kurjanowicz P, Mereilles FV, King WA, LaMarre J. Telomere Length and Telomerase Activity in Bovine Pre-implantation EmbryosIn Vitro. Reprod Domest Anim 2014; 50:58-67. [DOI: 10.1111/rda.12449] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 10/05/2014] [Indexed: 11/27/2022]
Affiliation(s)
- GC Gilchrist
- Department of Biomedical Sciences; University of Guelph; Guelph ON Canada
| | - P Kurjanowicz
- Department of Physiology (Reproductive & Development Platform); University of Toronto; Toronto ON Canada
| | - FV Mereilles
- Department of Veterinary Medicine; Faculty of Animal Science and Food Engineering; University of São Paulo; Pirassununga SP Brazil
| | - WA King
- Department of Biomedical Sciences; University of Guelph; Guelph ON Canada
| | - J LaMarre
- Department of Biomedical Sciences; University of Guelph; Guelph ON Canada
| |
Collapse
|
69
|
Buket ONEL, Clement LIN, DanZhou YANG. DNA G-quadruplex and its potential as anticancer drug target. Sci China Chem 2014; 57:1605-1614. [PMID: 27182219 PMCID: PMC4863707 DOI: 10.1007/s11426-014-5235-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
G-quadruplex secondary structures are four-stranded globular nucleic acid structures form in the specific DNA and RNA G-rich sequences with biological significance such as human telomeres, oncogene-promoter regions, replication initiation sites, and 5' and 3'-untranslated (UTR) regions. The non-canonical G-quadruplex secondary structures can readily form under physiologically relevant ionic conditions and are considered to be new molecular target for cancer therapeutics. This review discusses the essential progress in our lab related to the structures and functions of biologically relevant DNA G-quadruplexes in human gene promoters and telomeres, and the opportunities presented for the development of G-quadruplex-targeted small- molecule drugs.
Collapse
Affiliation(s)
- ONEL Buket
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - LIN Clement
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - YANG DanZhou
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721, USA
- BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
- The Arizona Cancer Center, Tucson, AZ 85724, USA
| |
Collapse
|
70
|
Doksani Y, de Lange T. The role of double-strand break repair pathways at functional and dysfunctional telomeres. Cold Spring Harb Perspect Biol 2014; 6:a016576. [PMID: 25228584 DOI: 10.1101/cshperspect.a016576] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Telomeres have evolved to protect the ends of linear chromosomes from the myriad of threats posed by the cellular DNA damage signaling and repair pathways. Mammalian telomeres have to block nonhomologous end joining (NHEJ), thus preventing chromosome fusions; they need to control homologous recombination (HR), which could change telomere lengths; they have to avoid activating the ATM (ataxia telangiectasia mutated) and ATR (ATM- and RAD3-related) kinase pathways, which could induce cell cycle arrest; and they have to protect chromosome ends from hyperresection. Recent studies of telomeres have provided insights into the mechanisms of NHEJ and HR, how these double-strand break (DSB) repair pathways can be thwarted, and how telomeres have co-opted DNA repair factors to help in the protection of chromosome ends. These aspects of telomere biology are reviewed here with particular emphasis on recombination, the main focus of this collection.
Collapse
Affiliation(s)
- Ylli Doksani
- Laboratory for Cell Biology and Genetics, Rockefeller University, New York, New York 10065
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, Rockefeller University, New York, New York 10065
| |
Collapse
|
71
|
Parrotta L, Ortuso F, Moraca F, Rocca R, Costa G, Alcaro S, Artese A. Targeting unimolecular G-quadruplex nucleic acids: a new paradigm for the drug discovery? Expert Opin Drug Discov 2014; 9:1167-87. [PMID: 25109710 DOI: 10.1517/17460441.2014.941353] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION G-quadruplexes (G4s) are targets of great interest because of their roles in crucial biological processes, such as aging and cancer. G4s are based on the formation of G-quartets, stabilised by Hoogsteen-type hydrogen bonds and by interaction with cations between the tetrads. These biologically relevant conformations were first discovered in eukaryotic chromosomal telomeric DNA, but have also been found in the proximal location of promoters in a number of human genes. Therefore, the extensive analysis of an intriguing target could move towards the rational drug design of new selective anticancer agents. AREAS COVERED The authors review G4 structural characterisation, with detailed insight related to the polymorphism issue. The authors describe the topologically distinct G4 structural forms and the factors involved in their interconversion mechanisms, such as the sequence of the oligonucleotides, the strand stoichiometry and orientation, the syn-anti conformation of the guanine glycosidic bonds and the G4 loop types and the environmental factors. Furthermore, the authors report several studies related to folding and unfolding kinetic profiles in order to understand the conformational view of monomolecular G4 formations. EXPERT OPINION G4 unimolecular nucleic acids can be considered as valid targets for the rational drug development of novel anticancer agents. Structural biology represents an essential link between the biology and medicinal chemistry knowledge in this field. In silico methods have already been demonstrated to be useful, especially if well integrated with biophysical tests. If this proves successful, the G4-targeting paradigm could also be extended to drug discovery beyond neoplastic pathologies.
