51
|
Identification of inhibitors of a bacterial sigma factor using a new high-throughput screening assay. Antimicrob Agents Chemother 2014; 59:193-205. [PMID: 25331704 DOI: 10.1128/aac.03979-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Gram-negative bacteria are formidable pathogens because their cell envelope presents an adaptable barrier to environmental and host-mediated challenges. The stress response pathway controlled by the alternative sigma factor σ(E) is critical for maintenance of the cell envelope. Because σ(E) is required for the virulence or viability of several Gram-negative pathogens, it might be a useful target for antibiotic development. To determine if small molecules can inhibit the σ(E) pathway, and to permit high-throughput screening for antibiotic lead compounds, a σ(E) activity assay that is compatible with high-throughput screening was developed and validated. The screen employs a biological assay with positive readout. An Escherichia coli strain was engineered to express yellow fluorescent protein (YFP) under negative regulation by the σ(E) pathway, such that inhibitors of the pathway increase the production of YFP. To validate the screen, the reporter strain was used to identify σ(E) pathway inhibitors from a library of cyclic peptides. Biochemical characterization of one of the inhibitory cyclic peptides showed that it binds σ(E), inhibits RNA polymerase holoenzyme formation, and inhibits σ(E)-dependent transcription in vitro. These results demonstrate that alternative sigma factors can be inhibited by small molecules and enable high-throughput screening for inhibitors of the σ(E) pathway.
Collapse
|
52
|
Burmann BM, Rösch P. The role of E. coli Nus-factors in transcription regulation and transcription:translation coupling: From structure to mechanism. Transcription 2014; 2:130-134. [PMID: 21922055 DOI: 10.4161/trns.2.3.15671] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 03/31/2011] [Accepted: 03/31/2011] [Indexed: 11/19/2022] Open
Abstract
Bacterial transcription mediated by RNA polymerase (RNAP) is a highly regulated process and RNAP action is modulated during the different phases of initiation, elongation and termination by proteins such as the Escherichia coli Nus transcription-factors. Here we discuss the structural interplay and the mechanistic role of the Nus-factors that are directly involved in the processivity of elongation, transcription:translation coupling and termination, as well as the varying effects of these proteins on transcription under the influence of additional signals.
Collapse
Affiliation(s)
- Björn M Burmann
- Lehrstuhl Biopolymere und Forschungszentrum für Bio-Makromoleküle; Universität Bayreuth; Bayreuth, Germany
| | | |
Collapse
|
53
|
Feklístov A, Sharon BD, Darst SA, Gross CA. Bacterial sigma factors: a historical, structural, and genomic perspective. Annu Rev Microbiol 2014; 68:357-76. [PMID: 25002089 DOI: 10.1146/annurev-micro-092412-155737] [Citation(s) in RCA: 350] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transcription initiation is the crucial focal point of gene expression in prokaryotes. The key players in this process, sigma factors (σs), associate with the catalytic core RNA polymerase to guide it through the essential steps of initiation: promoter recognition and opening, and synthesis of the first few nucleotides of the transcript. Here we recount the key advances in σ biology, from their discovery 45 years ago to the most recent progress in understanding their structure and function at the atomic level. Recent data provide important structural insights into the mechanisms whereby σs initiate promoter opening. We discuss both the housekeeping σs, which govern transcription of the majority of cellular genes, and the alternative σs, which direct RNA polymerase to specialized operons in response to environmental and physiological cues. The review concludes with a genome-scale view of the extracytoplasmic function σs, the most abundant group of alternative σs.
Collapse
|
54
|
Maillard AP, Girard E, Ziani W, Petit-Härtlein I, Kahn R, Covès J. The crystal structure of the anti-σ factor CnrY in complex with the σ factor CnrH shows a new structural class of anti-σ factors targeting extracytoplasmic function σ factors. J Mol Biol 2014; 426:2313-27. [PMID: 24727125 DOI: 10.1016/j.jmb.2014.04.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/19/2014] [Accepted: 04/03/2014] [Indexed: 11/25/2022]
Abstract
Gene expression in bacteria is regulated at the level of transcription initiation, a process driven by σ factors. The regulation of σ factor activity proceeds from the regulation of their cytoplasmic availability, which relies on specific inhibitory proteins called anti-σ factors. With anti-σ factors regulating their availability according to diverse cues, extracytoplasmic function σ factors (σ(ECF)) form a major signal transduction system in bacteria. Here, structure:function relationships have been characterized in an emerging class of minimal-size transmembrane anti-σ factors, using CnrY from Cupriavidus metallidurans CH34 as a model. This study reports the 1.75-Å-resolution structure of CnrY cytosolic domain in complex with CnrH, its cognate σ(ECF), and identifies a small hydrophobic knob in CnrY as the major determinant of this interaction in vivo. Unsuspected structural similarity with the molecular switch regulating the general stress response in α-proteobacteria unravels a new class of anti-σ factors targeting σ(ECF). Members of this class carry out their function via a 30-residue stretch that displays helical propensity but no canonical structure on its own.
Collapse
Affiliation(s)
- Antoine P Maillard
- Université Grenoble Alpes, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, and Institut de Biologie Structurale, F-38000 Grenoble, France.
| | - Eric Girard
- Université Grenoble Alpes, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, and Institut de Biologie Structurale, F-38000 Grenoble, France
| | - Widade Ziani
- Université Grenoble Alpes, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, and Institut de Biologie Structurale, F-38000 Grenoble, France
| | - Isabelle Petit-Härtlein
- Université Grenoble Alpes, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, and Institut de Biologie Structurale, F-38000 Grenoble, France
| | - Richard Kahn
- Université Grenoble Alpes, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, and Institut de Biologie Structurale, F-38000 Grenoble, France
| | - Jacques Covès
- Université Grenoble Alpes, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, and Institut de Biologie Structurale, F-38000 Grenoble, France
| |
Collapse
|
55
|
Pupov D, Kuzin I, Bass I, Kulbachinskiy A. Distinct functions of the RNA polymerase σ subunit region 3.2 in RNA priming and promoter escape. Nucleic Acids Res 2014; 42:4494-504. [PMID: 24452800 PMCID: PMC3985618 DOI: 10.1093/nar/gkt1384] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The σ subunit of bacterial RNA polymerase (RNAP) has been implicated in all steps of transcription initiation, including promoter recognition and opening, priming of RNA synthesis, abortive initiation and promoter escape. The post-promoter-recognition σ functions were proposed to depend on its conserved region σ3.2 that directly contacts promoter DNA immediately upstream of the RNAP active centre and occupies the RNA exit path. Analysis of the transcription effects of substitutions and deletions in this region in Escherichia coli σ70 subunit, performed in this work, suggests that (i) individual residues in the σ3.2 finger collectively contribute to RNA priming by RNAP, likely by the positioning of the template DNA strand in the active centre, but are not critical to promoter escape; (ii) the physical presence of σ3.2 in the RNA exit channel is important for promoter escape; (iii) σ3.2 promotes σ dissociation during initiation and suppresses σ-dependent promoter-proximal pausing; (iv) σ3.2 contributes to allosteric inhibition of the initiating NTP binding by rifamycins. Thus, region σ3.2 performs distinct functions in transcription initiation and its inhibition by antibiotics. The B-reader element of eukaryotic factor TFIIB likely plays similar roles in RNAPII transcription, revealing common principles in transcription initiation in various domains of life.
