51
|
Bifano AL, Turk EM, Caprara MG. Structure-guided mutational analysis of a yeast DEAD-box protein involved in mitochondrial RNA splicing. J Mol Biol 2010; 398:429-43. [PMID: 20307546 PMCID: PMC2878758 DOI: 10.1016/j.jmb.2010.03.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 03/12/2010] [Accepted: 03/13/2010] [Indexed: 01/27/2023]
Abstract
DEAD-box proteins are RNA-dependent ATPase enzymes that have been implicated in nearly all aspects of RNA metabolism. Since many of these enzymes have been shown to possess common biochemical properties in vitro, including the ability to bind and hydrolyze ATP, to bind nucleic acid, and to promote helix unwinding, DEAD-box proteins are generally thought to modulate RNA structure in vivo. However, the extent to which these enzymatic properties are important for the in vivo functions of DEAD-box proteins remains unclear. To evaluate how these properties influence DEAD-box protein native function, we probed the importance of several highly conserved residues in the yeast DEAD-box protein Mss116p, which is required for the splicing of all mitochondrial catalytic introns in Saccharomyces cerevisiae. Using an MSS116 deletion strain, we have expressed plasmid-borne variants of MSS116 containing substitutions in residues predicted to be important for extensive networks of interactions required for ATP hydrolysis and helix unwinding. We have analyzed the importance of these residues to the splicing functions of Mss116p in vivo and compared these results with the biochemical properties of recombinant proteins determined here and in previously published work. We observed that the efficiency by which an Mss116p variant catalyzes ATP hydrolysis correlates with facilitating mitochondrial splicing, while efficient helix unwinding appears to be insufficient for splicing. In addition, we show that each splicing-defective variant affects the splicing of structurally diverse introns to the same degree. Together, these observations suggest that the efficiency by which Mss116p catalyzes the hydrolysis of ATP is critical for all of its splicing functions in vivo. Given that ATP hydrolysis stimulates the recycling of DEAD-box proteins, these observations support a model in which enzyme turnover is a crucial factor in Mss116p splicing function. These results are discussed in the context of current models of Mss116p-facilitated splicing.
Collapse
Affiliation(s)
- Abby L Bifano
- Center for RNA Molecular Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4960, USA.
| | | | | |
Collapse
|
52
|
Yassin ER, Abdul-Nabi AM, Takeda A, Yaseen NR. Effects of the NUP98-DDX10 oncogene on primary human CD34+ cells: role of a conserved helicase motif. Leukemia 2010; 24:1001-11. [PMID: 20339440 PMCID: PMC2868946 DOI: 10.1038/leu.2010.42] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 12/03/2009] [Accepted: 01/22/2010] [Indexed: 01/12/2023]
Abstract
NUP98 gene rearrangements occur in acute myeloid leukemia and result in the expression of fusion proteins. One of the most frequent is NUP98-DDX10 that fuses a portion of NUP98 to a portion of DDX10, a putative DEAD-box RNA helicase. Here, we show that NUP98-DDX10 dramatically increases proliferation and self-renewal of primary human CD34+ cells, and disrupts their erythroid and myeloid differentiation. It localizes to their nuclei and extensively deregulates gene expression. Comparison to another leukemogenic NUP98 fusion, NUP98-HOXA9, reveals a number of genes deregulated by both oncoproteins, including HOX genes, COX-2, MYCN, ANGPT1, REN, HEY1, SOX4 and others. These genes may account for the similar leukemogenic properties of NUP98 fusion oncogenes. The YIHRAGRTAR sequence in the DDX10 portion of NUP98-DDX10 represents a major motif shared by DEAD-box RNA helicases that is required for ATP binding, RNA-binding and helicase functions. Mutating this motif diminished the in vitro transforming ability of NUP98-DDX10, indicating that it has a role in leukemogenesis. These data show for the first time the in vitro transforming ability of NUP98-DDX10 and show that it is partially dependent on one of the consensus helicase motifs of DDX10. They also point to common pathways that may underlie leukemogenesis by different NUP98 fusions.
Collapse
MESH Headings
- Amino Acid Motifs
- Antigens, CD34/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Cell Differentiation
- Cell Proliferation
- Cell Transformation, Neoplastic
- Cells, Cultured
- DEAD-box RNA Helicases/genetics
- DEAD-box RNA Helicases/metabolism
- Flow Cytometry
- Fluorescent Antibody Technique
- Gene Expression Profiling
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Humans
- Luciferases/metabolism
- Nuclear Pore Complex Proteins/genetics
- Nuclear Pore Complex Proteins/metabolism
- Oligonucleotide Array Sequence Analysis
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- E R Yassin
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | |
Collapse
|
53
|
Cartier G, Lorieux F, Allemand F, Dreyfus M, Bizebard T. Cold adaptation in DEAD-box proteins. Biochemistry 2010; 49:2636-46. [PMID: 20166751 DOI: 10.1021/bi902082d] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spontaneous rearrangements of RNA structures are usually characterized by large activation energies and thus become very slow at low temperatures, yet RNA structure must remain dynamic even in cold-adapted (psychrophilic) organisms. DEAD-box proteins constitute a ubiquitous family of RNA-dependent ATPases that can often unwind short RNA duplexes in vitro (helicase activity), hence the belief that one of their major (though not exclusive) roles in vivo is to assist in RNA rearrangements. Here, we compare two Escherichia coli DEAD-box proteins and their orthologs from the psychrophilic bacteria Pseudoalteromonas haloplanktis and Colwellia psychrerythraea from the point of view of enzymatic properties. One of these proteins (SrmB) is involved in ribosome assembly, whereas the other (RhlE) presumably participates in both mRNA degradation and ribosome assembly; in vitro, RhlE is far more active as a helicase than SrmB. The activation energy associated with the ATPase activity of the psychrophilic SrmB is lower than for its mesophilic counterpart, making it more active at low temperatures. In contrast, in the case of psychrophilic RhlE, it is the RNA unwinding activity, not the ATPase activity, that has a reduced activation energy and is therefore cold-adapted. We argue that these different modes of cold adaptation reflect the likely function of these proteins in vivo: RNA helicase for RhlE and ATP-dependent RNA binding for SrmB. The cold adaptation of helicases like RhlE presumably facilitates RNA metabolism in psychrophilic bacteria.