Collapse
Affiliation(s)
- Lucia Parrotta
- Università degli Studi "Magna Græcia", Dipartimento di Scienze della Salute , Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro , Italy
| | | | | | | | | | | | | |
Collapse
|
72
|
Dickey TH, Wuttke DS. The telomeric protein Pot1 from Schizosaccharomyces pombe binds ssDNA in two modes with differing 3' end availability. Nucleic Acids Res 2014; 42:9656-65. [PMID: 25074378 PMCID: PMC4150783 DOI: 10.1093/nar/gku680] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Telomere protection and length regulation are important processes for aging, cancer and several other diseases. At the heart of these processes lies the single-stranded DNA (ssDNA)-binding protein Pot1, a component of the telomere maintenance complex shelterin, which is present in species ranging from fission yeast to humans. Pot1 contains a dual OB-fold DNA-binding domain (DBD) that fully confers its high affinity for telomeric ssDNA. Studies of S. pombe Pot1-DBD and its individual OB-fold domains revealed a complex non-additive behavior of the two OB-folds in the context of the complete Pot1 protein. This behavior includes the use of multiple distinct binding modes and an ability to form higher order complexes. Here we use NMR and biochemical techniques to investigate the structural features of the complete Pot1-DBD. These experiments reveal one binding mode characterized by only subtle alternations to the individual OB-fold subdomain structures, resulting in an inaccessible 3′ end of the ssDNA. The second binding mode, which has equivalent affinity, interacts differently with the 3′ end, rendering it available for interaction with other proteins. These findings suggest a structural switch that contributes to telomere end-protection and length regulation.
Collapse
Affiliation(s)
- Thayne H Dickey
- Department of Chemistry and Biochemistry, 596 UCB, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Deborah S Wuttke
- Department of Chemistry and Biochemistry, 596 UCB, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
73
|
Abstract
Telomerase is a specialized reverse transcriptase (RT) containing an intrinsic telomerase RNA (TR) component. It synthesizes telomeric DNA repeats, (GGTTAG)n in humans, by reiteratively copying a precisely defined, short template sequence from the integral TR. The specific mechanism of how the telomerase active site uses this short template region accurately and efficiently during processive DNA repeat synthesis has remained elusive. Here we report that the human TR template, in addition to specifying the DNA sequence, is embedded with a single-nucleotide signal to pause DNA synthesis. After the addition of a dT residue to the DNA primer, which is specified by the 49 rA residue in the template, telomerase extends the DNA primer with three additional nucleotides and then pauses DNA synthesis. This sequence-defined pause site coincides precisely with the helix paired region 1 (P1)-defined physical template boundary and precludes the incorporation of nontelomeric nucleotides from residues outside the template region. Furthermore, this sequence-defined pausing mechanism is a key determinant, in addition to the P1-defined template boundary, for generating the characteristic 6-nt ladder banding pattern of telomeric DNA products in vitro. In the absence of the pausing signal, telomerase stalls nucleotide addition at multiple sites along the template, generating DNA products with heterogeneous terminal repeat registers. Our findings demonstrate that this unique self-regulating mechanism of the human TR template is essential for high-fidelity synthesis of DNA repeats.
Collapse
|
74
|
Wang N, Rizvydeen S, Vahedi M, Vargas Gonzalez DM, Allred AL, Perry DW, Mirabito PM, Kirk KE. Novel telomere-anchored PCR approach for studying sexual stage telomeres in Aspergillus nidulans. PLoS One 2014; 9:e99491. [PMID: 24927411 PMCID: PMC4057176 DOI: 10.1371/journal.pone.0099491] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 05/15/2014] [Indexed: 12/11/2022] Open
Abstract
Telomere length varies between germline and somatic cells of the same organism, leading to the hypothesis that telomeres are lengthened during meiosis. However, little is known about the meiotic telomere length in many organisms. In the filamentous fungus Aspergillus nidulans, the telomere lengths in hyphae and asexual spores are invariant. No study using existing techniques has determined the telomere length of the sexual ascospores due to the relatively low abundance of pure meiotic cells in A. nidulans and the small quantity of DNA present. To address this, we developed a simple and sensitive PCR strategy to measure the telomere length of A. nidulans meiotic cells. This novel technique, termed “telomere-anchored PCR,” measures the length of the telomere on chromosome II-L using a small fraction of the DNA required for the traditional terminal restriction fragment (TRF) Southern analysis. Using this approach, we determined that the A. nidulans ascospore telomere length is virtually identical to telomeres of other cell types from this organism, approximately 110 bp, indicating that a surprisingly strict telomere length regulation exists in the major cell types of A. nidulans. When the hyphal telomeres were measured in a telomerase reverse transcriptase (TERT) knockout strain, small decreases in length were readily detected. Thus, this technique can detect telomeres in relatively rare cell types and is particularly sensitive in measuring exceptionally short telomeres. This rapid and inexpensive telomere-anchored PCR method potentially can be utilized in other filamentous fungi and types of organisms.