Collapse
Affiliation(s)
- Danil Pupov
- Laboratory of Molecular Genetics of Microorganisms, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | | | | | | |
Collapse
|
56
|
Abstract
RpoS (σ(38)) is required for cell survival under stress conditions, but it can inhibit growth if produced inappropriately and, consequently, its production and activity are elaborately regulated. Crl, a transcriptional activator that does not bind DNA, enhances RpoS activity by stimulating the interaction between RpoS and the core polymerase. The crl gene has two overlapping promoters, a housekeeping, RpoD- (σ(70)) dependent promoter, and an RpoN (σ(54)) promoter that is strongly up-regulated under nitrogen limitation. However, transcription from the RpoN promoter prevents transcription from the RpoD promoter, and the RpoN-dependent transcript lacks a ribosome-binding site. Thus, activation of the RpoN promoter produces a long noncoding RNA that silences crl gene expression simply by being made. This elegant and economical mechanism, which allows a near-instantaneous reduction in Crl synthesis without the need for transacting regulatory factors, restrains the activity of RpoS to allow faster growth under nitrogen-limiting conditions.
Collapse
|
57
|
Tomar SK, Artsimovitch I. NusG-Spt5 proteins-Universal tools for transcription modification and communication. Chem Rev 2013; 113:8604-19. [PMID: 23638618 PMCID: PMC4259564 DOI: 10.1021/cr400064k] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sushil Kumar Tomar
- Department of Microbiology and The Center for RNA Biology, The Ohio State University , Columbus, Ohio 43210, United States
| | | |
Collapse
|
58
|
Sabbatini M, Vezzoli A, Milani M, Bertoni G. Evidence for self-association of the alternative sigma factor σ 54. FEBS J 2013; 280:1371-8. [DOI: 10.1111/febs.12129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 12/21/2012] [Accepted: 01/11/2013] [Indexed: 12/01/2022]
Affiliation(s)
- Massimo Sabbatini
- Department of Life Sciences; Università degli Studi di Milano; Milan; Italy
| | - Alessandro Vezzoli
- Department of Life Sciences; Università degli Studi di Milano; Milan; Italy
| | | | - Giovanni Bertoni
- Department of Life Sciences; Università degli Studi di Milano; Milan; Italy
| |
Collapse
|
59
|
Yang X, Lewis PJ. The interaction between bacterial transcription factors and RNA polymerase during the transition from initiation to elongation. Transcription 2012; 1:66-9. [PMID: 21326893 DOI: 10.4161/trns.1.2.12791] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 06/24/2010] [Accepted: 06/25/2010] [Indexed: 11/19/2022] Open
Abstract
There are three stages of transcription: initiation, elongation and termination, and traditionally there has been a clear distinction between the stages. The specificity factor sigma is completely released from bacterial RNA polymerase after initiation, and then recycled for another round of transcription. Elongation factors then associate with the polymerase followed by termination factors (where necessary). These factors dissociate prior to initiation of a new round of transcription. However, there is growing evidence suggesting that sigma factors can be retained in the elongation complex. The structure of bacterial RNAP in complex with an essential elongation factor NusA has recently been published, which suggested rather than competing for the major σ binding site, NusA binds to a discrete region on RNAP. A model was proposed to help explain the way in which both factors could be associated with RNAP during the transition from transcription initiation to elongation.
Collapse
Affiliation(s)
- Xiao Yang
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | | |
Collapse
|
60
|
Friedman LJ, Gelles J. Mechanism of transcription initiation at an activator-dependent promoter defined by single-molecule observation. Cell 2012; 148:679-89. [PMID: 22341441 DOI: 10.1016/j.cell.2012.01.018] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 09/26/2011] [Accepted: 01/05/2012] [Indexed: 11/17/2022]
Abstract
Understanding the pathway and kinetic mechanisms of transcription initiation is essential for quantitative understanding of gene regulation, but initiation is a multistep process, the features of which can be obscured in bulk analysis. We used a multiwavelength single-molecule fluorescence colocalization approach, CoSMoS, to define the initiation pathway at an activator-dependent bacterial σ(54) promoter that recapitulates characteristic features of eukaryotic promoters activated by enhancer binding proteins. The experiments kinetically characterize all major steps of the initiation process, revealing heretofore unknown features, including reversible formation of two closed complexes with greatly differing stabilities, multiple attempts for each successful formation of an open complex, and efficient release of σ(54) from the polymerase core at the start of transcript synthesis. Open complexes are committed to transcription, suggesting that regulation likely targets earlier steps in the mechanism. CoSMoS is a powerful, generally applicable method to elucidate the mechanisms of transcription and other multistep biochemical processes.
Collapse
Affiliation(s)
- Larry J Friedman
- Department of Biochemistry, Brandeis University, Waltham, MA 02454-9110, USA.
| | | |
Collapse
|
61
|
Zhilina EV, Miropolskaya NA, Bass IA, Brodolin KL, Kulbachinskiy AV. Characteristics of σ-dependent pausing by RNA polymerases from Escherichia coli and Thermus aquaticus. BIOCHEMISTRY (MOSCOW) 2012; 76:1098-106. [PMID: 22098235 DOI: 10.1134/s0006297911100038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The σ(70) subunit of RNA polymerase (RNAP) is the major transcription initiation factor in Escherichia coli. During transcription initiation, conserved region 2 of the σ(70) subunit interacts with the -10 promoter element and plays a key role in DNA melting around the starting point of transcription. During transcription elongation, the σ(70) subunit can induce pauses in RNA synthesis owing to interactions of region 2 with DNA regions similar to the -10 promoter element. We demonstrated that the major σ subunit from Thermus aquaticus (σ(A)) is also able to induce transcription pausing by T. aquaticus RNAP. However, hybrid RNAP containing the σ(A) subunit and E. coli core RNAP is unable to form pauses during elongation, while being able to recognize promoters and initiate transcription. Inability of the σ(A) subunit to induce pausing by E. coli RNAP is explained by the substitutions of non-conserved amino acids in region 2, in the subregions interacting with the RNAP core enzyme. Thus, changes in the structure of region 2 of the σ(70) subunit have stronger effects on transcription pausing than on promoter recognition, likely by weakening the interactions of the σ subunit with the core RNAP during transcription elongation.
Collapse
Affiliation(s)
- E V Zhilina
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | |
Collapse
|
62
|
Muñoz-Dorado J, Gómez-Santos N, Pérez J. A novel mechanism of bacterial adaptation mediated by copper-dependent RNA polymerase σ factors. Transcription 2012; 3:63-7. [PMID: 22414752 DOI: 10.4161/trns.19498] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
One of the mechanisms widely used by bacteria to adapt to their environment is mediated by alternative σ factors. Here we discuss the mechanism of action of a novel metal-dependent ECF σ factor, whose ability to bind DNA depends on the redox state of copper.
Collapse
Affiliation(s)
- José Muñoz-Dorado
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Granada, Spain.
| | | | | |
Collapse
|
63
|
Muramatsu M, Hihara Y. Acclimation to high-light conditions in cyanobacteria: from gene expression to physiological responses. JOURNAL OF PLANT RESEARCH 2012; 125:11-39. [PMID: 22006212 DOI: 10.1007/s10265-011-0454-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 08/23/2011] [Indexed: 05/04/2023]
Abstract
Photosynthetic organisms have evolved various acclimatory responses to high-light (HL) conditions to maintain a balance between energy supply (light harvesting and electron transport) and consumption (cellular metabolism) and to protect the photosynthetic apparatus from photodamage. The molecular mechanism of HL acclimation has been extensively studied in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Whole genome DNA microarray analyses have revealed that the change in gene expression profile under HL is closely correlated with subsequent acclimatory responses such as (1) acceleration in the rate of photosystem II turnover, (2) downregulation of light harvesting capacity, (3) development of a protection mechanism for the photosystems against excess light energy, (4) upregulation of general protection mechanism components, and (5) regulation of carbon and nitrogen assimilation. In this review article, we survey recent progress in the understanding of the molecular mechanisms of these acclimatory responses in Synechocystis sp. PCC 6803. We also briefly describe attempts to understand HL acclimation in various cyanobacterial species in their natural environments.