Collapse
Affiliation(s)
- Gwendoline Cartier
- CNRS UPR9073, University Paris VII, Institut de Biologie Physico-chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | | | | | | | |
Collapse
|
54
|
Lebaron S, Papin C, Capeyrou R, Chen YL, Froment C, Monsarrat B, Caizergues-Ferrer M, Grigoriev M, Henry Y. The ATPase and helicase activities of Prp43p are stimulated by the G-patch protein Pfa1p during yeast ribosome biogenesis. EMBO J 2010; 28:3808-19. [PMID: 19927118 DOI: 10.1038/emboj.2009.335] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 10/15/2009] [Indexed: 12/14/2022] Open
Abstract
Prp43p is a RNA helicase required for pre-mRNA splicing and for the synthesis of large and small ribosomal subunits. The molecular functions and modes of regulation of Prp43p during ribosome biogenesis remain unknown. We demonstrate that the G-patch protein Pfa1p, a component of pre-40S pre-ribosomal particles, directly interacts with Prp43p. We also show that lack of Gno1p, another G-patch protein associated with Prp43p, specifically reduces Pfa1p accumulation, whereas it increases the levels of the pre-40S pre-ribosomal particle component Ltv1p. Moreover, cells lacking Pfa1p and depleted for Ltv1p show strong 20S pre-rRNA accumulation in the cytoplasm and reduced levels of 18S rRNA. Finally, we demonstrate that Pfa1p stimulates the ATPase and helicase activities of Prp43p. Truncated Pfa1p variants unable to fully stimulate the activity of Prp43p fail to complement the 20S pre-rRNA processing defect of Deltapfa1 cells depleted for Ltv1p. Our results strongly suggest that stimulation of ATPase/helicase activities of Prp43p by Pfa1p is required for efficient 20S pre-rRNA-to-18S rRNA conversion.
Collapse
Affiliation(s)
- Simon Lebaron
- Centre National de la Recherche Scientifique, Laboratoire de Biologie Moléculaire Eucaryote, Toulouse, France
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Abstract
DEAD-box proteins, which comprise the largest helicase family, are involved in virtually all aspects of RNA metabolism. DEAD-box proteins catalyze diverse ATP-driven functions including the unwinding of RNA secondary structures. In contrast to many well-studied DNA and viral RNA helicases, DEAD-box proteins do not rely on translocation on one of the nucleic acid strands for duplex unwinding, but directly load onto helical regions and then locally pry the strands apart in an ATP-dependent fashion. In this chapter, we outline substrate design and unwinding protocols for DEAD-box proteins and focus on the quantitative evaluation of their unwinding activity.
Collapse
Affiliation(s)
- Eckhard Jankowsky
- Department of Biochemistry & Center for RNA Molecular Biology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | |
Collapse
|
56
|
Bohnsack MT, Martin R, Granneman S, Ruprecht M, Schleiff E, Tollervey D. Prp43 bound at different sites on the pre-rRNA performs distinct functions in ribosome synthesis. Mol Cell 2009; 36:583-92. [PMID: 19941819 PMCID: PMC2806949 DOI: 10.1016/j.molcel.2009.09.039] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 07/17/2009] [Accepted: 09/04/2009] [Indexed: 11/12/2022]
Abstract
Yeast ribosome synthesis requires 19 different RNA helicases, but none of their pre-rRNA-binding sites were previously known, making their precise functions difficult to determine. Here we identify multiple binding sites for the helicase Prp43 in the 18S and 25S rRNA regions of pre-rRNAs, using UV crosslinking. Binding in 18S was predominantly within helix 44, close to the site of 18S 3′ cleavage, in which Prp43 is functionally implicated. Four major binding sites were identified in 25S, including helix 34. In strains depleted of Prp43 or expressing only catalytic point mutants, six snoRNAs that guide modifications close to helix 34 accumulated on preribosomes, implicating Prp43 in their release, whereas other snoRNAs showed reduced preribosome association. Prp43 was crosslinked to snoRNAs that target sequences close to its binding sites, indicating direct interactions. We propose that Prp43 acts on preribosomal regions surrounding each binding site, with distinct functions at different locations.