Collapse
Affiliation(s)
- Nengding Wang
- Biology Department, Lake Forest College, Lake Forest, Illinois, United States of America
| | - Saajidha Rizvydeen
- Biology Department, Lake Forest College, Lake Forest, Illinois, United States of America
| | - Mithaq Vahedi
- Biology Department, Lake Forest College, Lake Forest, Illinois, United States of America
| | | | - Amanda L. Allred
- Biology Department, Lake Forest College, Lake Forest, Illinois, United States of America
| | - Dustin W. Perry
- Biology Department, University of Kentucky, Lexington, Kentucky, United States of America
| | - Peter M. Mirabito
- Biology Department, University of Kentucky, Lexington, Kentucky, United States of America
| | - Karen E. Kirk
- Biology Department, Lake Forest College, Lake Forest, Illinois, United States of America
- * E-mail:
| |
Collapse
|
75
|
Boccardi V, Paolisso G. The association between statins and telomere shortening. ACTA ACUST UNITED AC 2014. [DOI: 10.2217/clp.14.21] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
76
|
Boccardi V, Paolisso G. Telomerase activation: a potential key modulator for human healthspan and longevity. Ageing Res Rev 2014; 15:1-5. [PMID: 24561251 DOI: 10.1016/j.arr.2013.12.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 12/18/2013] [Accepted: 12/23/2013] [Indexed: 12/12/2022]
Abstract
The elderly population is increasing progressively. Along with this increase the number of age related diseases, such as cardiovascular, neurodegenerative diseases, metabolic impairment and cancer, is also on the rise thereby negatively impacting the burden on health care systems. Telomere shortening and dysfunction results in cellular senescence, an irreversible proliferative arrest that has been suggested to promote organismal aging and disabling age-related diseases. Given that telomerase, the enzyme responsible for maintaining telomere lengths, is not expressed at levels sufficient to prevent telomere shortening in most of our cells, telomeres progressively erode with advancing age. Telomerase activation, therefore, might serve as a viable therapeutic strategy to delay the onset of cellular senescence, tissue dysfunction and organismal decline. Here we analyze the more recent findings in telomerase activation as a potential key modulator for human healthspan and longevity.
Collapse
|
77
|
Do telomeres adapt to physiological stress? Exploring the effect of exercise on telomere length and telomere-related proteins. BIOMED RESEARCH INTERNATIONAL 2013; 2013:601368. [PMID: 24455708 PMCID: PMC3884693 DOI: 10.1155/2013/601368] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 11/26/2013] [Indexed: 01/29/2023]
Abstract
Aging is associated with a tissue degeneration phenotype marked by a loss of tissue regenerative capacity. Regenerative capacity is dictated by environmental and genetic factors that govern the balance between damage and repair. The age-associated changes in the ability of tissues to replace lost or damaged cells is partly the cause of many age-related diseases such as Alzheimer's disease, cardiovascular disease, type II diabetes, and sarcopenia. A well-established marker of the aging process is the length of the protective cap at the ends of chromosomes, called telomeres. Telomeres shorten with each cell division and with increasing chronological age and short telomeres have been associated with a range of age-related diseases. Several studies have shown that chronic exposure to exercise (i.e., exercise training) is associated with telomere length maintenance; however, recent evidence points out several controversial issues concerning tissue-specific telomere length responses. The goals of the review are to familiarize the reader with the current telomere dogma, review the literature exploring the interactions of exercise with telomere phenotypes, discuss the mechanistic research relating telomere dynamics to exercise stimuli, and finally propose future directions for work related to telomeres and physiological stress.
Collapse
|
78
|
Choi SY, Cho B. Identification of a Conserved Sequence Motif of an RNA Aptamer Binding to a G-rich Sequence RNA with Structural Probes. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.11.3471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
79
|
Smekalova EM, Malyavko AN, Zvereva MI, Mardanov AV, Ravin NV, Skryabin KG, Westhof E, Dontsova OA. Specific features of telomerase RNA from Hansenula polymorpha. RNA (NEW YORK, N.Y.) 2013; 19:1563-1574. [PMID: 24046481 PMCID: PMC3851723 DOI: 10.1261/rna.038612.113] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 07/16/2013] [Indexed: 06/02/2023]
Abstract
Telomerase, a ribonucleoprotein, is responsible for the maintenance of eukaryotic genome integrity by replicating the ends of chromosomes. The core enzyme comprises the conserved protein TERT and an RNA subunit (TER) that, in contrast, displays large variations in size and structure. Here, we report the identification of the telomerase RNA from thermotolerant yeast Hansenula polymorpha (HpTER) and describe its structural features. We show further that the H. polymorpha telomerase reverse transcribes the template beyond the predicted boundary and adds a nontelomeric dT in vitro. Sequencing of the chromosomal ends revealed that this nucleotide is specifically present as a terminal nucleotide at the 3' end of telomeres. Mutational analysis of HpTER confirmed that the incorporation of dT functions to limit telomere length in this species.