Collapse
Affiliation(s)
- Masayuki Muramatsu
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Ibaraki, 305-8602, Japan
| | | |
Collapse
|
64
|
Iyer LM, Aravind L. Insights from the architecture of the bacterial transcription apparatus. J Struct Biol 2011; 179:299-319. [PMID: 22210308 DOI: 10.1016/j.jsb.2011.12.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 12/14/2011] [Accepted: 12/18/2011] [Indexed: 10/14/2022]
Abstract
We provide a portrait of the bacterial transcription apparatus in light of the data emerging from structural studies, sequence analysis and comparative genomics to bring out important but underappreciated features. We first describe the key structural highlights and evolutionary implications emerging from comparison of the cellular RNA polymerase subunits with the RNA-dependent RNA polymerase involved in RNAi in eukaryotes and their homologs from newly identified bacterial selfish elements. We describe some previously unnoticed domains and the possible evolutionary stages leading to the RNA polymerases of extant life forms. We then present the case for the ancient orthology of the basal transcription factors, the sigma factor and TFIIB, in the bacterial and the archaeo-eukaryotic lineages. We also present a synopsis of the structural and architectural taxonomy of specific transcription factors and their genome-scale demography. In this context, we present certain notable deviations from the otherwise invariant proteome-wide trends in transcription factor distribution and use it to predict the presence of an unusual lineage-specifically expanded signaling system in certain firmicutes like Paenibacillus. We then discuss the intersection between functional properties of transcription factors and the organization of transcriptional networks. Finally, we present some of the interesting evolutionary conundrums posed by our newly gained understanding of the bacterial transcription apparatus and potential areas for future explorations.
Collapse
Affiliation(s)
- Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, Room 5N50, Bethesda, MD 20894, USA
| | | |
Collapse
|
65
|
De Vos D, Bruggeman FJ, Westerhoff HV, Bakker BM. How molecular competition influences fluxes in gene expression networks. PLoS One 2011; 6:e28494. [PMID: 22163025 PMCID: PMC3230629 DOI: 10.1371/journal.pone.0028494] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 11/09/2011] [Indexed: 11/30/2022] Open
Abstract
Often, in living cells different molecular species compete for binding to the same molecular target. Typical examples are the competition of genes for the transcription machinery or the competition of mRNAs for the translation machinery. Here we show that such systems have specific regulatory features and how they can be analysed. We derive a theory for molecular competition in parallel reaction networks. Analytical expressions for the response of network fluxes to changes in the total competitor and common target pools indicate the precise conditions for ultrasensitivity and intuitive rules for competitor strength. The calculations are based on measurable concentrations of the competitor-target complexes. We show that kinetic parameters, which are usually tedious to determine, are not required in the calculations. Given their simplicity, the obtained equations are easily applied to networks of any dimension. The new theory is illustrated for competing sigma factors in bacterial transcription and for a genome-wide network of yeast mRNAs competing for ribosomes. We conclude that molecular competition can drastically influence the network fluxes and lead to negative response coefficients and ultrasensitivity. Competitors that bind a large fraction of the target, like bacterial σ70, tend to influence competing pathways strongly. The less a competitor is saturated by the target, the more sensitive it is to changes in the concentration of the target, as well as to other competitors. As a consequence, most of the mRNAs in yeast turn out to respond ultrasensitively to changes in ribosome concentration. Finally, applying the theory to a genome-wide dataset we observe that high and low response mRNAs exhibit distinct Gene Ontology profiles.
Collapse
Affiliation(s)
- Dirk De Vos
- Molecular Cell Physiology, Netherlands Institute for Systems Biology, Department of Molecular Cell Biology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands
| | - Frank J. Bruggeman
- Molecular Cell Physiology, Netherlands Institute for Systems Biology, Department of Molecular Cell Biology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Regulatory Networks Group, Netherlands Institute for Systems Biology, Life Sciences, Centre for Mathematics and Computer Science, Amsterdam, The Netherlands
| | - Hans V. Westerhoff
- Molecular Cell Physiology, Netherlands Institute for Systems Biology, Department of Molecular Cell Biology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands
- Manchester Centre for Integrative Systems Biology, Manchester Interdisciplinary Biocentre, the University of Manchester, Manchester, United Kingdom
| | - Barbara M. Bakker
- Molecular Cell Physiology, Netherlands Institute for Systems Biology, Department of Molecular Cell Biology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
66
|
Zhilina E, Esyunina D, Brodolin K, Kulbachinskiy A. Structural transitions in the transcription elongation complexes of bacterial RNA polymerase during σ-dependent pausing. Nucleic Acids Res 2011; 40:3078-91. [PMID: 22140106 PMCID: PMC3326312 DOI: 10.1093/nar/gkr1158] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A transcription initiation factor, the σ70 subunit of Escherichia coli RNA polymerase (RNAP) induces transcription pausing through the binding to a promoter-like pause-inducing sequence in the DNA template during transcription elongation. Here, we investigated the mechanism of σ-dependent pausing using reconstituted transcription elongation complexes which allowed highly efficient and precisely controlled pause formation. We demonstrated that, following engagement of the σ subunit to the pause site, RNAP continues RNA synthesis leading to formation of stressed elongation complexes, in which the nascent RNA remains resistant to Gre-induced cleavage while the transcription bubble and RNAP footprint on the DNA template extend in downstream direction, likely accompanied by DNA scrunching. The stressed complexes can then either break σ-mediated contacts and continue elongation or isomerize to a backtracked conformation. Suppressing of the RNAP backtracking decreases pausing and increases productive elongation. On the contrary, core RNAP mutations that impair RNAP interactions with the downstream part of the DNA template stimulate pausing, presumably by destabilizing the stressed complexes. We propose that interplay between DNA scrunching and RNAP backtracking may have an essential role in transcription pausing and its regulation in various systems.
Collapse
Affiliation(s)
- Ekaterina Zhilina
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | | | | | | |
Collapse
|
67
|
Affiliation(s)
- Sofia Österberg
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden;
| | | | - Victoria Shingler
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden;
| |
Collapse
|
68
|
Morikawa K, Ohniwa RL, Ohta T, Tanaka Y, Takeyasu K, Msadek T. Adaptation beyond the stress response: cell structure dynamics and population heterogeneity in Staphylococcus aureus. Microbes Environ 2011; 25:75-82. [PMID: 21576857 DOI: 10.1264/jsme2.me10116] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Staphylococcus aureus, a major opportunistic pathogen responsible for a broad spectrum of infections, naturally inhabits the human nasal cavity in about 30% of the population. The unique adaptive potential displayed by S. aureus has made it one of the major causes of nosocomial infections today, emphasized by the rapid emergence of multiple antibiotic-resistant strains over the past few decades. The uncanny ability to adapt to harsh environments is essential for staphylococcal persistence in infections or as a commensal, and a growing body of evidence has revealed critical roles in this process for cellular structural dynamics, and population heterogeneity. These two exciting areas of research are now being explored to identify new molecular mechanisms governing these adaptational strategies.
Collapse
Affiliation(s)
- Kazuya Morikawa
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305–8575, Japan.
| | | | | | | | | | | |
Collapse
|
69
|
Schweimer K, Prasch S, Sujatha PS, Bubunenko M, Gottesman ME, Rösch P. NusA interaction with the α subunit of E. coli RNA polymerase is via the UP element site and releases autoinhibition. Structure 2011; 19:945-54. [PMID: 21742261 PMCID: PMC3134791 DOI: 10.1016/j.str.2011.03.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 02/28/2011] [Accepted: 03/05/2011] [Indexed: 10/18/2022]
Abstract
Elongating Escherichia coli RNAP is modulated by NusA protein. The C-terminal domain (CTD) of the RNAP α subunit (αCTD) interacts with the acidic CTD 2 (AR2) of NusA, releasing the autoinhibitory blockade of the NusA S1-KH1-KH2 motif and allowing NusA to bind nascent nut spacer RNA. We determined the solution conformation of the AR2:αCTD complex. The αCTD residues that interface with AR2 are identical to those that recognize UP promoter elements A nusA-ΔAR2 mutation does not affect UP-dependent rrnH transcription initiation in vivo. Instead, the mutation inhibits Rho-dependent transcription termination at phage λtR1, which lies adjacent to the λnutR sequence. The Rho-dependent λtimm terminator, which is not preceded by a λnut sequence, is fully functional. We propose that constitutive binding of NusA-ΔAR2 to λnutR occludes Rho. In addition, the mutation confers a dominant defect in exiting stationary phase.