Collapse
Affiliation(s)
- Markus T Bohnsack
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, UK.
| | | | | | | | | | | |
Collapse
|
57
|
Pertschy B, Schneider C, Gnädig M, Schäfer T, Tollervey D, Hurt E. RNA helicase Prp43 and its co-factor Pfa1 promote 20 to 18 S rRNA processing catalyzed by the endonuclease Nob1. J Biol Chem 2009; 284:35079-91. [PMID: 19801658 PMCID: PMC2787369 DOI: 10.1074/jbc.m109.040774] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 09/29/2009] [Indexed: 11/06/2022] Open
Abstract
Many RNA nucleases and helicases participate in ribosome biogenesis, but how they cooperate with each other is largely unknown. Here we report that in vivo cleavage of the yeast pre-rRNA at site D, the 3'-end of the 18 S rRNA, requires functional interactions between PIN (PilT N terminus) domain protein Nob1 and the DEAH box RNA helicase Prp43. Nob1 showed specific cleavage on a D-site substrate analogue in vitro, which was abolished by mutations in the Nob1 PIN domain or the RNA substrate. Genetic analyses linked Nob1 to the late pre-40 S-associated factor Ltv1, the RNA helicase Prp43, and its cofactor Pfa1. In strains lacking Ltv1, mutation of Prp43 or Pfa1 led to a striking accumulation of 20 S pre-rRNA in the cytoplasm due to inhibition of site D cleavage. This phenotype was suppressed by increased dosage of wild-type Nob1 but not by Nob1 variants mutated in the catalytic site. In ltv1/pfa1 mutants the 20 S pre-rRNA was susceptible to 3' to 5' degradation by the cytoplasmic exosome. This degraded into the 3' region of the 18 S rRNA, strongly indicating that the preribosomes are structurally defective.
Collapse
Affiliation(s)
- Brigitte Pertschy
- From the Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany and
| | - Claudia Schneider
- the Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland, United Kingdom
| | - Marén Gnädig
- From the Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany and
| | - Thorsten Schäfer
- From the Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany and
| | - David Tollervey
- the Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland, United Kingdom
| | - Ed Hurt
- From the Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany and
| |
Collapse
|
58
|
Abstract
Ribosome assembly is required for cell growth in all organisms. Classic in vitro work in bacteria has led to a detailed understanding of the biophysical, thermodynamic, and structural basis for the ordered and correct assembly of ribosomal proteins on ribosomal RNA. Furthermore, it has enabled reconstitution of active subunits from ribosomal RNA and proteins in vitro. Nevertheless, recent work has shown that eukaryotic ribosome assembly requires a large macromolecular machinery in vivo. Many of these assembly factors such as ATPases, GTPases, and kinases hydrolyze nucleotide triphosphates. Because these enzymes are likely regulatory proteins, much work to date has focused on understanding their role in the assembly process. Here, we review these factors, as well as other sources of energy, and their roles in the ribosome assembly process. In addition, we propose roles of energy-releasing enzymes in the assembly process, to explain why energy is used for a process that occurs largely spontaneously in bacteria. Finally, we use literature data to suggest testable models for how these enzymes could be used as targets for regulation of ribosome assembly.
Collapse
Affiliation(s)
- Bethany S Strunk
- Chemical Biology Doctoral Program, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | |
Collapse
|
59
|
Mrd1p is required for release of base-paired U3 snoRNA within the preribosomal complex. Mol Cell Biol 2009; 29:5763-74. [PMID: 19704003 DOI: 10.1128/mcb.00428-09] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In eukaryotes, ribosomes are made from precursor rRNA (pre-rRNA) and ribosomal proteins in a maturation process that requires a large number of snoRNPs and processing factors. A fundamental problem is how the coordinated and productive folding of the pre-rRNA and assembly of successive pre-rRNA-protein complexes is achieved cotranscriptionally. The conserved protein Mrd1p, which contains five RNA binding domains (RBDs), is essential for processing events leading to small ribosomal subunit synthesis. We show that full function of Mrd1p requires all five RBDs and that the RBDs are functionally distinct and needed during different steps in processing. Mrd1p mutations trap U3 snoRNA in pre-rRNP complexes both in base-paired and non-base-paired interactions. A single essential RBD, RBD5, is involved in both types of interactions, but its conserved RNP1 motif is not needed for releasing the base-paired interactions. RBD5 is also required for the late pre-rRNP compaction preceding A(2) cleavage. Our results suggest that Mrd1p modulates successive conformational rearrangements within the pre-rRNP that influence snoRNA-pre-rRNA contacts and couple U3 snoRNA-pre-rRNA remodeling and late steps in pre-rRNP compaction that are essential for cleavage at A(0) to A(2). Mrd1p therefore coordinates key events in biosynthesis of small ribosome subunits.
Collapse
|
60
|
Spp382p interacts with multiple yeast splicing factors, including possible regulators of Prp43 DExD/H-Box protein function. Genetics 2009; 183:195-206. [PMID: 19581443 DOI: 10.1534/genetics.109.106955] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Prp43p catalyzes essential steps in pre-mRNA splicing and rRNA biogenesis. In splicing, Spp382p stimulates the Prp43p helicase to dissociate the postcatalytic spliceosome and, in some way, to maintain the integrity of the spliceosome assembly. Here we present a dosage interference assay to identify Spp382p-interacting factors by screening for genes that when overexpressed specifically inhibit the growth of a conditional lethal prp38-1 spliceosome assembly mutant in the spp382-1 suppressor background. Identified, among others, are genes encoding the established splicing factors Prp8p, Prp9p, Prp11p, Prp39p, and Yhc1p and two poorly characterized proteins with possible links to splicing, Sqs1p and Cwc23p. Sqs1p copurifies with Prp43p and is shown to bind Prp43p and Spp382p in the two-hybrid assay. Overexpression of Sqs1p blocks pre-mRNA splicing and inhibits Prp43p-dependent steps in rRNA processing. Increased Prp43p levels buffer Sqs1p cytotoxicity, providing strong evidence that the Prp43p DExD/H-box protein is a target of Sqs1p. Cwc23p is the only known yeast splicing factor with a DnaJ motif characteristic of Hsp40-like chaperones. We show that similar to SPP382, CWC23 activity is critical for efficient pre-mRNA splicing and intron metabolism yet, surprisingly, this activity does not require the canonical DnaJ/Hsp40 motif. These and related data establish the value of this dosage interference assay for finding genes that alter cellular splicing and define Sqs1p and Cwc23p as prospective modulators of Spp382p-stimuated Prp43p function.