Collapse
Affiliation(s)
- Elena M. Smekalova
- Faculty of Chemistry, Lomonosov Moscow State University, 119999 Moscow, Russia
- Belozersky Institute, Moscow State University, 119991 Moscow, Russia
| | - Alexander N. Malyavko
- Faculty of Chemistry, Lomonosov Moscow State University, 119999 Moscow, Russia
- Belozersky Institute, Moscow State University, 119991 Moscow, Russia
| | - Maria I. Zvereva
- Faculty of Chemistry, Lomonosov Moscow State University, 119999 Moscow, Russia
- Belozersky Institute, Moscow State University, 119991 Moscow, Russia
| | | | | | | | - Eric Westhof
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, F-67084 Strasbourg, France
| | - Olga A. Dontsova
- Faculty of Chemistry, Lomonosov Moscow State University, 119999 Moscow, Russia
- Belozersky Institute, Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
80
|
Bonetti D, Martina M, Falcettoni M, Longhese MP. Telomere-end processing: mechanisms and regulation. Chromosoma 2013; 123:57-66. [PMID: 24122006 DOI: 10.1007/s00412-013-0440-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/04/2013] [Accepted: 10/04/2013] [Indexed: 10/26/2022]
Abstract
Telomeres are specialized nucleoprotein complexes that provide protection to the ends of eukaryotic chromosomes. Telomeric DNA consists of tandemly repeated G-rich sequences that terminate with a 3' single-stranded overhang, which is important for telomere extension by the telomerase enzyme. This structure, as well as most of the proteins that specifically bind double and single-stranded telomeric DNA, are conserved from yeast to humans, suggesting that the mechanisms underlying telomere identity are based on common principles. The telomeric 3' overhang is generated by different events depending on whether the newly synthesized strand is the product of leading- or lagging-strand synthesis. Here, we review the mechanisms that regulate these processes at Saccharomyces cerevisiae and mammalian telomeres.
Collapse
Affiliation(s)
- Diego Bonetti
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | | | | | | |
Collapse
|
81
|
|
82
|
Gardano L, Pucci F, Christian L, Le Bihan T, Harrington L. Telomeres, a busy platform for cell signaling. Front Oncol 2013; 3:146. [PMID: 23772418 PMCID: PMC3677152 DOI: 10.3389/fonc.2013.00146] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 05/21/2013] [Indexed: 12/18/2022] Open
Abstract
Telomeres are the terminal structures at the ends of linear chromosomes that represent a solution to the end replication problem. Specific binding of the six-protein subunit complex shelterin to telomeric, repetitive TTAGGG DNA sequences contributes to the stable architecture and maintenance of telomeres. Proteins involved in the DNA damage response are also localized at telomeres, and play a role in the surveillance and maintenance of telomere integrity. The enzyme responsible for telomere extension is telomerase, a ribonucleoprotein with reverse transcriptase activity. In the absence of telomerase, telomeres shorten to a length threshold that triggers the DNA damage response and replicative senescence. Here, we will summarize the latest findings concerning vertebrate telomere structure and epigenetics, and we present data regarding the impact of short telomeres upon cell signaling. In particular, in murine embryonic stem cells lacking telomerase, we found that distribution of cytosolic/nuclear β-catenin, a key component of the Wnt signaling pathway, changes when telomeres become critically short. We discuss implications and future perspectives of the effect of epigenetic modifications and/or conformational changes of telomeres on cell metabolism and signaling networks. Such an analysis may unveil potential therapeutic targets for pathologies like cancer, where the integrity of telomeres is altered.
Collapse
Affiliation(s)
- Laura Gardano
- Wellcome Trust Centre for Cell Biology, University of Edinburgh , Edinburgh , UK
| | | | | | | | | |
Collapse
|
83
|
Webb CJ, Wu Y, Zakian VA. DNA repair at telomeres: keeping the ends intact. Cold Spring Harb Perspect Biol 2013; 5:5/6/a012666. [PMID: 23732473 DOI: 10.1101/cshperspect.a012666] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The molecular era of telomere biology began with the discovery that telomeres usually consist of G-rich simple repeats and end with 3' single-stranded tails. Enormous progress has been made in identifying the mechanisms that maintain and replenish telomeric DNA and the proteins that protect them from degradation, fusions, and checkpoint activation. Although telomeres in different organisms (or even in the same organism under different conditions) are maintained by different mechanisms, the disparate processes have the common goals of repairing defects caused by semiconservative replication through G-rich DNA, countering the shortening caused by incomplete replication, and postreplication regeneration of G tails. In addition, standard DNA repair mechanisms must be suppressed or modified at telomeres to prevent their being recognized and processed as DNA double-strand breaks. Here, we discuss the players and processes that maintain and regenerate telomere structure.
Collapse
Affiliation(s)
- Christopher J Webb
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | |
Collapse
|
84
|
Pfeiffer V, Lingner J. Replication of telomeres and the regulation of telomerase. Cold Spring Harb Perspect Biol 2013; 5:a010405. [PMID: 23543032 DOI: 10.1101/cshperspect.a010405] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Telomeres are the physical ends of eukaryotic chromosomes. They protect chromosome ends from DNA degradation, recombination, and DNA end fusions, and they are important for nuclear architecture. Telomeres provide a mechanism for their replication by semiconservative DNA replication and length maintenance by telomerase. Through telomerase repression and induced telomere shortening, telomeres provide the means to regulate cellular life span. In this review, we introduce the current knowledge on telomere composition and structure. We then discuss in depth the current understanding of how telomere components mediate their function during semiconservative DNA replication and how telomerase is regulated at the end of the chromosome. We focus our discussion on the telomeres from mammals and the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe.