Collapse
Affiliation(s)
- Kristian Schweimer
- Lehrstuhl Biopolymere und Forschungszentrum für Bio-Makromoleküle, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Stefan Prasch
- Lehrstuhl Biopolymere und Forschungszentrum für Bio-Makromoleküle, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Pagadala Santhanam Sujatha
- Lehrstuhl Biopolymere und Forschungszentrum für Bio-Makromoleküle, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Mikhail Bubunenko
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702
- Basic Science Program, SAIC-Frederick, Inc., National Cancer Institute at Frederick, Frederick, MD 21702
| | - Max E. Gottesman
- Department of Microbiology and Immunology and Institute of Cancer Research, Columbia University Medical Center, New York, New York 10032
| | - Paul Rösch
- Lehrstuhl Biopolymere und Forschungszentrum für Bio-Makromoleküle, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| |
Collapse
|
70
|
Transcriptional response of the photoheterotrophic marine bacterium Dinoroseobacter shibae to changing light regimes. ISME JOURNAL 2011; 5:1957-68. [PMID: 21654848 DOI: 10.1038/ismej.2011.68] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bacterial aerobic anoxygenic photosynthesis (AAP) is an important mechanism of energy generation in aquatic habitats, accounting for up to 5% of the surface ocean's photosynthetic electron transport. We used Dinoroseobacter shibae, a representative of the globally abundant marine Roseobacter clade, as a model organism to study the transcriptional response of a photoheterotrophic bacterium to changing light regimes. Continuous cultivation of D. shibae in a chemostat in combination with time series microarray analysis was used in order to identify gene-regulatory patterns after switching from dark to light and vice versa. The change from heterotrophic growth in the dark to photoheterotrophic growth in the light was accompanied by a strong but transient activation of a broad stress response to the formation of singlet oxygen, an immediate downregulation of photosynthesis-related genes, fine-tuning of the expression of ETC components, as well as upregulation of the transcriptional and translational apparatus. Furthermore, our data suggest that D. shibae might use the 3-hydroxypropionate cycle for CO(2) fixation. Analysis of the transcriptome dynamics after switching from light to dark showed relatively small changes and a delayed activation of photosynthesis gene expression, indicating that, except for light other signals must be involved in their regulation. Providing the first analysis of AAP on the level of transcriptome dynamics, our data allow the formulation of testable hypotheses on the cellular processes affected by AAP and the mechanisms involved in light- and stress-related gene regulation.
Collapse
|
71
|
Mekler V, Minakhin L, Severinov K. A critical role of downstream RNA polymerase-promoter interactions in the formation of initiation complex. J Biol Chem 2011; 286:22600-8. [PMID: 21525530 DOI: 10.1074/jbc.m111.247080] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleation of promoter melting in bacteria is coupled with RNA polymerase (RNAP) binding to a conserved -10 promoter element located at the upstream edge of the transcription bubble. The mechanism of downstream propagation of the transcription bubble to include the transcription start site is unclear. Here we introduce new model downstream fork junction promoter fragments that specifically bind RNAP and mimic the downstream segment of promoter complexes. We demonstrate that RNAP binding to downstream fork junctions is coupled with DNA melting around the transcription start point. Consequently, certain downstream fork junction probes can serve as transcription templates. Using a protein beacon fluorescent method, we identify structural determinants of affinity and transcription activity of RNAP-downstream fork junction complexes. Measurements of RNAP interaction with double-stranded promoter fragments reveal that the strength of RNAP interactions with downstream DNA plays a critical role in promoter opening and that the length of the downstream duplex must exceed a critical length for efficient formation of transcription competent open promoter complex.
Collapse
Affiliation(s)
- Vladimir Mekler
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
72
|
Paratkar S, Deshpande AP, Tang GQ, Patel SS. The N-terminal domain of the yeast mitochondrial RNA polymerase regulates multiple steps of transcription. J Biol Chem 2011; 286:16109-20. [PMID: 21454631 DOI: 10.1074/jbc.m111.228023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription of the yeast (Saccharomyces cerevisiae) mitochondrial (mt) genome is catalyzed by nuclear-encoded proteins that include the core RNA polymerase (RNAP) subunit Rpo41 and the transcription factor Mtf1. Rpo41 is homologous to the single-subunit bacteriophage T7/T3 RNAP. Its ∼80-kDa C-terminal domain is highly conserved among mt RNAPs, but its ∼50-kDa N-terminal domain (NTD) is less conserved and not present in T7/T3 RNAP. To understand the role of the NTD, we have biochemically characterized a series of NTD deletion mutants of Rpo41. Our studies show that NTD regulates multiple steps of transcription initiation. Interestingly, NTD functions in an autoinhibitory manner during initiation, and its partial deletion increases the efficiency of RNA synthesis. Deletion of 1-270 amino acids (DN270) reduces abortive synthesis and increases full-length to abortive RNA ratio relative to full-length (FL) Rpo41. A larger deletion of 1-380 amino acids (DN380), decreases RNA synthesis on duplex but not on premelted promoter. We show that DN380 is defective in promoter opening near the transcription start site. Most strikingly, both DN270 and DN380 catalyze highly processive RNA synthesis on the premelted promoter, and unlike the FL Rpo41, the mutants are not inhibited by Mtf1. Both mutants show weaker interactions with Mtf1, which explains many of our results, and particularly the ability of the mutants to efficiently transition from initiation to elongation. We propose that in vivo the accessory proteins that bind NTD may modulate interactions of Rpo41 with the promoter/Mtf1 to activate and allow timely release from Mtf1 for transition into elongation.
Collapse
Affiliation(s)
- Swaroopa Paratkar
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
73
|
Saecker RM, Record MT, Dehaseth PL. Mechanism of bacterial transcription initiation: RNA polymerase - promoter binding, isomerization to initiation-competent open complexes, and initiation of RNA synthesis. J Mol Biol 2011; 412:754-71. [PMID: 21371479 DOI: 10.1016/j.jmb.2011.01.018] [Citation(s) in RCA: 238] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 01/07/2011] [Accepted: 01/08/2011] [Indexed: 10/18/2022]
Abstract
Initiation of RNA synthesis from DNA templates by RNA polymerase (RNAP) is a multi-step process, in which initial recognition of promoter DNA by RNAP triggers a series of conformational changes in both RNAP and promoter DNA. The bacterial RNAP functions as a molecular isomerization machine, using binding free energy to remodel the initial recognition complex, placing downstream duplex DNA in the active site cleft and then separating the nontemplate and template strands in the region surrounding the start site of RNA synthesis. In this initial unstable "open" complex the template strand appears correctly positioned in the active site. Subsequently, the nontemplate strand is repositioned and a clamp is assembled on duplex DNA downstream of the open region to form the highly stable open complex, RP(o). The transcription initiation factor, σ(70), plays critical roles in promoter recognition and RP(o) formation as well as in early steps of RNA synthesis.
Collapse
Affiliation(s)
- Ruth M Saecker
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | |
Collapse
|
74
|
Σ(70)-dependent transcription pausing in Escherichia coli. J Mol Biol 2011; 412:782-92. [PMID: 21316374 DOI: 10.1016/j.jmb.2011.02.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 01/31/2011] [Accepted: 02/03/2011] [Indexed: 11/24/2022]
Abstract
After promoter escape in Escherichia coli, the initiating σ(70) factor is retained by core RNA polymerase (RNAP) for at least tens of nucleotides. While it is bound, σ(70) can engage a repeat of a promoter DNA element located downstream of the promoter and thereby induce a transcription pause. The σ(70)-dependent promoter-proximal pause that occurs at all lambdoid phage late gene promoters is essential to regulation of the late gene operons. Several, and possibly many, E. coli promoters have associated σ(70)-dependent pauses. Clearly characterized σ(70)-dependent pauses occur within 25 nucleotides of the start site, but σ(70)-dependent pausing might occur farther downstream as well. In this review, we summarize evidence for σ(70)-dependent promoter-proximal and promoter-distal pausing, and we discuss its potential regulatory function and mechanistic basis.