Collapse
|
61
|
Duan J, Li L, Lu J, Wang W, Ye K. Structural mechanism of substrate RNA recruitment in H/ACA RNA-guided pseudouridine synthase. Mol Cell 2009; 34:427-39. [PMID: 19481523 DOI: 10.1016/j.molcel.2009.05.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 04/11/2009] [Accepted: 05/07/2009] [Indexed: 11/28/2022]
Abstract
H/ACA RNAs form ribonucleoprotein complex (RNP) with proteins Cbf5, Nop10, L7Ae, and Gar1 and guide site-specific conversion of uridine into pseudouridine in cellular RNAs. The crystal structures of H/ACA RNP with substrate bound at the active site cleft reveal that the substrate is recruited through sequence-specific pairing with guide RNA and essential protein contacts. Substrate binding leads to a reorganization of a preset pseudouridylation pocket and an adaptive movement of the PUA domain and the lower stem of the H/ACA RNA. Moreover, a thumb loop flips from the Gar1-bound state in the substrate-free RNP structure to tightly associate with the substrate. Mutagenesis and enzyme kinetics analysis suggest a critical role of Gar1 and the thumb in substrate turnover, particularly in product release. Comparison with tRNA Psi55 synthase TruB reveals the structural conservation and adaptation between an RNA-guided and stand-alone pseudouridine synthase and provides insight into the guide-independent activity of Cbf5.
Collapse
Affiliation(s)
- Jingqi Duan
- College of Life Sciences, Peking University, Beijing, China
| | | | | | | | | |
Collapse
|
62
|
Turner AJ, Knox AA, Prieto JL, McStay B, Watkins NJ. A novel small-subunit processome assembly intermediate that contains the U3 snoRNP, nucleolin, RRP5, and DBP4. Mol Cell Biol 2009; 29:3007-17. [PMID: 19332556 PMCID: PMC2682003 DOI: 10.1128/mcb.00029-09] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 02/12/2009] [Accepted: 03/24/2009] [Indexed: 11/20/2022] Open
Abstract
Eukaryotic 18S rRNA processing is mediated by the small subunit (SSU) processome, a machine comprised of the U3 small nucleolar RNP (U3 snoRNP), tUTP, bUTP, MPP10, and BMS1/RCL1 subcomplexes. We report that the human SSU processome is a dynamic structure with the recruitment and release of subcomplexes occurring during the early stages of ribosome biogenesis. A novel 50S U3 snoRNP accumulated when either pre-rRNA transcription was blocked or the tUTP proteins were depleted. This complex did not contain the tUTP, bUTP, MPP10, and BMS1/RCL1 subcomplexes but was associated with the RNA-binding proteins nucleolin and RRP5 and the RNA helicase DBP4. Our data suggest that the 50S U3 snoRNP is an SSU assembly intermediate that is likely recruited to the pre-rRNA through the RNA-binding proteins nucleolin and RRP5. We predict that nucleolin is only transiently associated with the SSU processome and likely leaves the complex not long after 50S U3 snoRNP recruitment. The nucleolin-binding site potentially overlaps that of several other key factors, and we propose that this protein must leave the SSU processome for pre-rRNA processing to occur.
Collapse
Affiliation(s)
- Amy Jane Turner
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | | | | | | |
Collapse
|
63
|
Staley JP, Woolford JL. Assembly of ribosomes and spliceosomes: complex ribonucleoprotein machines. Curr Opin Cell Biol 2009; 21:109-18. [PMID: 19167202 PMCID: PMC2698946 DOI: 10.1016/j.ceb.2009.01.003] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 12/22/2008] [Accepted: 01/06/2009] [Indexed: 12/19/2022]
Abstract
Ribosomes and spliceosomes are ribonucleoprotein nanomachines that catalyze translation of mRNA to synthesize proteins and splicing of introns from pre-mRNAs, respectively. Assembly of ribosomes involves more than 300 proteins and RNAs, and that of spliceosomes over 100 proteins and RNAs. Construction of these enormous ribonucleoprotein particles (RNPs) is a dynamic process, in which the nascent RNPs undergo numerous ordered rearrangements of RNA-RNA, RNA-protein, and protein-protein interactions. Here we outline similar principles that have emerged from studies of ribosome and spliceosome assembly. Constituents of both RNPs form subassembly complexes, which can simplify the task of assembly and segregate functions of assembly factors. Reorganization of RNP topology, and proofreading of proper assembly, are catalyzed by protein- or RNA-dependent ATPases or GTPases. Dynamics of intermolecular interactions may be facilitated or regulated by cycles of post-translational modifications. Despite this repertoire of tools, mistakes occur in RNP assembly or in processing of RNA substrates. Quality control mechanisms recognize and turnover misassembled RNPs and reject improper substrates.