Collapse
Affiliation(s)
- Verena Pfeiffer
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Frontiers in Genetics National Center of Competence in Research, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | | |
Collapse
|
85
|
Holder IT, Drescher M, Hartig JS. Structural characterization of quadruplex DNA with in-cell EPR approaches. Bioorg Med Chem 2013; 21:6156-61. [PMID: 23693068 DOI: 10.1016/j.bmc.2013.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/26/2013] [Accepted: 04/05/2013] [Indexed: 12/20/2022]
Abstract
Guanosine-rich DNA sequences have the potential to adopt four-stranded conformations termed quadruplexes. The chromosomes of higher organisms are capped by so-called telomeres that are composed of repeats of the sequence TTAGGG. Up to 200 nucleotides of the G-rich strand form an overhang that is suspected to fold into intramolecular G-quadruplexes. Since induction of quadruplexes at the telomeres results in anti-proliferative effects, the intracellular structure of G-quadruplexes is of high interest as an anti-cancer drug target. Here we give a perspective on the elucidation of DNA sequence folds by electron paramagnetic resonance (EPR) distance measurements. The technique complements X-ray crystallography and NMR spectroscopy, as it can be applied in noncrystalline states, is not intrinsically limited by the size of the bio-macromolecular complex, and is able to analyze flexible structures or coexisting DNA conformation.
Collapse
Affiliation(s)
- Isabelle T Holder
- Department of Chemistry and Konstanz Research School of Chemical Biology, University of Konstanz, 78467 Konstanz, Germany
| | | | | |
Collapse
|
86
|
Crosetto N, Mitra A, Silva MJ, Bienko M, Dojer N, Wang Q, Karaca E, Chiarle R, Skrzypczak M, Ginalski K, Pasero P, Rowicka M, Dikic I. Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing. Nat Methods 2013; 10:361-5. [PMID: 23503052 PMCID: PMC3651036 DOI: 10.1038/nmeth.2408] [Citation(s) in RCA: 348] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 02/12/2013] [Indexed: 12/16/2022]
Abstract
We present a genome-wide approach to map DNA double-strand breaks (DSBs) at nucleotide resolution by a method we termed BLESS (direct in situ breaks labeling, enrichment on streptavidin and next-generation sequencing). We validated and tested BLESS using human and mouse cells and different DSBs-inducing agents and sequencing platforms. BLESS was able to detect telomere ends, Sce endonuclease-induced DSBs and complex genome-wide DSB landscapes. As a proof of principle, we characterized the genomic landscape of sensitivity to replication stress in human cells, and we identified >2,000 nonuniformly distributed aphidicolin-sensitive regions (ASRs) overrepresented in genes and enriched in satellite repeats. ASRs were also enriched in regions rearranged in human cancers, with many cancer-associated genes exhibiting high sensitivity to replication stress. Our method is suitable for genome-wide mapping of DSBs in various cells and experimental conditions, with a specificity and resolution unachievable by current techniques.
Collapse
Affiliation(s)
- Nicola Crosetto
- Institute of Biochemistry II, Goethe University Medical School, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Medical School, Frankfurt am Main, Germany
| | - Abhishek Mitra
- Institute for Translational Sciences, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Maria Joao Silva
- IGH Institute of Human Genetics, CNRS UPR 1142, Montpellier, France
| | - Magda Bienko
- Institute of Biochemistry II, Goethe University Medical School, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Medical School, Frankfurt am Main, Germany
| | - Norbert Dojer
- Institute for Translational Sciences, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
- Institute of Informatics, University of Warsaw, Warsaw, Poland
| | - Qi Wang
- Department of Pathology, Children’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Elif Karaca
- Department of Pathology, Children’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Roberto Chiarle
- Department of Pathology, Children’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Magdalena Skrzypczak
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Krzysztof Ginalski
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Philippe Pasero
- IGH Institute of Human Genetics, CNRS UPR 1142, Montpellier, France
| | - Maga Rowicka
- Institute for Translational Sciences, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
- Sealy Center for Molecular Medicine, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Ivan Dikic
- Institute of Biochemistry II, Goethe University Medical School, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Medical School, Frankfurt am Main, Germany
| |
Collapse
|
87
|
Samassekou O, Hébert J, Mai S, Yan J. Nuclear remodeling of telomeres in chronic myeloid leukemia. Genes Chromosomes Cancer 2013; 52:495-502. [DOI: 10.1002/gcc.22046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 12/23/2012] [Accepted: 01/02/2013] [Indexed: 01/06/2023] Open
|
88
|
Telomere- and telomerase-interacting protein that unfolds telomere G-quadruplex and promotes telomere extension in mammalian cells. Proc Natl Acad Sci U S A 2012. [PMID: 23184978 DOI: 10.1073/pnas.1200232109] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Telomere extension by telomerase is essential for chromosome stability and cell vitality. Here, we report the identification of a splice variant of mammalian heterogeneous nuclear ribonucleoprotein A2 (hnRNP A2), hnRNP A2*, which binds telomeric DNA and telomerase in vitro. hnRNP A2* colocalizes with telomerase in Cajal bodies and at telomeres. In vitro assays show that hnRNP A2* actively unfolds telomeric G-quadruplex DNA, exposes 5 nt of the 3' telomere tail and substantially enhances the catalytic activity and processivity of telomerase. The expression level of hnRNP A2* in tissues positively correlates with telomerase activity, and overexpression of hnRNP A2* leads to telomere elongation in vivo. Thus, hnRNP A2* plays a positive role in unfolding telomere G-quadruplexes and in enhancing telomere extension by telomerase.