Collapse
|
75
|
Deighan P, Pukhrambam C, Nickels BE, Hochschild A. Initial transcribed region sequences influence the composition and functional properties of the bacterial elongation complex. Genes Dev 2011; 25:77-88. [PMID: 21205867 DOI: 10.1101/gad.1991811] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The bacterial RNA polymerase (RNAP) holoenzyme consists of a catalytic core enzyme (α(2)ββ'ω) in complex with a σ factor that is essential for promoter recognition and transcription initiation. During early elongation, the stability of interactions between σ and the remainder of the transcription complex decreases. Nevertheless, there is no mechanistic requirement for release of σ upon the transition to elongation. Furthermore, σ can remain associated with RNAP during transcription elongation and influence regulatory events that occur during transcription elongation. Here we demonstrate that promoter-like DNA sequence elements within the initial transcribed region that are known to induce early elongation pausing through sequence-specific interactions with σ also function to increase the σ content of downstream elongation complexes. Our findings establish σ-dependent pausing as a mechanism by which initial transcribed region sequences can influence the composition and functional properties of the transcription elongation complex over distances of at least 700 base pairs.
Collapse
Affiliation(s)
- Padraig Deighan
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
76
|
Wang F, Greene EC. Single-molecule studies of transcription: from one RNA polymerase at a time to the gene expression profile of a cell. J Mol Biol 2011; 412:814-31. [PMID: 21255583 DOI: 10.1016/j.jmb.2011.01.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 01/05/2011] [Accepted: 01/08/2011] [Indexed: 12/30/2022]
Abstract
Single-molecule techniques have emerged as powerful tools for deciphering mechanistic details of transcription and have yielded discoveries that would otherwise have been impossible to make through the use of more traditional biochemical and/or biophysical techniques. Here, we provide a brief overview of single-molecule techniques most commonly used for studying RNA polymerase and transcription. We then present specific examples of single-molecule studies that have contributed to our understanding of key mechanistic details for each different stage of the transcription cycle. Finally, we discuss emerging single-molecule approaches and future directions, including efforts to study transcription at the single-molecule level in living cells.
Collapse
Affiliation(s)
- Feng Wang
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
77
|
Perdue SA, Roberts JW. A backtrack-inducing sequence is an essential component of Escherichia coli σ(70)-dependent promoter-proximal pausing. Mol Microbiol 2010; 78:636-50. [PMID: 21382107 DOI: 10.1111/j.1365-2958.2010.07347.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
RNA polymerase of both bacteria and eukaryotes can stall or pause within tens of base pairs of its initiation site at the promoter, a state that may reflect important regulatory events in early transcription. In the bacterial model system, the σ(70) initiation factor stabilizes such pauses by binding a downstream repeat of a promoter segment, especially the '-10' promoter element. We first show here that the '-35' promoter element also can stabilize promoter-proximal pausing, through interaction with σ(70) region 4. We further show that an essential element of either type of pause is a sequence just upstream of the site of pausing that stabilizes RNA polymerase backtracking. Although the pause is not intrinsically backtracked, we suggest that the same sequence element is required both to stabilize the paused state and to potentiate backtracking.
Collapse
Affiliation(s)
- Sarah A Perdue
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
78
|
Khodak YA, Koroleva ON, Drutsa VL. Purification of core enzyme of Escherichia coli RNA polymerase by affinity chromatography. BIOCHEMISTRY (MOSCOW) 2010; 75:769-76. [DOI: 10.1134/s000629791006012x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
79
|
Abstract
How life emerged on this planet is one of the most important and fundamental questions of science. Although nearly all details concerning our origins have been lost in the depths of time, there is compelling evidence to suggest that the earliest life might have exploited the catalytic and self-recognition properties of RNA to survive. If an RNA based replicating system could be constructed in the laboratory, it would be much easier to understand the challenges associated with the very earliest steps in evolution and provide important insight into the establishment of the complex metabolic systems that now dominate this planet. Recent progress into the selection and characterization of ribozymes that promote nucleotide synthesis and RNA polymerization are discussed and outstanding problems in the field of RNA-mediated RNA replication are summarized.
Collapse
Affiliation(s)
- Leslie K L Cheng
- Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | | |
Collapse
|
80
|
Goodrich JA, Kugel JF. Dampening DNA binding: a common mechanism of transcriptional repression for both ncRNAs and protein domains. RNA Biol 2010; 7:305-9. [PMID: 20436282 DOI: 10.4161/rna.7.3.11910] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
With eukaryotic non-coding RNAs (ncRNAs) now established as critical regulators of cellular transcription, the true diversity with which they can elicit biological effects is beginning to be appreciated. Two ncRNAs, mouse B2 RNA and human Alu RNA, have been found to repress mRNA transcription in response to heat shock. They do so by binding directly to RNA polymerase II, assembling into complexes on promoter DNA, and disrupting contacts between the polymerase and the DNA. Such a mechanism of repression had not previously been observed for a eukaryotic ncRNA; however, there are examples of eukaryotic protein domains that repress transcription by blocking essential protein-DNA interactions. Comparing the mechanism of transcriptional repression utilized by these protein domains to that used by B2 and Alu RNAs raises intriguing questions regarding transcriptional control, and how B2 and Alu RNAs might themselves be regulated.
Collapse
Affiliation(s)
- James A Goodrich
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA.
| | | |
Collapse
|
81
|
Shephard L, Dobson N, Unrau PJ. Binding and release of the 6S transcriptional control RNA. RNA (NEW YORK, N.Y.) 2010; 16:885-92. [PMID: 20354151 PMCID: PMC2856883 DOI: 10.1261/rna.2036210] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
6S RNA is an important noncoding RNA that regulates eubacterial transcription. In Escherichia coli this RNA binds to the sigma(70) RNA polymerase holoenzyme and is released by the synthesis of a short product RNA. In order to determine how binding and release are controlled by the 6S RNA sequence, we used in vitro selection to screen a high diversity library containing approximately 4 x 10(12) sequences for functional 6S RNA variants. Residues critical for binding were found to be located in a "-35" region upstream of the 6S RNA transcription bubble mimic structure. Mutating these phylogenetically conserved residues invariably led to decreases in binding and removing them abolished binding, implicating these nucleotides in a biologically important interaction with the Esigma(70) complex. Interestingly, mutation of phylogenetically conserved "-10" residues that were also upstream of the site of pRNA synthesis was found to influence 6S RNA release rates in addition to modulating -35 binding. These results indicate how 6S RNA -35 binding to sigma(70) RNA polymerase holoenzyme can regulate expression from "strong" and "weak" -35 DNA promoters and suggest that 6S RNA release rates have been fine tuned over evolutionary time so as to correctly regulate cellular levels of transcription.