Collapse
Affiliation(s)
- Jonathan P Staley
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago IL 60637,
| | - John L Woolford
- Department of Biological Sciences, Center for Nucleic Acids Science and Technology, Carnegie Mellon University, Pittsburgh PA 15213, , Phone: (412) 268-3193, FAX: (412) 268-7129
| |
Collapse
|
64
|
Garcia I, Uhlenbeck OC. Differential RNA-dependent ATPase activities of four rRNA processing yeast DEAD-box proteins. Biochemistry 2008; 47:12562-73. [PMID: 18975973 PMCID: PMC2649780 DOI: 10.1021/bi8016119] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
S. cerevisiae ribosome biogenesis is a highly ordered and dynamic process that involves over 100 accessory proteins, including 18 DExD/H-box proteins that act at discrete steps in the pathway. Although often termed RNA helicases, the biochemical functions of individual DExD/H-box proteins appear to vary considerably. Four DExD/H-box proteins, Dbp3p, Dbp4p, Rok1p, and Rrp3p, involved in yeast ribosome assembly were expressed in E. coli, and all were found to be active RNA-dependent ATPases with k(cat) values ranging from 13 to 170 min(-1) and K(M)(ATP) values ranging from 0.24 to 2.3 mM. All four proteins are activated by single-stranded oligonucleotides, but they require different chain lengths for maximal ATPase activity, ranging from 10 to >40 residues. None of the four proteins shows significant specificity for yeast rRNA, compared to nonspecific control RNAs since these large RNAs contain multiple binding sites that appear to be catalytically similar. This systematic comparison of four members of the DExD/H-box family demonstrates a range of biochemical properties and lays the foundation for relating the activities of proteins to their biological functions.
Collapse
Affiliation(s)
- Ivelitza Garcia
- Department of Biochemistry Molecular Biology, and Cellular Biology, Northwestern University, 2205 Tech Drive, Hogan 2-100, Evanston, IL 60208
| | - Olke C. Uhlenbeck
- Department of Biochemistry Molecular Biology, and Cellular Biology, Northwestern University, 2205 Tech Drive, Hogan 2-100, Evanston, IL 60208
| |
Collapse
|
65
|
Bohnsack MT, Kos M, Tollervey D. Quantitative analysis of snoRNA association with pre-ribosomes and release of snR30 by Rok1 helicase. EMBO Rep 2008; 9:1230-6. [PMID: 18833290 PMCID: PMC2570499 DOI: 10.1038/embor.2008.184] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 08/19/2008] [Accepted: 08/25/2008] [Indexed: 11/30/2022] Open
Abstract
In yeast, three small nucleolar RNAs (snoRNAs) are essential for the processing of pre-ribosomal RNA—U3, U14 and snR30—whereas 72 non-essential snoRNAs direct site-specific modification of pre-rRNA. We applied a quantitative screen for alterations in the pre-ribosome association to all 75 yeast snoRNAs in strains depleted of eight putative helicases implicated in 40S subunit synthesis. For the modification-guide snoRNAs, we found no clear evidence for the involvement of these helicases in the association or dissociation of pre-ribosomes. However, the DEAD box helicase Rok1 was required specifically for the release of snR30. Point mutations in motif I, but not in motif III, of the helicase domain of Rok1 impaired the release of snR30, but this was less marked than in strains depleted of Rok1, and resulted in a dominant-negative growth phenotype. Dissociation of U3 and U14 from pre-ribosomes is also dependent on helicases, suggesting that release of the essential snoRNAs might differ mechanistically from release of the modification-guide snoRNAs.
Collapse
Affiliation(s)
- Markus T Bohnsack
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | | | | |
Collapse
|
66
|
Liang B, Kahen EJ, Calvin K, Zhou J, Blanco M, Li H. Long-distance placement of substrate RNA by H/ACA proteins. RNA (NEW YORK, N.Y.) 2008; 14:2086-94. [PMID: 18755842 PMCID: PMC2553744 DOI: 10.1261/rna.1109808] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The structural basis for accurate placement of substrate RNA by H/ACA proteins is studied using a nonintrusive fluorescence assay. A model substrate RNA containing 2-aminopurine immediately 3' of the uridine targeted for modification produces distinct fluorescence signals that report the substrate's docking status within the enzyme active site. We combined substrate RNA with complete and subcomplexes of H/ACA ribonucleoprotein particles and monitored changes in the substrate conformation. Our results show that each of the three accessory proteins, as well as an active site residue, have distinct effects on substrate conformations, presumably as docking occurs. Interestingly, in some cases these effects are exerted far from the active site. Application of our data to an available structural model of the holoenzyme, enables the functional role of each accessory protein in substrate placement to come into view.