Collapse
|
89
|
Nelson ADL, Shippen DE. Blunt-ended telomeres: an alternative ending to the replication and end protection stories. Genes Dev 2012; 26:1648-52. [PMID: 22855827 DOI: 10.1101/gad.199059.112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Telomeres ensure the complete replication of genetic material while simultaneously distinguishing the chromosome terminus from a double-strand break. A prevailing theme in telomere biology is that the two chromosome ends are symmetrical. Both terminate in a single-strand 3' extension, and the 3' extension is crucial for telomere end protection. In this issue of Genes & Development, Kazda and colleagues (pp. 1703-1713) challenge this paradigm using a series of elegant biochemical and genetic assays to demonstrate that half of the chromosomes in flowering plants are blunt-ended. This discovery reveals unanticipated complexity in telomeric DNA processing and a novel mode of chromosome end protection.
Collapse
Affiliation(s)
- Andrew D L Nelson
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, 77843, USA
| | | |
Collapse
|
90
|
Chen Y, Yang D. Sequence, stability, and structure of G-quadruplexes and their interactions with drugs. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2012; Chapter 17:Unit17.5. [PMID: 22956454 PMCID: PMC3463244 DOI: 10.1002/0471142700.nc1705s50] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although DNA is most widely known for its ability to store and pass along genetic information, the discovery of G-quadruplex structures has illuminated a new role for DNA in biology. DNA G-quadruplexes are four-stranded globular nucleic acid secondary structures formed in specific G-rich sequences with biological significance, such as human telomeres and oncogene promoters. This review focuses on the unimolecular DNA G-quadruplexes, which can readily form in solution under physiological conditions and are considered to be the most biologically relevant. Available structural data show a great conformational diversity of unimolecular G-quadruplexes, which are amenable to small-molecule drug targeting. The relationships between sequence, structure, and stability of unimolecular DNA G-quadruplexes, as well as the recent progress on interactions with small-molecule compounds and insights into rational design of G-quadruplex-interactive molecules, will be discussed.
Collapse
Affiliation(s)
- Yuwei Chen
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ
| | - Danzhou Yang
- College of Pharmacy, The University of Arizona, 1703 E. Mabel St, Tucson, AZ 85721
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ
- BIO5 Institute, The University of Arizona, Tucson, AZ
- Arizona Cancer Center, 1515 N. Campbell Avenue, Tucson, AZ
| |
Collapse
|
91
|
Cho BR. Identification of Structural Motif of RNAs Interacting with the G-rich Sequence RNA. B KOREAN CHEM SOC 2012. [DOI: 10.5012/bkcs.2012.33.8.2796] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
92
|
Abstract
Most human cells lack telomerase, the enzyme that elongates telomeres. The resulting telomere erosion eventually limits cell proliferation and tissue renewal, thereby impacting age-dependent pathologies. In this issue of Genes & Development, a technical tour-de-force by Chow and colleagues (pp. 1167-1178) reveals a highly choreographed sequence of events that processes newly replicated chromosome ends into mature telomeres. This sheds new light on an underappreciated contribution to telomere dynamics that may be as important as telomerase in dictating the correlation between life span and telomere length.
Collapse
Affiliation(s)
- Victoria Lundblad
- Salk Institute for Biological Studies, La Jolla, California 92037, USA.
| |
Collapse
|
93
|
Hirai Y, Masutomi K, Ishikawa F. Kinetics of DNA replication and telomerase reaction at a single-seeded telomere in human cells. Genes Cells 2012; 17:186-204. [PMID: 22353550 DOI: 10.1111/j.1365-2443.2012.01581.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In most cancer cells, telomerase is activated to elongate telomere DNA, thereby ensuring numerous rounds of cell divisions. It is thus important to understand how telomerase and the replication fork react with telomeres in human cells. However, the highly polymorphic and repetitive nature of the nucleotide sequences in human subtelomeric regions hampers the precise analysis of sequential events taking place at telomeres in S phase. Here, we have established HeLa cells harboring a single-seeded telomere abutted by a unique subtelomere DNA sequence, which has enabled us to specifically focus on the seeded telomere. We have also developed a modified chromatin immunoprecipitation (ChIP) method that uses restriction digestion instead of sonication to fragment chromatin DNA (RES-ChIP), and a method for immunoprecipitating 5-bromo-2'-deoxyuridine (BrdU)-labeled single-stranded DNA by incubating DNA with anti-BrdU antibody in the nondenaturing condition. We have shown that DNA replication of the seeded telomere takes place during a relatively narrow time window in S phase, and telomerase synthesizes telomere DNA after the replication. Moreover, we have demonstrated that the telomerase catalytic subunit TERT associates with telomeres before telomere DNA replication. These results provide a temporal and spatial framework for understanding DNA replication and telomerase reaction at human telomeres.