Collapse
Affiliation(s)
- Lindsay Shephard
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | | | | |
Collapse
|
82
|
Le Derout J, Boni IV, Régnier P, Hajnsdorf E. Hfq affects mRNA levels independently of degradation. BMC Mol Biol 2010; 11:17. [PMID: 20167073 PMCID: PMC2834685 DOI: 10.1186/1471-2199-11-17] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 02/18/2010] [Indexed: 12/02/2022] Open
Abstract
Background The bacterial Lsm protein, Hfq, is an RNA chaperone involved in many reactions related to RNA metabolism, such as replication and stability, control of small RNA activity and polyadenylation. Despite this wide spectrum of known functions, the global role of Hfq is almost certainly undervalued; its capacity to bind DNA and to interact with many other proteins are only now beginning to be taken into account. Results The role of Hfq in the maturation and degradation of the rpsO mRNA of E. coli was investigated in vivo. The data revealed a decrease in rpsO mRNA abundance concomitant to an increase in its stability when Hfq is absent. This indicates that the change in mRNA levels in hfq mutants does not result from its modification of RNA stability. Moreover, a series of independent experiments have revealed that the decrease in mRNA level is not a consequence of a reduction of translation efficiency and that Hfq is not directly implicated in translational control of rpsO expression. Reduced steady-state mRNA levels in the absence of Hfq were also shown for rpsT, rpsB and rpsB-tsf, but not for lpp, pnp or tRNA transcripts. The abundance of chimeric transcripts rpsO-lacZ and rpsB-lacZ, whose expression was driven by rpsO and rpsB promoters, respectively, was also lower in the hfq null-mutants, while the β-galactosidase yield remained about the same as in the parent wild-type strain. Conclusions The data obtained suggest that alteration of rpsO, rpsT and rpsB-tsf transcript levels observed under conditions of Hfq deficiency is not caused by the post-transcriptional events, such as mRNA destabilization or changes in translation control, and may rather result from changes in transcriptional activity. So far, how Hfq affects transcription remains unclear. We propose that one of the likely mechanisms of Hfq-mediated modulation of transcription might operate early in the elongation step, when interaction of Hfq with a nascent transcript would help to overcome transcription pauses and to prevent preliminary transcript release.
Collapse
Affiliation(s)
- Jacques Le Derout
- UPR CNRS n degrees 9073, conventionnée avec l'Université Paris 7 - Denis Diderot Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | | | | | |
Collapse
|
83
|
Navarro Llorens JM, Tormo A, Martínez-García E. Stationary phase in gram-negative bacteria. FEMS Microbiol Rev 2010; 34:476-95. [PMID: 20236330 DOI: 10.1111/j.1574-6976.2010.00213.x] [Citation(s) in RCA: 329] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Conditions that sustain constant bacterial growth are seldom found in nature. Oligotrophic environments and competition among microorganisms force bacteria to be able to adapt quickly to rough and changing situations. A particular lifestyle composed of continuous cycles of growth and starvation is commonly referred to as feast and famine. Bacteria have developed many different mechanisms to survive in nutrient-depleted and harsh environments, varying from producing a more resistant vegetative cell to complex developmental programmes. As a consequence of prolonged starvation, certain bacterial species enter a dynamic nonproliferative state in which continuous cycles of growth and death occur until 'better times' come (restoration of favourable growth conditions). In the laboratory, microbiologists approach famine situations using batch culture conditions. The entrance to the stationary phase is a very regulated process governed by the alternative sigma factor RpoS. Induction of RpoS changes the gene expression pattern, aiming to produce a more resistant cell. The study of stationary phase revealed very interesting phenomena such as the growth advantage in stationary phase phenotype. This review focuses on some of the interesting responses of gram-negative bacteria when they enter the fascinating world of stationary phase.
Collapse
|
84
|
Devi PG, Campbell EA, Darst SA, Nickels BE. Utilization of variably spaced promoter-like elements by the bacterial RNA polymerase holoenzyme during early elongation. Mol Microbiol 2010; 75:607-22. [PMID: 20070531 DOI: 10.1111/j.1365-2958.2009.07021.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The bacterial RNA polymeras holoenzyme consists of a catalytic core enzyme in complex with a sigma factor that is required for promoter-specific transcription initiation. During initiation, members of the sigma(70) family of sigma factors contact two conserved promoter elements, the -10 and -35 elements, which are separated by approximately 17 base pairs (bp). sigma(70) family members contain four flexibly linked domains. Two of these domains, sigma(2) and sigma(4), contain determinants for interactions with the promoter -10 and -35 elements respectively. sigma(2) and sigma(4) also contain core-binding determinants. When bound to core the inter-domain distance between sigma(2) and sigma(4) matches the distance between promoter elements separated by approximately 17 bp. Prior work indicates that during early elongation the nascent RNA-assisted displacement of sigma(4) from core can enable the holoenzyme to adopt a configuration in which sigma(2) and sigma(4) are bound to 'promoter-like' DNA elements separated by a single base pair. Here we demonstrate that holoenzyme can also adopt configurations in which sigma(2) and sigma(4) are bound to 'promoter-like' DNA elements separated by 0, 2 or 3 bp. Thus, our findings suggest that displacement of sigma(4) from core enables the RNA polymerase holoenzyme to adopt a broad range of 'elongation-specific' configurations.
Collapse
|
85
|
DeHaseth PL, Gott JM. Conformational flexibility of sigma(70) in anti-terminator loading. Mol Microbiol 2009; 75:543-6. [PMID: 20025658 DOI: 10.1111/j.1365-2958.2009.07022.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In promoter DNA, the preferred distance of the -10 and -35 elements for interacting with RNA polymerase-bound sigma(70) is 17 bp. However, the Devi et al. paper in this issue of Molecular Microbiology demonstrates that when the C-terminal domain of sigma(70), including the 3.2 linker, is not attached to the core enzyme, distances between 0 and 3 bp can be accommodated. This attests to the great flexibility of the 3.2 linker. The particularly stable complex with the 2 bp separation may lend itself to structural studies of an early elongation complex containing sigma(70).
Collapse
Affiliation(s)
- Pieter L DeHaseth
- RNA Center, Case Western Reserve University, Cleveland, OH 44106-4973, USA.
| | | |
Collapse
|
86
|
Real-time observation of the transition from transcription initiation to elongation of the RNA polymerase. Proc Natl Acad Sci U S A 2009; 106:22175-80. [PMID: 20018723 DOI: 10.1073/pnas.0906979106] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transition from initiation to elongation of the RNA polymerase (RNAP) is an important stage of transcription that often limits the production of the full-length RNA. Little is known about the RNAP transition kinetics and the steps that dictate the transition rate, because of the challenge in monitoring subpopulations of the transient and heterogeneous transcribing complexes in rapid and real time. Here, we have dissected the complete transcription initiation pathway of T7 RNAP by using kinetic modeling of RNA synthesis and by determining the initiation (IC) to elongation (EC) transition kinetics at each RNA polymerization step using single-molecule and stopped-flow FRET methods. We show that the conversion of IC to EC in T7 RNAP consensus promoter occurs only after 8- to 12-nt synthesis, and the 12-nt synthesis represents a critical juncture in the transcriptional initiation pathway when EC formation is most efficient. We show that the slow steps of transcription initiation, including DNA scrunching/RNAP-promoter rotational changes during 5- to 8-nt synthesis, not the major conformational changes, dictate the overall rate of EC formation in T7 RNAP and represent key steps that regulate the synthesis of full-length RNA.
Collapse
|
87
|
Ribeiro AS, Smolander OP, Rajala T, Häkkinen A, Yli-Harja O. Delayed stochastic model of transcription at the single nucleotide level. J Comput Biol 2009; 16:539-53. [PMID: 19361326 DOI: 10.1089/cmb.2008.0153] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We present a delayed stochastic model of transcription at the single nucleotide level. The model accounts for the promoter open complex formation and includes alternative pathways to elongation, namely pausing, arrest, misincorporation and editing, pyrophosphorolysis, and premature termination. We confront the dynamics of this detailed model with a single-step multi-delayed stochastic model and with measurements of expression of a repressed gene at the single molecule level. At low expression rates both models match the experiments but, at higher rates the two models differ significantly, with consequences to cell-to-cell phenotypic variability. The alternative pathway reactions, due to, for example, causing polymerases to collide more often on the template, are the cause for the difference in dynamical behaviors. Next, we confront the model with measurements of the transcriptional dynamics at the single RNA level of an induced gene and show that RNA production, besides its bursting dynamics, also exhibits pulses (2 or more RNAs produced in intervals smaller than the smallest interval between initiations). The distribution of occurrences and amplitudes of pulses match the experimental measurements. This pulsing and the noise at the elongation stage are shown to play a role in the dynamics of a genetic switch.