Collapse
Affiliation(s)
- Bo Liang
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, USA
| | | | | | | | | | | |
Collapse
|
67
|
Segerstolpe A, Lundkvist P, Osheim YN, Beyer AL, Wieslander L. Mrd1p binds to pre-rRNA early during transcription independent of U3 snoRNA and is required for compaction of the pre-rRNA into small subunit processomes. Nucleic Acids Res 2008; 36:4364-80. [PMID: 18586827 PMCID: PMC2490760 DOI: 10.1093/nar/gkn384] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In Saccharomyces cerevisiae, synthesis of the small ribosomal subunit requires assembly of the 35S pre-rRNA into a 90S preribosomal complex. SnoRNAs, including U3 snoRNA, and many trans-acting proteins are required for the ordered assembly and function of the 90S preribosomal complex. Here, we show that the conserved protein Mrd1p binds to the pre-rRNA early during transcription and is required for compaction of the pre-18S rRNA into SSU processome particles. We have exploited the fact that an Mrd1p-GFP fusion protein is incorporated into the 90S preribosomal complex, where it acts as a partial loss-of-function mutation. When associated with the pre-rRNA, Mrd1p-GFP functionally interacts with the essential Pwp2, Mpp10 and U3 snoRNP subcomplexes that are functionally interconnected in the 90S preribosomal complex. The fusion protein can partially support 90S preribosome-mediated cleavages at the A0–A2 sites. At the same time, on a substantial fraction of transcripts, the composition and/or structure of the 90S preribosomal complex is perturbed by the fusion protein in such a way that cleavage of the 35S pre-rRNA is either blocked or shifted to aberrant sites. These results show that Mrd1p is required for establishing productive structures within the 90S preribosomal complex.
Collapse
Affiliation(s)
- Asa Segerstolpe
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-106 91, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
68
|
Abstract
RNA helicases comprise a large family of enzymes that are thought to utilize the energy of NTP binding and hydrolysis to remodel RNA or RNA-protein complexes, resulting in RNA duplex strand separation, displacement of proteins from RNA molecules, or both. These functions of RNA helicases are required for all aspects of cellular RNA metabolism, from bacteria to humans. We provide a brief overview of the functions of RNA helicases and highlight some of the recent key advances that have contributed to our current understanding of their biological function and mechanism of action.
Collapse
|
69
|
Jankowsky E, Fairman ME. RNA helicases--one fold for many functions. Curr Opin Struct Biol 2007; 17:316-24. [PMID: 17574830 DOI: 10.1016/j.sbi.2007.05.007] [Citation(s) in RCA: 208] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2007] [Revised: 03/27/2007] [Accepted: 05/29/2007] [Indexed: 12/25/2022]
Abstract
RNA helicases are a large group of enzymes that function in virtually all aspects of RNA metabolism. Although RNA helicases share a highly conserved structure, different enzymes display a wide array of biochemical activities, including RNA duplex unwinding, protein displacement from RNA and strand annealing. Recent structural and functional studies have started to illuminate the mechanisms by which this remarkable diversity of functions can be conducted by the conserved helicase fold.
Collapse
Affiliation(s)
- Eckhard Jankowsky
- Department of Biochemistry and Center for RNA Molecular Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | |
Collapse
|
70
|
Jalal C, Uhlmann-Schiffler H, Stahl H. Redundant role of DEAD box proteins p68 (Ddx5) and p72/p82 (Ddx17) in ribosome biogenesis and cell proliferation. Nucleic Acids Res 2007; 35:3590-601. [PMID: 17485482 PMCID: PMC1920232 DOI: 10.1093/nar/gkm058] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The DEAD box proteins encoded by the genes ddx5 (p68) and ddx17 (isoforms p72 and p82) are more closely related to each other than to any other member of their family. We found that p68 negatively controls p72/p82 gene expression but not vice versa. Knocking down of either gene does not affect cell proliferation, in case of p68 suppression, however, only on condition that p72/p82 overexpression was granted. In contrast, co-silencing of both genes causes perturbation of nucleolar structure and cell death. In mutant studies, the apparently redundant role(s) of p68 and p72/p82 correspond to their ability to catalyze RNA rearrangement rather than RNA unwinding reactions. In search for possible physiological targets of this RNA rearrangement activity it is shown that the nucleolytic cleavage of 32S pre-rRNA is reduced after p68 subfamily knock-down, most probably due to a failure in the structural rearrangement process within the pre-60S ribosomal subunit preceding the processing of 32S pre-rRNA.
Collapse
Affiliation(s)
| | | | - Hans Stahl
- *To whom correspondence should be addressed. +49 6841 16 26020+49 6841 16 26521
| |
Collapse
|
71
|
Decatur WA, Liang XH, Piekna-Przybylska D, Fournier MJ. Identifying effects of snoRNA-guided modifications on the synthesis and function of the yeast ribosome. Methods Enzymol 2007; 425:283-316. [PMID: 17673089 DOI: 10.1016/s0076-6879(07)25013-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The small nucleolar RNAs (snoRNAs) are associated with proteins in ribonucleoprotein complexes called snoRNPs ("snorps"). These complexes create modified nucleotides in preribosomal RNA and other RNAs and participate in nucleolytic cleavages of pre-rRNA. The various reactions occur in site-specific fashion, and the mature rRNAs are ultimately incorporated into cytoplasmic ribosomes. Most snoRNAs exist in two structural classes, and most members in each class are involved in nucleotide modification reactions. Guide snoRNAs in the "box C/D" class target methylation of the 2'-hydroxyl moiety, to form 2'-O-methylated nucleotides (Nm), whereas guide snoRNAs in the "box H/ACA" class target specific uridines for conversion to pseudouridine (Psi). The rRNA nucleotides modified in this manner are numerous, totaling approximately 100 in yeast and twice that number in humans. Although the chemistry of the modifications and the factors involved in their formation are largely explained, very little is known about the influence of the copious snoRNA-guided nucleotide modifications on rRNA activity and ribosome function. Among eukaryotic organisms the sites of rRNA modification and the corresponding guide snoRNAs have been best characterized in S. cerevisiae, making this a model organism for analyzing the consequences of modification. This chapter presents approaches to characterizing rRNA modification effects in yeast and includes strategies for evaluating a variety of specific rRNA functions. To aid in planning, a package of bioinformatics tools is described that enables investigators to correlate guide function with targeted ribosomal sites in several contexts. Genetic procedures are presented for depleting modifications at one or more rRNA sites, including ablation of all Nm or Psi modifications made by snoRNPs, and for introducing modifications at novel sites. Methods are also included for characterizing modification effects on cell growth, antibiotic sensitivity, rRNA processing, formation of various rRNP complexes, translation activity, and rRNA structure within the ribosome.