Collapse
Affiliation(s)
- Yugo Hirai
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto 606-8501, Japan
| | | | | |
Collapse
|
94
|
Sidibe A, Hamon F, Largy E, Gomez D, Teulade-Fichou MP, Trentesaux C, Riou JF. Effects of a halogenated G-quadruplex ligand from the pyridine dicarboxamide series on the terminal sequence of XpYp telomere in HT1080 cells. Biochimie 2012; 94:2559-68. [PMID: 22796264 DOI: 10.1016/j.biochi.2012.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 07/05/2012] [Indexed: 10/28/2022]
Abstract
Non-canonical four-stranded structures called G-quadruplexes can form among telomere repeats during its replication. Small molecule ligands able to interact and to stabilize G-quadruplexes were shown to disrupt the binding of essential telomeric components, such as POT1 and to trigger a telomeric dysfunction associated with a delayed growth arrest in tumor cells. We describe here the chemical synthesis and the G-quadruplex binding properties of three halogenated analogs of the 360A ligand that belongs to the 2,6 pyridine dicarboxamide series. 360A is now commonly used as a benchmark both for biophysical and cellular assays as this compound was shown to display a potent affinity and selectivity for telomeric G-quadruplex DNA over duplex DNA and to induce delayed growth inhibition in HT1080 tumor cell line. Two biophysical assays indicate that, in most cases, the presence of the halogen atom seems to slightly improve the interaction with the telomeric quadruplex. For stability reasons, the bromo derivative (360A-Br) was selected for the cellular assays. Since POT1 participates to the fine tuning of the C-strand end resection during telomere replication, we investigated the effect of 360A-Br to alter the terminal nucleotide composition of XpYp telomere in HT1080 cells using C-STELA. HT1080 cells treated for up to 24 days with 360A-Br presented some minor but significant variations of C-strand terminal nucleotide composition, also observed with a partial siRNA depletion of POT1. The relevance of these minor modifications of the telomeric C-strand resection induced by 360A-Br in HT1080 cells are discussed.
Collapse
|
95
|
Wu P, Takai H, de Lange T. Telomeric 3' overhangs derive from resection by Exo1 and Apollo and fill-in by POT1b-associated CST. Cell 2012; 150:39-52. [PMID: 22748632 DOI: 10.1016/j.cell.2012.05.026] [Citation(s) in RCA: 237] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 03/12/2012] [Accepted: 05/01/2012] [Indexed: 11/18/2022]
Abstract
A 3' overhang is critical for the protection and maintenance of mammalian telomeres, but its synthesis must be regulated to avoid excessive resection of the 5' end, which could cause telomere shortening. How this balance is achieved in mammals has not been resolved. Here, we determine the mechanism for 3' overhang synthesis in mouse cells by evaluating changes in telomeric overhangs throughout the cell cycle and at leading- and lagging-end telomeres. Apollo, a nuclease bound to the shelterin subunit TRF2, initiates formation of the 3' overhang at leading-, but not lagging-end telomeres. Hyperresection by Apollo is blocked at both ends by the shelterin protein POT1b. Exo1 extensively resects both telomere ends, generating transient long 3' overhangs in S/G2. CST/AAF, a DNA polα.primase accessory factor, binds POT1b and shortens the extended overhangs produced by Exo1, likely through fill-in synthesis. 3' overhang formation is thus a multistep, shelterin-controlled process, ensuring functional telomeric overhangs at chromosome ends.
Collapse
Affiliation(s)
- Peng Wu
- Laboratory for Cell Biology and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | | |
Collapse
|
96
|
Chow TT, Zhao Y, Mak SS, Shay JW, Wright WE. Early and late steps in telomere overhang processing in normal human cells: the position of the final RNA primer drives telomere shortening. Genes Dev 2012; 26:1167-78. [PMID: 22661228 PMCID: PMC3371406 DOI: 10.1101/gad.187211.112] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 04/19/2012] [Indexed: 11/24/2022]
Abstract
Telomere overhangs are essential for telomere end protection and telomerase extension, but how telomere overhangs are generated is unknown. Leading daughter strands synthesized by conventional semiconservation DNA replication are initially blunt, while lagging daughter strands are shorter by at least the size of the final RNA primer, which is thought to be located at extreme chromosome ends. We developed a variety of new approaches to define the steps in the processing of these overhangs. We show that the final lagging RNA primer is not terminal but is randomly positioned ~70-100 nucleotides from the ends and is not removed for more than an hour. This identifies an important intrinsic step in replicative aging. Telomeric termini are processed in two distinct phases. During the early phase, which occupies 1-2 h following replication of the duplex telomeric DNA, several steps occur on both leading and lagging daughters. Leading telomere processing remains incomplete until late S/G2, when the C-terminal nucleotide is specified-referred to as the late phase. These observations suggest the presence of previously unsuspected complexes and signaling events required for the replication of the ends of human chromosomes.
Collapse
Affiliation(s)
- Tracy T. Chow
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Yong Zhao
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Sabrina S. Mak
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Jerry W. Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Woodring E. Wright
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
97
|
Goldin S, Kertesz Rosenfeld K, Manor H. Tracing the path of DNA substrates in active Tetrahymena telomerase holoenzyme complexes: mapping of DNA contact sites in the RNA subunit. Nucleic Acids Res 2012; 40:7430-41. [PMID: 22584626 PMCID: PMC3424564 DOI: 10.1093/nar/gks416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Telomerase, the enzyme that extends single-stranded telomeric DNA, consists of an RNA subunit (TER) including a short template sequence, a catalytic protein (TERT) and accessory proteins. We used site-specific UV cross-linking to map the binding sites for DNA primers in TER within active Tetrahymena telomerase holoenzyme complexes. The mapping was performed at single-nucleotide resolution by a novel technique based on RNase H digestion of RNA–DNA hybrids made with overlapping complementary oligodeoxynucleotides. These data allowed tracing of the DNA path through the telomerase complexes from the template to the TERT binding element (TBE) region of TER. TBE is known to bind TERT and to be involved in the template 5′-boundary definition. Based on these findings, we propose that upstream sequences of each growing telomeric DNA chain are involved in regulation of its growth arrest at the 5′-end of the RNA template. The upstream DNA–TBE interaction may also function as an anchor for the subsequent realignment of the 3′-end of the DNA with the 3′-end of the template to enable initiation of synthesis of a new telomeric repeat.