Collapse
Affiliation(s)
- Andre S Ribeiro
- Computational Systems Biology Research Group, Department of Signal Processing, Tampere University of Technology, Tampere, Finland.
| | | | | | | | | |
Collapse
|
88
|
Goodrich JA, Kugel JF. From bacteria to humans, chromatin to elongation, and activation to repression: The expanding roles of noncoding RNAs in regulating transcription. Crit Rev Biochem Mol Biol 2009; 44:3-15. [PMID: 19107624 DOI: 10.1080/10409230802593995] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Noncoding RNAs (ncRNAs) have emerged as key regulators of transcription, often functioning as trans-acting factors akin to prototypical protein transcriptional regulators. Inside cells, ncRNAs are now known to control transcription of single genes as well as entire transcriptional programs in response to developmental and environmental cues. In doing so, they target nearly all levels of the transcription process from regulating chromatin structure through controlling transcript elongation. Moreover, trans-acting ncRNA transcriptional regulators have been found in organisms as diverse as bacteria and humans. With the recent discovery that much of the DNA in genomes is transcribed into ncRNAs with yet unknown function, it is likely that future studies will reveal many more ncRNA regulators of transcription.
Collapse
Affiliation(s)
- James A Goodrich
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, 80309-0215, USA.
| | | |
Collapse
|
89
|
Structure of the RNA polymerase core-binding domain of sigma(54) reveals a likely conformational fracture point. J Mol Biol 2009; 390:70-82. [PMID: 19426742 DOI: 10.1016/j.jmb.2009.04.070] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Revised: 04/24/2009] [Accepted: 04/28/2009] [Indexed: 11/22/2022]
Abstract
Transcription initiation by bacterial sigma(54)-RNA polymerase requires a conformational change of the holopolymerase-DNA complex, driven by an enhancer-binding protein. Although structures of the core polymerase and the more common sigma(70) factor have been determined, little is known about the structure of the sigma(54) variant. We report here the structure of an Aquifex aeolicus sigma(54) domain (residues 69-198), which binds core RNA polymerase. The structure is composed of two distinct subdomains held together by a small, conserved hydrophobic interface that appears to act as a fracture point in the structure. The N-terminal, four-helical subdomain has a negative surface and conserved residues that likely contact the core polymerase, while the C-terminal, three-helical bundle has a strongly positive patch that could contact DNA. Sequence conservation indicates that these structural features are conserved and are important for the role of sigma(54) in the polymerase complex.
Collapse
|
90
|
Busby S, Kolb A, Buc H. Where it all Begins: An Overview of Promoter Recognition and Open Complex Formation. RNA POLYMERASES AS MOLECULAR MOTORS 2009. [DOI: 10.1039/9781847559982-00013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Stephen Busby
- School of Biosciences, University of Birmingham Birmingham B15 2TT United Kingdom
| | - Annie Kolb
- Institut Pasteur, Molecular Genetics Unit and CNRS URA 2172 25 rue du Dr. Roux 75724 Paris Cedex 15 France
| | - Henri Buc
- CIS Institut Pasteur75724Paris Cedex 15France
| |
Collapse
|
91
|
Mooney RA, Davis SE, Peters JM, Rowland JL, Ansari AZ, Landick R. Regulator trafficking on bacterial transcription units in vivo. Mol Cell 2009; 33:97-108. [PMID: 19150431 DOI: 10.1016/j.molcel.2008.12.021] [Citation(s) in RCA: 198] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 10/13/2008] [Accepted: 12/17/2008] [Indexed: 11/30/2022]
Abstract
The trafficking patterns of the bacterial regulators of transcript elongation sigma(70), rho, NusA, and NusG on genes in vivo and the explanation for promoter-proximal peaks of RNA polymerase (RNAP) are unknown. Genome-wide, E. coli ChIP-chip revealed distinct association patterns of regulators as RNAP transcribes away from promoters (rho first, then NusA, then NusG). However, the interactions of elongating complexes with these regulators did not differ significantly among most transcription units. A modest variation of NusG signal among genes reflected increased NusG interaction as transcription progresses, rather than functional specialization of elongating complexes. Promoter-proximal RNAP peaks were offset from sigma(70) peaks in the direction of transcription and co-occurred with NusA and rho peaks, suggesting that the RNAP peaks reflected elongating, rather than initiating, complexes. However, inhibition of rho did not increase RNAP levels within genes downstream from the RNAP peaks, suggesting the peaks are caused by a mechanism other than rho-dependent attenuation.
Collapse
Affiliation(s)
- Rachel A Mooney
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
92
|
Guo M, Xu F, Yamada J, Egelhofer T, Gao Y, Hartzog GA, Teng M, Niu L. Core structure of the yeast spt4-spt5 complex: a conserved module for regulation of transcription elongation. Structure 2009; 16:1649-58. [PMID: 19000817 DOI: 10.1016/j.str.2008.08.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2008] [Revised: 08/20/2008] [Accepted: 08/20/2008] [Indexed: 11/30/2022]
Abstract
The Spt4-Spt5 complex is an essential RNA polymerase II elongation factor found in all eukaryotes and important for gene regulation. We report here the crystal structure of Saccharomyces cerevisiae Spt4 bound to the NGN domain of Spt5. This structure reveals that Spt4-Spt5 binding is governed by an acid-dipole interaction between Spt5 and Spt4. Mutations that disrupt this interaction disrupt the complex. Residues forming this pivotal interaction are conserved in the archaeal homologs of Spt4 and Spt5, which we show also form a complex. Even though bacteria lack a Spt4 homolog, the NGN domains of Spt5 and its bacterial homologs are structurally similar. Spt4 is located at a position that may help to maintain the functional conformation of the following KOW domains in Spt5. This structural and evolutionary perspective of the Spt4-Spt5 complex and its homologs suggest that it is an ancient, core component of the transcription elongation machinery.
Collapse
Affiliation(s)
- Min Guo
- Hefei National Laboratory for Physical Sciences at Microscale and Key Laboratory of Structural Biology, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230027, China
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Abstract
Regulatory ncRNAs (non-coding RNAs) adjust bacterial physiology in response to environmental cues. ncRNAs can base-pair to mRNAs and change their translation efficiency and/or their stability, or they can bind to proteins and modulate their activity. ncRNAs have been discovered in several species throughout the bacterial kingdom. This review illustrates the diversity of physiological processes and molecular mechanisms where ncRNAs are key regulators.
Collapse
|
94
|
Abstract
In Bacteria, transcription is catalyzed by a single RNA polymerase (RNAP) whose promoter selectivity and activity is governed by a wide variety of transcription factors. The net effect of these transcriptional regulators is to determine which genes are transcribed, and at what levels, under any specific growth condition. RNAP thus serves as a nexus of gene regulation that integrates the information coming from a variety of sensory systems to appropriately modulate gene expression. The techniques presented in this volume provide a set of tools and approaches for investigating the factors controlling RNAP activity at both individual promoters and on a genomic scale. This introductory chapter provides a brief overview of RNAP and the transcription cycle and introduces general principles of how the fundamental steps of transcription are influenced by both DNA (promoter) sequences and trans-acting factors.