Collapse
Affiliation(s)
- Wayne A Decatur
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
| | | | | | | |
Collapse
|
72
|
Gagnon KT, Zhang X, Agris PF, Maxwell ES. Assembly of the archaeal box C/D sRNP can occur via alternative pathways and requires temperature-facilitated sRNA remodeling. J Mol Biol 2006; 362:1025-42. [PMID: 16949610 DOI: 10.1016/j.jmb.2006.07.091] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 07/21/2006] [Accepted: 07/29/2006] [Indexed: 10/24/2022]
Abstract
Archaeal dual-guide box C/D small nucleolar RNA-like RNAs (sRNAs) bind three core proteins in sequential order at both terminal box C/D and internal C'/D' motifs to assemble two ribonuclear protein (RNP) complexes active in guiding nucleotide methylation. Experiments have investigated the process of box C/D sRNP assembly and the resultant changes in sRNA structure or "remodeling" as a consequence of sRNP core protein binding. Hierarchical assembly of the Methanocaldococcus jannaschii sR8 box C/D sRNP is a temperature-dependent process with binding of L7 and Nop56/58 core proteins to the sRNA requiring elevated temperature to facilitate necessary RNA structural dynamics. Circular dichroism (CD) spectroscopy and RNA thermal denaturation revealed an increased order and stability of sRNA folded structure as a result of L7 binding. Subsequent binding of the Nop56/58 and fibrillarin core proteins to the L7-sRNA complex further remodeled sRNA structure. Assessment of sR8 guide region accessibility using complementary RNA oligonucleotide probes revealed significant changes in guide region structure during sRNP assembly. A second dual-guide box C/D sRNA from M. jannaschii, sR6, also exhibited RNA remodeling during temperature-dependent sRNP assembly, although core protein binding was affected by sR6's distinct folded structure. Interestingly, the sR6 sRNP followed an alternative assembly pathway, with both guide regions being continuously exposed during sRNP assembly. Further experiments using sR8 mutants possessing alternative guide regions demonstrated that sRNA folded structure induced by specific guide sequences impacted the sRNP assembly pathway. Nevertheless, assembled sRNPs were active for sRNA-guided methylation independent of the pathway followed. Thus, RNA remodeling appears to be a common and requisite feature of archaeal dual-guide box C/D sRNP assembly and formation of the mature sRNP can follow different assembly pathways in generating catalytically active complexes.
Collapse
MESH Headings
- Amino Acid Sequence
- Archaea/chemistry
- Archaea/genetics
- Archaea/metabolism
- Archaeal Proteins/chemistry
- Archaeal Proteins/genetics
- Archaeal Proteins/isolation & purification
- Archaeal Proteins/metabolism
- Base Sequence
- Chromatography, Affinity
- Circular Dichroism
- Methylation
- Models, Biological
- Molecular Sequence Data
- Mutation
- Nucleic Acid Conformation
- Protein Binding
- RNA, Archaeal/chemistry
- RNA, Archaeal/genetics
- RNA, Archaeal/metabolism
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- Ribonucleoproteins, Small Nuclear/chemistry
- Ribonucleoproteins, Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/metabolism
- Temperature
- RNA, Small Untranslated
Collapse
Affiliation(s)
- Keith T Gagnon
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695-7622, USA
| | | | | | | |
Collapse
|
73
|
Linder P. Dead-box proteins: a family affair--active and passive players in RNP-remodeling. Nucleic Acids Res 2006; 34:4168-80. [PMID: 16936318 PMCID: PMC1616962 DOI: 10.1093/nar/gkl468] [Citation(s) in RCA: 353] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Revised: 06/19/2006] [Accepted: 06/20/2006] [Indexed: 11/23/2022] Open
Abstract
DEAD-box proteins are characterized by nine conserved motifs. According to these criteria, several hundreds of these proteins can be identified in databases. Many different DEAD-box proteins can be found in eukaryotes, whereas prokaryotes have small numbers of different DEAD-box proteins. DEAD-box proteins play important roles in RNA metabolism, and they are very specific and cannot mutually be replaced. In vitro, many DEAD-box proteins have been shown to have RNA-dependent ATPase and ATP-dependent RNA helicase activities. From the genetic and biochemical data obtained mainly in yeast, it has become clear that these proteins play important roles in remodeling RNP complexes in a temporally controlled fashion. Here, I shall give a general overview of the DEAD-box protein family.