Collapse
Affiliation(s)
- Svetlana Goldin
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32 000, Israel
| | | | | |
Collapse
|
98
|
Stewart JA, Chaiken MF, Wang F, Price CM. Maintaining the end: roles of telomere proteins in end-protection, telomere replication and length regulation. Mutat Res 2012; 730:12-9. [PMID: 21945241 PMCID: PMC3256267 DOI: 10.1016/j.mrfmmm.2011.08.011] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/15/2011] [Accepted: 08/17/2011] [Indexed: 11/16/2022]
Abstract
Chromosome end protection is essential to protect genome integrity. Telomeres, tracts of repetitive DNA sequence and associated proteins located at the chromosomal terminus, serve to safeguard the ends from degradation and unwanted double strand break repair. Due to the essential nature of telomeres in protecting the genome, a number of unique proteins have evolved to ensure that telomere length and structure are preserved. The inability to properly maintain telomeres can lead to diseases such as dyskeratosis congenita, pulmonary fibrosis and cancer. In this review, we will discuss the known functions of mammalian telomere-associated proteins, their role in telomere replication and length regulation and how these processes relate to genome instability and human disease.
Collapse
Affiliation(s)
- Jason A. Stewart
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - Mary F. Chaiken
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - Feng Wang
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - Carolyn M. Price
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, Ohio 45267, USA
| |
Collapse
|
99
|
Gustafsson C, Rhodin Edsö J, Cohn M. Rap1 binds single-stranded DNA at telomeric double- and single-stranded junctions and competes with Cdc13 protein. J Biol Chem 2011; 286:45174-85. [PMID: 22075002 DOI: 10.1074/jbc.m111.300517] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ends of eukaryotic chromosomes are protected by specialized telomere chromatin structures. Rap1 and Cdc13 are essential for the formation of functional telomere chromatin in budding yeast by binding to the double-stranded part and the single-stranded 3' overhang, respectively. We analyzed the binding properties of Saccharomyces castellii Rap1 and Cdc13 to partially single-stranded oligonucleotides, mimicking the junction of the double- and single-stranded DNA (ds-ss junction) at telomeres. We determined the optimal and the minimal DNA setup for a simultaneous binding of Rap1 and Cdc13 at the ds-ss junction. Remarkably, Rap1 is able to bind to a partially single-stranded binding site spanning the ds-ss junction. The binding over the ds-ss junction is anchored in a single double-stranded hemi-site and is stabilized by a sequence-independent interaction of Rap1 with the single-stranded 3' overhang. Thus, Rap1 is able to switch between a sequence-specific and a nonspecific binding mode of one hemi-site. At a ds-ss junction configuration where the two binding sites partially overlap, Rap1 and Cdc13 are competing for the binding. These results shed light on the end protection mechanisms and suggest that Rap1 and Cdc13 act together to ensure the protection of both the 3' and the 5' DNA ends at telomeres.
Collapse
Affiliation(s)
- Cecilia Gustafsson
- Department of Biology, Genetics Group, Lund University, SE-223 62 Lund, Sweden
| | | | | |
Collapse
|
100
|
Pickett HA, Henson JD, Au AYM, Neumann AA, Reddel RR. Normal mammalian cells negatively regulate telomere length by telomere trimming. Hum Mol Genet 2011; 20:4684-92. [PMID: 21903669 DOI: 10.1093/hmg/ddr402] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In human cancer cells with telomeres that have been over-lengthened by exogenous telomerase activity, telomere shortening can occur by a process that generates circles of double-stranded telomeric DNA (t-circles). Here, we demonstrate that this telomeretrimming process occurs in cells of the male germline and in normal lymphocytes following mitogen-stimulated upregulation of telomerase activity. Mouse tissues also contain abundant t-circles, suggesting that telomere trimming also contributes to telomere length regulation in mice. In cancer cells and stimulated lymphocytes, the mechanism involves the XRCC3 homologous recombination (HR) protein and generates single-stranded C-rich telomeric DNA. This suggests that, in addition to the well-documented gradual telomere attrition that accompanies cellular replication, there is also a more rapid form of negative telomere length control in normal mammalian cells, which most likely involves HR-mediated removal of telomere loops in the form of t-circles. We therefore propose that this telomere trimming mechanism is an additional factor in the balance between telomere lengthening and telomere shortening in normal human germline and somatic cells that may prevent excessive lengthening by processes such as telomerase activity.
Collapse
Affiliation(s)
- Hilda A Pickett
- Children’s Medical Research Institute, Westmead, NSW 2145, Australia
| | | | | | | | | |
Collapse
|