Collapse
Affiliation(s)
- John D Helmann
- Department of Microbiology, Cornell University, 327 Wing Hall, Ithaca, NY 14853-8101, USA.
| |
Collapse
|
95
|
Gassman NR, Ho SO, Korlann Y, Chiang J, Wu Y, Perry LJ, Kim Y, Weiss S. In vivo assembly and single-molecule characterization of the transcription machinery from Shewanella oneidensis MR-1. Protein Expr Purif 2008; 65:66-76. [PMID: 19111618 DOI: 10.1016/j.pep.2008.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 11/12/2008] [Accepted: 11/12/2008] [Indexed: 11/30/2022]
Abstract
Harnessing the new bioremediation and biotechnology applications offered by the dissimilatory metal-reducing bacteria, Shewanella oneidensis MR-1, requires a clear understanding of its transcription machinery, a pivotal component in maintaining vitality and in responding to various conditions, including starvation and environmental stress. Here, we have reconstituted the S. oneidensis RNA polymerase (RNAP) core in vivo by generating a co-overexpression construct that produces a long polycistronic mRNA encoding all of the core subunits (alpha, beta, beta', and omega) and verified that this reconstituted core is capable of forming fully functional holoenzymes with the S. oneidensis sigma factors sigma(70), sigma(38), sigma(32), and sigma(24). Further, to demonstrate the applications for this reconstituted core, we report the application of single-molecule fluorescence resonance energy transfer (smFRET) assays to monitor the mechanisms of transcription by the S. oneidensis sigma(70)-RNAP holoenyzme. These results show that the reconstituted transcription machinery from S. oneidensis, like its Escherichia coli counterpart, "scrunches" the DNA into its active center during initial transcription, and that as the holoenzyme transitions into elongation, the release of sigma(70) is non-obligatory.
Collapse
Affiliation(s)
- Natalie R Gassman
- Department of Chemistry and Biochemistry, University of California, 607 Charles E. Young Dr. East, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Mutagenesis of region 4 of sigma 28 from Chlamydia trachomatis defines determinants for protein-protein and protein-DNA interactions. J Bacteriol 2008; 191:651-60. [PMID: 18978051 DOI: 10.1128/jb.01083-08] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription factor sigma(28) in Chlamydia trachomatis (sigma(28)(Ct)) plays a role in the regulation of genes that are important for late-stage morphological differentiation. In vitro mutational and genetic screening in Salmonella enterica serovar Typhimurium was performed in order to identify mutants with mutations in region 4 of sigma(28)(Ct) that were defective in sigma(28)-specific transcription. Specially, the previously undefined but important interactions between sigma(28)(Ct) region 4 and the flap domain of the RNA polymerase beta subunit (beta-flap) or the -35 element of the chlamydial hctB promoter were examined. Our results indicate that amino acid residues E206, Y214, and E222 of sigma(28)(Ct) contribute to an interaction with the beta-flap when sigma(28)(Ct) associates with the core RNA polymerase. These residues function in contacts with the beta-flap similarly to their counterpart residues in Escherichia coli sigma(70). Conversely, residue Q236 of sigma(28)(Ct) directly binds the chlamydial hctB -35 element. The conserved counterpart residue in E. coli sigma(70) has not been reported to interact with the -35 element of the sigma(70) promoter. Observed functional disparity between sigma(28)(Ct) and sigma(70) region 4 is consistent with their divergent properties in promoter recognition. This work provides new insight into understanding the molecular basis of gene regulation controlled by sigma(28)(Ct) in C. trachomatis.
Collapse
|
97
|
The bacteriophage lambda Q antiterminator protein contacts the beta-flap domain of RNA polymerase. Proc Natl Acad Sci U S A 2008; 105:15305-10. [PMID: 18832144 DOI: 10.1073/pnas.0805757105] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The multisubunit RNA polymerase (RNAP) in bacteria consists of a catalytically active core enzyme (alpha(2)beta beta'omega) complexed with a sigma factor that is required for promoter-specific transcription initiation. During early elongation the stability of interactions between sigma and core decreases, in part because of the nascent RNA-mediated destabilization of an interaction between region 4 of sigma and the flap domain of the beta-subunit (beta-flap). The nascent RNA-mediated destabilization of the sigma region 4/beta-flap interaction is required for the bacteriophage lambda Q antiterminator protein (lambdaQ) to engage the RNAP holoenzyme. Here, we provide an explanation for this requirement by showing that lambdaQ establishes direct contact with the beta-flap during the engagement process, thus competing with sigma(70) region 4 for access to the beta-flap. We also show that lambdaQ's affinity for the beta-flap is calibrated to ensure that lambdaQ activity is restricted to the lambda late promoter P(R'). Specifically, we find that strengthening the lambdaQ/beta-flap interaction allows lambdaQ to bypass the requirement for specific cis-acting sequence elements, a lambdaQ-DNA binding site and a RNAP pause-inducing element, that normally ensure lambdaQ is recruited exclusively to transcription complexes associated with P(R'). Our findings demonstrate that the beta-flap can serve as a direct target for regulators of elongation.
Collapse
|
98
|
Abstract
Promoter escape is the process that an initiated RNA polymerase (RNAP) molecule undergoes to achieve the initiation-elongation transition. Having made this transition, an RNAP molecule would be relinquished from its promoter hold to perform productive (full-length) transcription. Prior to the transition, this process is accompanied by abortive RNA formation-the amount and pattern of which is controlled by the promoter sequence information. Qualitative and quantitative analysis of abortive/productive transcription from several Escherichia coli promoters and their sequence variants led to the understanding that a strong (RNAP-binding) promoter is more likely to be rate limited (during transcription initiation) at the escape step and produce abortive transcripts. Of the two subelements in a promoter, the PRR (the core Promoter Recognition Region) was found to set the initiation frequency and the rate-limiting step, while the ITS (the Initial Transcribed Sequence region) modulated the ratio of abortive versus productive transcription. The highly abortive behavior of E. coli RNAP could be ameliorated by the presence of Gre (transcript cleavage stimulatory) factor(s), linking the first step in abortive RNA formation by the initial transcribing complexes (ITC) to RNAP backtracking. The discovery that translocation during the initiation stage occurs via DNA scrunching provided the source of energy that converts each ITC into a highly unstable "stressed intermediate." Mapping all of the biochemical information onto an X-ray crystallographic structural model of an open complex gave rise to a plausible mechanism of transcription initiation. The chapter concludes with contemplations of the kinetics and thermodynamics of abortive initiation-promoter escape.
Collapse
|
99
|
Transcription initiation in a single-subunit RNA polymerase proceeds through DNA scrunching and rotation of the N-terminal subdomains. Mol Cell 2008; 30:567-77. [PMID: 18538655 DOI: 10.1016/j.molcel.2008.04.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 03/03/2008] [Accepted: 04/07/2008] [Indexed: 11/21/2022]
Abstract
Elucidating the mechanism of transcription initiation by RNA polymerases (RNAP) is essential for understanding gene transcription and regulation. Although several models, such as DNA scrunching, RNAP translation, and RNAP rotation, have been proposed, the mechanism of initiation by T7 RNAP has remained unclear. Using ensemble and single-molecule Förster resonance energy transfer (FRET) studies, we provide evidence for concerted DNA scrunching and rotation during initiation by T7 RNAP. A constant spatial distance between the upstream and downstream edges of initiation complexes making 4-7 nt RNA supports the DNA scrunching model, but not the RNAP translation or the pure rotation model. DNA scrunching is accompanied by moderate hinging motion (18 degrees +/- 4 degrees ) of the promoter toward the downstream DNA. The observed stepwise conformational changes provide a basis to understand abortive RNA synthesis during early stages of initiation and promoter escape during the later stages that allows transition to processive elongation.
Collapse
|
100
|
Advances in bacterial promoter recognition and its control by factors that do not bind DNA. Nat Rev Microbiol 2008; 6:507-19. [PMID: 18521075 DOI: 10.1038/nrmicro1912] [Citation(s) in RCA: 239] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Early work identified two promoter regions, the -10 and -35 elements, that interact sequence specifically with bacterial RNA polymerase (RNAP). However, we now know that several additional promoter elements contact RNAP and influence transcription initiation. Furthermore, our picture of promoter control has evolved beyond one in which regulation results solely from activators and repressors that bind to DNA sequences near the RNAP binding site: many important transcription factors bind directly to RNAP without binding to DNA. These factors can target promoters by affecting specific kinetic steps on the pathway to open complex formation, thereby regulating RNA output from specific promoters.
Collapse
|