Collapse
Affiliation(s)
- Patrick Linder
- Department of Microbiology and Molecular Medicine, CMU 1, rue Michel Servet, CH-1211 Genève 4, Switzerland.
| |
Collapse
|
74
|
Abstract
In spite of their importance in RNA metabolism, the function of DExD/H-box proteins (including DEAD-box proteins) is poorly understood at the molecular level. Here, we present recent progress achieved with the five DEAD-box proteins from Escherichia coli, which have been particularly well studied. These proteins, which have orthologues in many bacteria, participate, in particular, in specific steps of mRNA decay and ribosome assembly. In vitro, they behave as poorly processive RNA helicases, presumably because they only unwind a few base pairs at each cycle so that stable duplexes can reanneal rather than dissociate. Except for one of them (DbpA), these proteins lack RNA specificity in vitro, and specificity in vivo is likely conferred by partners that target them to defined substrates. Interestingly, at least one of them is multifunctional, presumably because it can interact with different partners. Altogether, several aspects of the information gathered with these proteins have become paradigms for our understanding of DEAD-box proteins in general.
Collapse
Affiliation(s)
- Isabelle Iost
- To whom correspondence should be addressed. Tel: +33 1 44 32 35 41; Fax: +33 1 44 32 39 41;
| | - Marc Dreyfus
- Correspondence may also be addressed to Marc Dreyfus. Tel: +33 1 44 32 35 26; Fax: +33 1 44 32 39 41;
| |
Collapse
|
75
|
Abstract
Synthesis of rRNA in eukaryotes involves the action of a large population of snoRNA-protein complexes (snoRNPs), which create modified nucleotides and participate in cleavage of pre-rRNA. The snoRNPs mediate these functions through direct base pairing, in many cases through long complementary sequences. This feature suggests that RNA helicases may be involved in the binding and release of snoRNPs from pre-rRNA. In this study, we determined that the DEAD box helicase Has1p, a nucleolar protein required for the production of 18S rRNA, copurifies with the snR30/U17 processing snoRNP but is also present with other snoRNPs. Blocking Has1p expression causes a substantial increase in snoRNPs associated with 60S-90S preribosomal RNP complexes, including the U3 and U14 processing snoRNPs and several modifying snoRNPs examined. Cosedimentation persisted even after deproteinization. This effect was not observed with depletion of two nonhelicase proteins, Esf1p and Dim2p, that are also required for 18S rRNA production. Point mutations in ATPase and helicase motifs of Has1p block U14 release from pre-rRNA. Surprisingly, depletion of Has1p causes a reduction in the level of free U6 snRNP. The results indicate that the Has1p helicase is required for snoRNA release from pre-rRNA and production of the U6 snRNP.
Collapse
Affiliation(s)
- Xue-Hai Liang
- Department of Biochemistry and Molecular Biology, Lederle Graduate Research Center, University of Massachusetts, Amherst, MA 01003, USA
| | | |
Collapse
|
76
|
Granneman S, Lin C, Champion EA, Nandineni MR, Zorca C, Baserga SJ. The nucleolar protein Esf2 interacts directly with the DExD/H box RNA helicase, Dbp8, to stimulate ATP hydrolysis. Nucleic Acids Res 2006; 34:3189-99. [PMID: 16772403 PMCID: PMC1483223 DOI: 10.1093/nar/gkl419] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
While 18 putative RNA helicases are involved in ribosome biogenesis in Saccharomyces cerevisiae, their enzymatic properties have remained largely biochemically uncharacterized. To better understand their function, we examined the enzymatic properties of Dpb8, a DExD/H box protein previously shown to be required for the synthesis of the 18S rRNA. As expected for an RNA helicase, we demonstrate that recombinant Dbp8 has ATPase activity in vitro, and that this activity is dependent on an intact ATPase domain. Strikingly, we identify Esf2, a nucleolar putative RNA binding protein, as a binding partner for Dbp8, and show that it enhances Dbp8 ATPase activity by decreasing the K(M) for ATP. Thus, we have uncovered Esf2 as the first example of a protein co-factor that has a stimulatory effect on a nucleolar RNA helicase. We show that Esf2 can bind to pre-rRNAs and speculate that it may function to bring Dbp8 to the pre-rRNA, thereby both regulating its enzymatic activity and guiding Dbp8 to its site of action.
Collapse
Affiliation(s)
- Sander Granneman
- Departments of Molecular Biophysics and Biochemistry, Yale University School of MedicineNew Haven, Connecticut 06520, USA
| | - ChieYu Lin
- Departments of Molecular Biophysics and Biochemistry, Yale University School of MedicineNew Haven, Connecticut 06520, USA
| | - Erica A. Champion
- Genetics, Yale University School of MedicineNew Haven, Connecticut 06520, USA
| | - Madhusudan R. Nandineni
- Departments of Molecular Biophysics and Biochemistry, Yale University School of MedicineNew Haven, Connecticut 06520, USA
| | - Cornelia Zorca
- Departments of Molecular Biophysics and Biochemistry, Yale University School of MedicineNew Haven, Connecticut 06520, USA
| | - Susan J. Baserga
- Departments of Molecular Biophysics and Biochemistry, Yale University School of MedicineNew Haven, Connecticut 06520, USA
- Genetics, Yale University School of MedicineNew Haven, Connecticut 06520, USA
- Therapeutic Radiology, Yale University School of MedicineNew Haven, Connecticut 06520, USA
- To whom correspondence should be addressed at Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, 333 Cedar Street, SHM C-114, 06520-8024, USA. Tel: 203 785 4618; Fax: 203 785 6404;
| |
Collapse
|
77
|
John Wiley & Sons, Ltd.. Current awareness on yeast. Yeast 2006. [DOI: 10.1002/yea.1314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
78
|
Research Highlights. Nat Struct Mol Biol 2005. [DOI: 10.1038/nsmb1105-944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|